PERL: Principles and Internals

Matti Koskimies

19th April 2004

Principles of Programming Languages
Spring 2004

Group 1 (Pietu Pohjalainen)
Department of Computer Science
University of Helsinki

Contents

I Design principles 3
1 PERL philosophy 3
2 Basic syntax 3
3 Strings and pattern matching 5
3.1 Scalar operations Lo 5
3.2 Regularexpressions. oo 5
4 Objects 6
IT Internals 9
5 Architecture 9
5.1 PERL datastructures. 9
5.2 Translator 11
5.3 Executor. L 11

Part 1
Design principles

1 PERL philosophy

PERL has a very distinct history of evolution in that it was created not so
much out of a vision of a novel methodology to tackling a problem domain,
but rather as a swiss-army knife, combining many existing tools into a single,
straightforward package. Therefore it combines features not only from other
programming languages like C, FORTRAN and PASCAL, but also from many
core Unix tools such as sed, awk and grep. It is unlikely that its creator, Larry
Wall, ever had a singular objective when deciding on the tool’s features, but
instead just borrowed and combined features he saw as contributing something
beneficial to the language as he went along, letting the end result form itself.
This process was largely due to a key principle, coined by Wall in [Wal00] as
“easy things should be easy, and hard things should be possible.”

Partly due to its design process, PERL is notorious for disregarding such
traditionally respected goals as orthogonality and explicitness in favour of an
approach that in some respects attempts the complete opposite. This can clearly
be deduced from the philosophical slogan perhaps most commonly attributed to
PERL: “There is more than one way to do it” [Wal00]. Such a design principle is
typically shunned by both traditional and modern language designers who tend
to avoid providing overlapping models of accomplishing the same functionality
at all cost. Unorthogonal features are seen as impure and degenerative; PERL
embraces such features.

Not only is PERL unorthogonal by nature, it would seem to make things
worse by adding an additional obfuscation layer: the so-called default input and
pattern-matching space, more commonly addressed as $_. This global variable is
automatically assigned values depending on the context; most typically it takes
on the individual values of a list which is being iterated. The (mis)use of such
implicit assignments can cause code to be illegible to even experienced PERL
coders.

There is, however, an underlying logic to these seemingly unwanted features.
It stems not from the design of programming languages, but from that of nat-
ural languages which provide an immense variety of expressions as a result of
centuries or millennia of evolution. Similarly, PERL syntax is intended to be as
flexible and expressive as possible, allowing a program flow to follow the pro-
grammer’s mindset more smoothly than languages with a less forgiving syntax.

2 Basic syntax

Much of PERL syntax also has analogies to the grammar of natural languages.
Variables are seen as nouns of which there are singular (scalar) and plural (array,

hash) occurrences. Subroutines are little more than verbs specifying actions.
The syntax of the available variables is shown in table 1.

| Type | Character | Example | Use |
scalar $ $age An individual value (number or string)
array Q@ Quweekdays A list of values, keyed or numbered
hash % %users A group of values, keyed by string
subroutine & &convert A callable chunk of PERL code
typeglob * xcurrent Everything named current

Table 1: Variable syntax [Wal00]

Another linguistic feature of PERL is its strive to be context-sensitive when-
ever possible. Scalars may contain strings or numbers, but it is in the context
of an expression that their type is determined. Consider the example provided
in Programming Perl [Wal00]:

$camels = 71237;
print $camels + 1, "\n";

As a result of the operations, 124 is printed out. This is because even though
the value of $camels is originally a string, it will adapt its form depending on
the context it is used in. In the above example, the + operation is applied to
the value. As the + operation is numeric by nature, any values passed to it are
interpreted as numbers. However, print uses a string context so the value of
$camels is converted back to a string. The appending newline sign is already
in the right context and needs no further conversion.

The strive for context-sensitivity has very far-reaching implications in PERL.
Subroutines can return different values depending on whether they’re called in
scalar or list (array or hash) context. Similarly, list variables themselves may
be evaluated in a scalar context, yielding the size of the list as a result.

On the other hand, PERL is also a mathematical language which includes a
large amount of functions and operators, most of which have been incorporated
from other languages. For instance, the arithmetic operators include ** and
% as used in C, whereas numeric functions include hex() and oct() as used in
PAscAL.

Another core characteristic of PERL is its tight system integration. As the
languages origins are in the UNIX environment, most of the system interoper-
ability bears a close resemblance to similar features especially in UNIX shells
such as bash and csh. For instance, launching an external executable can be
done in any of the following methods, the two latter of which have their origins
in shell scripts and the standard C library:

$exitcode = system(‘‘/bin/fo0”);
$result = “/bin/foo paraml param2”;
exec(““/bin/foo’’,”’paraml’’,”’param?) ;

Another typical example of powerful system integration is PERL’s I/O function-
ality. Consider the amount of lines required to read a file into an array of strings
in JAVA or any other compiled language. In PERL, this can be done in three
lines:

open (INPUTFILE,”’textfile.txt’’);
my @filecontents = <INPUTFILE>;
close(INPUTFILE);

There is plenty more easily recogniseable system level interaction, some of which
—such as the fork() call — has made porting PERL into other systems challenging.
However, for almost all of it there exists portable library equivalents, especially
in the POSIX library package.

3 Strings and pattern matching

The origins of PERL as a combinatory replacement for sed and awk are perhaps
most obvious in its strong string manipulation and pattern matching features.
Especially the latter have become a standard which other languages duplicate
and are measured by.

3.1 Scalar operations

PERL provides a variety of operations that can be performed on any scalar
content, although most of them will interpret the content as a string. Compiled
languages, JAVA included, seem very cumbersome in comparison as they will
often offer no option but to build the manipulation algorithm from scratch, often
involving going through strings one character at a time. PERL programmers
would not need to resort to such low-level handling of strings: not only does
PERL provide a comprehensive set of functions for manipulating strings, they are
combined with the power of regular expressions to ensure that the programmer
will never need to come by his own solutions to extend the available toolset.
Table 2 lists some of these functions along with example usage.

3.2 Regular expressions

Pattern matching provides a method for efficiently filtering out specific infor-
mation from a potentially large amount of data using, using a set of formally
defined rules specified in a regular expression (or regex for short). These rules
are used by PERL’s regular expression engine to determine whether the provided
pattern matches the data.

Matching and substituting matches are such key features of PERL that they

have been given their own =~ operator. By default, the operator performs
matching based on the succeeding regex, normally given between two forward

| Function | Purpose Usage
chomp | Purge trailing newline $fileline = <STDIN>; chomp $fileline
chop Purge last character if ($line =~ /\..{4}$/) { chop $line; }
grep Grep for string or pattern in array my @matches = grep "John" @names;
join Join array into scalar according to rule my $flat = join("\n",@lines);
lc Convert to lowercase my $user = substr($firstname, 0,1) . 1c $lastname;
length Length of string if (length $name > 30) { ... }
pack Pack string according to rule $out = pack "H8", "5065726c";
reverse Reverse string my $devilspeak = reverse $monroelyrics;
split Split scalar into array according to rule my @tsvline = split("\t",$tsv);
sprintf | Print formatted string sprintf ("%.3d", $decnum) ;
substr | Get a substring of this string $firstchar = substr($a,0,1);
uc Convert to uppercase my $shout = uc($whisper);

Table 2: Some scalar manipulation functions in PERL

slashes. For substitution, an additional s is inserted in front of the first slash; for
the sake of completeness an m can also be used to specify a matching operation
but it can rarely be seen in use. The below expressions will produce a printout
consisting of the string “anything and anything else™

my $match = "something and something else";
if ($match =" /something\welse/) {
$match =~ s/some/any/g;
print $match;
}
4 Objects

PERL was not originally an object-oriented language. It is no surprise, then,
that the approach it takes to object-oriented features — one which appears to
attempt a minimal impact on existing syntax and keywords — has not won
much acclaim; in fact it has been criticised extensively. By no means is PERL a
match to PYTHON or other more essentially object-focused languages in regard
to syntax intuitiveness or the level of abstraction.

Regardless of form, the functional aspects of object-oriented programming in
PERL are rich. Polymorphism, multiple inheritance, dynamic feature replace-
ment, operator overloading and introspection are all available, most of them
without any additional fuss. The more exotic of these features are not discussed
here; see [Sri97, Wal00] for further reference.

Algorithm 1 shows a trivial hierarchy of two objects, Vehicle and Car, each
with certain properties and functionality. As the example shows, inheriting
features from other classes is simply a matter of adding them to the @ISA list.

While the end result may seem messy at best, the foundations of the PERL
object system implementation are very pragmatic by nature [Wal00]:

Algorithm 1 Simple object hierarchy in PERL
package Vehicle;

sub new {
my $invocant = shift;
my $class = ref($invocant) || $invocant;
my $self = {

color => "blank",

passengers => -1,

owner => "John Doe",

Q_, # Override previous attributes
}

return bless $self, $class;

package Car;

our QISA = "Vehicle";

sub new {
my $invocant = shift;
my $class = ref($invocant) || $invocant;
my $self = SUPER::new(Q_);
$self->{passengers} = 4;

}
sub honk {

print "Beepbeep!";
}

1. Objects are referents.!
2. Classes are packages.

3. Methods are subroutines.

The strategy seems very convenient in that the core object-oriented concepts
map well into these existing language constructs, introduction of new syntax
is (to a large extent) avoided and existing syntax is preserved. However, these
principles do not yet shed light on how objects come to existence and where
their data is stored.

As shown in algorithm 1, constructing an object does require one additional
concept: blessing. Conceptually, the act of blessing binds an object to its class;
in practice, an ordinary reference is turned into an object reference. The type
of the reference doesn’t matter; typically it would be a hash, but it could just as
well be an array. Hashes are normally used because the contents of the reference
are in essence the instance-specific variables. As such, the key-value structure
of a hash provides a way to give each variable a name. Instead of actually
passing around objects, then, just the internal data of the object is stored in
the reference. Each time a class’s method is called through an object reference,

IThe choice to not use the word reference here is deliberate, as the object really is what’s
behind the reference, not the reference itself. Another way of expressing the issue is that
objects are always used through references.

the first parameter to the method is always the reference itself. The method can
then inspect by itself whether it was called in class or instance context and act
accordingly. The object reference passed to it will provide access to the object’s
variable fields when needed.

Part 11
Internals

As a scripting language, what happens behind the curtains in PERL is decidedly
different from what is typical in compiled languages. This part of the seminar
work is a superficial review of the methods and solutions used to accomplish the
features of PERL.

5 Architecture

g};ij';;_" Translator = — — — - Optimized op coda Opoode functions

I
t
-— Executer

| l
|
<— - — = Perl object API «— — = Files,Sockets

]

ta
Custom C code pa

Perl interpreter code

Figure 1: Snapshot of a running system

5.1 PERL data structures

The PERL Object API, shown in Figure 1, is a common interface for any actions
taken on internal data structures such as variables, symbol tables and files.

| Value type | Purpose |
Y Scalar value
AV Array value
HV Hash value
(A% Code value
GV Glob value (typeglob)
RV Reference value

Table 3: PERL values

PERL distinguishes between global and lezical (or local) variables. Global
variables in the inner workings of PERL are seen as name-value pairs and can

be categorised according to Table 3. The symbol table is nothing more than an
HV (hash value) mapping identifiers (variable names) to their values. As can
be seen from figure 2, the identifiers appear as typeglobs (the * notation) in the
symbol table, with pointers to different value types. This two-level hierarchy
is necessary because PERL allows different types of variables to use the same
identifier even though they are completely independent; e.g. the values of a
scalar named $bag and an array named @bag have nothing to do with eachother.

Symbol Table Typeglob
(*spud)
——wsalarvalug (S=pud)

T

— wlistvalue {Bzpud)

s hashvalug (%=spud)
Foo:: —
————=codevalue (&spud)

—wfilehandie {spud)

Eaamae — e format {spud)

Figure 2: Structure of the symbol table

Lexical variables are always prepended by a my keyword and do not appear
in the symbol table. Instead, blocks and subroutines use what is known as a
scratchpad, an array where each variable declared within the block gets its own
slot; in contrast to global variables, variables of different type using the same
identifier all get their own slot.

Global variables can be made to act like local ones using the local keyword.
In essence, the variable’s value is localised for the remainder of the block, after
which the original value is restored. However, the temporary value is not only
visible to the block in which it was created but also to any subroutines called
from that block. Such a feature is called dynamic scoping and can cause some
unwanted effects; use of it in place of my is strongly discouraged. However, the
features may be useful in temporarily replacing the values of built-in variables.
As an example, the diamond operator expects to find its arguments in the global
@ARGYV variable. The local operator could be practical when iterating through
other files than those supplied at the command prompt: when the block ends,
the original command-line parameters are restored.

The PERL argument stack is simply an AV (array value) onto which subrou-
tine arguments are inserted by the caller and from which they are subsequently
picked up by the callee. Once the subroutine exits, whatever return value it has
is also pushed to the argument stack. Contrary to the C stack though, there
are several stacks in PERL for different purposes such as temporary variables,
loop iterators, opcodes etc.

All T/0O operations in PERL are handled by the PerlIO abstraction interface,
which is little more than a wrapper for the stdio and sfio libraries.

10

5.2 Translator

The translator component is perhaps the most complex of the PERL subsystems.
It translates script code into a tree structure consisting of opcodes, similar to
JAVA’s bytecode in that they’re executed by a virtual machine. However, the
opcodes are of a much higher abstraction level than the product of the JAva
compiler which is more akin to the instructions of a RISC machine. Many of the
opcodes — pattern matching, push, pop to name a few — have direct counterparts
in script code. Opcodes, on the other hand, are a far cry from machine language:

Opcodes are similar in concept to machine code; while machine
code is executed by hardware, opcodes (sometimes called byte-codes
or p-code) are executed by a "virtual machine." The similarity ends
there. Modern interpreters never emulate the workings of a hard-
ware CPU, for performance reasons. Instead, they create complex
structures primed for execution, such that each opcode directly con-
tains a pointer to the next one to execute and a pointer to the data
it is expected to work on at run-time. In other words, these opcodes
are not mere instruction types; they actually embody the exact unit
of work expected at that point in that program. [Sri97]

The translator consists of a hand-coded lexer (toke.c), a yacc -based parser
(perly.y) and a code generator (op.c). Furthermore, regular expressions are
converted into an internal format using regcomp.c.

5.3 Executor

The executor is PERL’s virtual machine: it iterates through the execution chain
laid out in the syntax tree, calling the corresponding opcodes sequentially. The
dynamic nature of PERL shows in that the final sequence can not be predeter-
mined: each opcode returns to the executor a link to the one to be executed
next, which may or may not be the one originally specified as the successor at
compile-time.

References

[Sco00] Scott, Michael Lee: Programming Language Pragmatics. First edition,
2000. ISBN 1-55860-578-9.

[Sri97] Srinivasan, Sriram: Advanced Perl Programming. First Edition, August
1997. ISBN 1-56592-220-4

[Wal00] Wall, Larry, Christiansen, Tom, Orwant, Jon: Programming Perl.
Third edition, July 2000. ISBN 0-596-00027-8.

11

