
Problems with Save

Sari A. Laakso
Interacta Design Oy

Vuorimiehenkatu 23 B
FI-00140 Helsinki,

FINLAND
+358 9 6813 8520
sari@interacta.fi

Karri-Pekka Laakso
Dept. of Computer Science

University of Helsinki
P.O.Box 26 (Teollisuusk. 23)

FI-00014 University of
Helsinki, FINLAND
+358 9 191 44268

kpalaaks@cs.helsinki.fi

Panu Vartiainen, Asko Saura
Interacta Design Oy

Vuorimiehenkatu 23 B
FI-00140 Helsinki,

FINLAND
+358 9 6813 8520

{panu,asko}@interacta.fi

ABSTRACT
Saving documents, i.e. moving data manually between
main memory and disk storage, is a difficult concept for
novice users and causes unnecessary work and data loss
both for novices and experienced users. Use scenarios show
that the problem cannot be solved simply by re-designing
the save feature or adding an autosave, because the save
problem is entangled in a broader complex of document
management problems.

Based on the analysis of use scenarios, we have designed
and implemented a prototype that solves a set of the most
essential problems relating to the save problem in the
context of word processing.

Keywords
GUI design, goal-based design, save problem

INTRODUCTION
Even experienced users often lose data because they have
not saved their documents often enough. Programs crash,
data connections break down, power outages occur, or
users simply select the wrong option when exiting the
program [1]. To avoid this, experienced users learn to save
continuously, and although saving gradually becomes
nearly an automatic cognitive process for them, it remains
an error-prone unnecessary burden. Novice users have
trouble even with the concept of saving. They cannot grasp
the idea of having one copy in disk storage, another in the
main memory, and the need to synchronize these two. The
user interface based on the implementation model causes a
lot of trouble [2].

The problems related to saving have been partially solved
in programs that offer support for autosave, undo, and
versioning, for example, but interaction design of the
features is usually so weak that users cannot find and use
them. In addition, some useful features are missing, e.g.

support for renaming documents. Currently, users are
forced to rename documents with the Save As function
which creates a new copy of the document as a side effect.

We have taken the first step towards a more complete
solution by trying to solve the problems related to the
concept of saving, opening, and closing documents in the
context of a word processor. We have based our solution on
frequently occurring users’ goals that have been extracted
from use scenarios.

USE SCENARIOS AND THE DESIGN PROCESS
To find out users’ goals, we traced the evolution of
documentation in four projects in our company during six
weeks. From the scenarios, we extracted frequently
occurring patterns related to the save problem. We found
out that the most recurring patterns included using a prior
document from a very similar project as the basis of a new
one (locate the document, make a copy), copying material
from earlier documents (locate a document, copy some text,
paste it into the new one), and creating a new version of a
document (locate the current version, edit it, save a new
version without touching the previous one).

In the last case, the user’s natural work flow does not begin
with creating a new version of the document (Save As or
New Version) – she wants to make changes instantly. The
user might have received a phone call from a customer who
wants to make minor changes to the contract, and the user
is fully focused on the contents of the contract. If she hits
the save key during editing (an automatic process), it will
be very difficult to restore the previous version which
might be the last official version of the document, for
example. If she does not save the document during editing,
she will probably some day lose her changes.

Interaction design was based on the use scenarios
mentioned above, and some ideas originally presented by
Cooper [1]. We designed the user interface and created
paper mock-ups which were evaluated by walking through
use scenarios in three iterative design phases. In parallel
with design and evaluation iterations, we implemented a
prototype with Microsoft Visual C++ in order to confirm
that the implementation was possible on top of the existing
Windows 98 (MS-DOS) file system.

Figure 1. A prototype of our save problem solution for Microsoft Word.

PROTOTYPE
Our current prototype (Fig. 1) writes the user’s changes
continuously to the disk, i.e. the data between the main
memory and the disk is synchronized. Users do not have to
face the implementation model, and when closing a
document, they never get the error-prone “Do you want to
save changes?” dialog box that breaks their work flow.

Because most of the scenarios begin with locating earlier
documents, the standard File Open dialog box has been
replaced by a more usable design that offers a continuous
filter for the documents that can be edited by this program
(see dynamic queries in [3]). When the user starts typing
the name of the document or the project, the system
dynamically filters the document list.

When the user has found the document he is looking for, he
opens it by selecting the row. The system opens the
document on the right side of the window, and an icon of
the document is shown in the open documents area (top-
left). Open documents are always visible, and the user can
easily switch between them while cutting and pasting
material, for example. To rename a document, the user
simply clicks and edits the name on the document list.

In the prototype, the version history of Microsoft Word has
been replaced by interaction based on direct manipulation.
The currently visible document is expanded under the
corresponding row in the document list on the left side.
When the user wants to return to a previous version, he
simply clicks on the row of the version. If he edits the
previous version, a new vertical branch of the version tree
will be created (not shown in Fig. 1).

FUTURE WORK
Although the design decisions for the most recurring parts
of the use scenarios can be demonstrated with the current
prototype, the prototype does not yet fulfill all the
requirements of user interface specification, and its
appearance is not finished. These shortcomings will be
fixed before the next walkthrough sessions.

REFERENCES
1. Cooper, A. About Face. The Essentials of User Interface

Design. IDG Books Worldwide, USA, 1995.

2. Norman, D.A. The Psychology of Everyday Things.
Basic Books, New York, 1988.

3. Shneiderman, B. Dynamic queries for visual
information seeking. IEEE Software, Vol. 11, 70-77.

Continuous filter fields for
locating documents

Version history
of the active
document

Open documents

Edit in place

Split pane

