
Shading Languages
Ari Silvennoinen

Apri 12, 2004

Introduction
The recent trend in graphics hardware has been to replace fixed

functionality in vertex and fragment processing with

programmability [1], [2], [3]. This allows developers to create

unforeseen visual complexity that used to possible with only offline

renderers. Vertex processing involves the operations that occur at

each vertex, including transformation and lighting. Fragment

processing consists of the operations that occur after rasterization,

most notably the sampling of textures and assigning the sampled

values to each fragment.

Evolution of programmable shading
Assembly languages for graphics hardware programming have

been around for awhile and they share the same set of

inadequasities as assembly languages for traditional computer

hardware, namely:

• lack of portability

• error-prone syntax

• tedious to program

The next natural step in the realm of real-time rendering was to

come up with higher level languages.

The limitations of a fixed shading model were first realized

by Robert Cook, who proposed a flexible tree-like shading model

in 1984 [4]. Each shader is organized in a tree-like structure, where

the innder nodes are operations and child nodes are inputs to the

operations. The final color is produced by evaluating the tree.

Cook's work later influenced the design of the RenderMan

Shading Language, the most established shading language for

offline rendering.

Renderman uses curved surfaces in contrast to triangles as

it's geometric primitives. These surfaces are tesselated to

“micropolygons” that are smaller than a pixel. The programmable

shader operates on the vertices of these polygons. This approach is

not feasible on current graphics hardware, due to the lack of

support for automatic tesselation of curved surfaces to

micropolygons. Traditionally graphics hardware performance has

Illustration 1A Shade Tree Example, from Rob Cook's original SIGGRAPH paper

not been high enough to allow for the use of pixel-sized polygons.

The first programmable graphics hardware architechture,

PixelFlow, was developed by Marc Olano et al at UNC in the mid-

1990s [5]. However, the project failed commercially due to high

cost of the described architechture.

Consequent advances in graphics hardware guided the

evolution of real-time programmable shading from hardware

vendor-specific assembly languages towards high level shading

languages, most notably the OpenGL Shading Language and

Microsoft's High Level Shading Language.

OpenGL Shading Language
The OpenGL Shading Language has been developed by the

OpenGL Architechture Review Board (ARB), an independent

consortium which governs the OpenGL specification. The language

was designed with the following goals in mind [3]:

• hardware independence

• high performance

• ease of use

• long lifespan

• ease of implementation

The language itself is based on the C-programming

language. Shading programs written in the OpenGL Shading

Language share a common structure with the C-equivalents. The

entry point of a set of shaders is the function void main ().

Data Types And Data Abstraction
The OpenGL Shading Language supports vector types for floating-

point, integer and boolean values, as well as scalars. In addition

floating-point matrix types are also included. Matrix types allow a

convenient representation of linear affine transformations,

commonly used in 3D graphics. Basic operators such as addition,

substraction, multiplication and inverse are defined for both vectors

and matrices.

Another set of domain specific basic data types are called

Samplers. Samplers are a special type used to access texture maps.

The OpenGL Shading Language has support for 1D, 2D, 3D,

shadow and cube map textures.

Information flow between the application and shaders

differs considerably from common programming environments.

Information is transferred to and from a shader by accessing built-

in variables and user defined variables. User defined variables can

be associated with one of the following qualifiers:

• attribute For frequently changing information, from

application to a vertex shade

• uniform For infrequently changing information, for vertex and

fragment shaders

• varying For interpolated information passed from vertex to

fragment shader

• const For compile time constants

uniform float Kd;

attribute vec4 Dir;

vec4 a(1, 0, 0, 1);

vec4 b(0, 0, 1, 1);

vec4 c = a*b;

float d = dot (a.xyz, b.yzw);

uniform sampler2D baseTexture;

vec4 color = texture2D (baseTexture)*vec4 (Kd,

Kd, Kd, 1);

Table 1Usage of basic data types

Variables behave similarly to C++ in terms of declarations

and scoping. Type void is a special type used to declare a function

with no return value. The OpenGL Shading Language disallows

implicit type promotion. It provides operators for excplicit type

conversion.

Unqualified variables may be initialized when declared, that

is attribute, uniform and varying variables cannot be initialized

when declared. The OpenGL Shading Language provides

constructors fro all the built-in types, excluding samplers, in

addition to structures.

The OpenGL Shading Language has built-in support for

arrays and structures of any type.

Control Flow And Control Abstraction
The entry points to shaders are functions named main. A program

can consist of a vertex shader, a fragment shader or from both a

vertex shader and a fragment shader. In the latter case, the shaders

will have two functions named main; one for the vertex shader and

another one for the fragment shader.

The OpenGL Shading Language has support for similar

control flow mechanisms as C++. Iteration is supported by for,

while and do-while looping constructs, which are semantically and

syntactically like their C++-counterparts. Looping constructs allow

arbitrary exit points with break and continue statements. They

behave semantically and syntactically as in C/C++.

Selection is done with if and if-else constructs, which

operate on boolean expressions. Boolean expressions can be

chained with logical and (&&), or (||) or xor (^^) operators. These

operations follow the short-circuit evaluation semantics like

C/C++. The OpenGL Shading Language supports also the

ternary :?-operator, which behaves exactly as in C++.

The OpenGL Shading Language has a special statement,

discard, that prevents the frame buffer from being updated by the

current fragment.

Functions can be declared, defined and used much in the

same way as in C++. Either a function definition or a declaration

must be in the scope before it can be called. Parameter types are

statically checked. Functions can be overloaded by parameter type,

excluding differentation based solely on the return type. Exiting

from a function is done with the return statement. Functions

declared as nonvoid must return a value, whose type must exactly

match the declaration. Recursion is not supported, neither directly

nor indirectly.

Functions follow the call by value-return calling convention.

Parameters can be declared as in, out or inout, and the different

semantics are described below:

• in Copy in, don't copy back out; writable within the

function

• out Copy only out; readable but undefined at entry to

function

• inout Copy in and copy out

• const Function cannot write to it

vec4 ComputeDiffuse (in vec3 normal, in vec3

light, in float3 lightcolor, in float Kd, in

vec3 ambientColor)

{

 vec3 color = max (0, dot (normal, light))

*lightcolor*Kd + ambientColor;

 return vec4 (color, 1);

}

Table 2A Function example

The OpenGL Shading Language defines an extensive set of

built-in functions, which are/will be hardware accelerated. Built-in

functions include support for:

• trigonometric functions

• exponential functions

• geometric functions

• matrix and vector functions

• texture access and fragment processing functions

• noise functions

References
[1] David S. Ebert et al, Texturing&Modeling: A Procedural Approach,

Morgan Kaufman 2003.

[2] Tomas Akenine-Möller, Eric Haines, Real-Time Rendering 2ed, A K

Peters 2002

[3] Randi J. Rost, OpenGL Shading Language, Addison Wesley 2004

[4] Robert L. Cook, Shade Trees, ACM SIGGRAPH Computer

Graphics, Volume 18, Issue 3, July 1984

[5] Lastra, Anselmo, Steve Molnar, Marc Olano, and Yulan Wang, Real-

Time Programmable Shading, Proceedings of the 1995 Symposium on

Interactive 3D Graphics (Monterey, CA, April 9-12, 1995), ACM

SIGGRAPH, New York, 1995.

