
State of the Art in Enablers for Applications in
Future Mobile Wireless Internet

Fuego Core Project
Jaakko Kangasharju Tancred Lindholm

Kimmo Raatikainen Sasu Tarkoma

June 30, 2002

Helsinki Institute for Information Technology

Contents

1 Introduction 1

2 Event-Based Systems 5
2.1 Introduction . 5
2.2 Event Models . 7

2.2.1 Events . 7
2.2.2 Event Model . 8
2.2.3 Routing . 9
2.2.4 Content-based Routing 10
2.2.5 Requirements for Mobile Computing 14

2.3 Event Systems . 15
2.3.1 Java Delegation Event Model 15
2.3.2 Java Distributed Event Model 16
2.3.3 Java Message Service (JMS) 17
2.3.4 The CORBA Event Service 21
2.3.5 CORBA Notification Service 26
2.3.6 CORBA Management of Event Domains 30
2.3.7 The Cambridge Event Architecture 32
2.3.8 Scalable Internet Event Notification Architecture . . . 33
2.3.9 Elvin . 39
2.3.10 Other Event Architectures 42
2.3.11 Discussion . 53

2.4 Conclusions . 55

3 XML Protocols 57
3.1 XML . 57
3.2 Web Services . 59
3.3 Protocols . 59

3.3.1 History . 60
3.3.2 Features . 60
3.3.3 Current State . 62
3.3.4 Implementations . 62

3.4 XML over Wireless . 63

i

CONTENTS CONTENTS

3.4.1 Problem Areas . 63
3.4.2 Different XML Protocols 63
3.4.3 Transfer Protocols . 64
3.4.4 Compression . 64

3.5 Summary . 67

4 Synchronization 69
4.1 Introduction . 69
4.2 Coda . 71

4.2.1 Storage and Update Model 72
4.2.2 Coda as a MDIB . 76
4.2.3 Practical Issues . 76

4.3 InterMezzo . 76
4.3.1 Storage and Update Model 77
4.3.2 InterMezzo as a MDIB 79
4.3.3 Practical Issues . 80

4.4 OceanStore . 80
4.4.1 Routing to Data . 83
4.4.2 Update Model . 84
4.4.3 Mobility and OceanStore 86
4.4.4 Practical Issues . 87

4.5 Bayou . 87
4.5.1 Storage and Update Model 88
4.5.2 Mobility Issues . 91
4.5.3 Deployment Issues . 92

4.6 SyncML . 92
4.6.1 Deployment Issues . 94

4.7 Adding Intelligence . 95
4.7.1 Synchronization Policies 95
4.7.2 Synchronizing Similar Data 96

4.8 Delta Transfers . 99
4.9 Conclusions . 101

ii

List of Figures

2.1 General model of the event source and event listener. Event
source fires events, and the listener is notified using some
mechanism on the network or in the client. 10

2.2 Example event model taxonomy. 13
2.3 The OpenFusion Notification Service with JMS publish-sub-

scribe interoperability. 20
2.4 The OpenFusion Notification Service with JMS point-to-point

interoperability [Pri01] . 21
2.5 The standard CORBA client-server model of invoking oper-

ations from client to the target object. 22
2.6 Example of an event propagation implementation. 23
2.7 Pull Model and the Event Channel. 24
2.8 The hybrid model mixing Push and Pull models. 24
2.9 Components in the CORBA Notification Service [GCSO01]. . 27
2.10 The structured event: Event header and event body. 30
2.11 CORBA Notification Service channel federation. 31
2.12 A publish-register-notify event architecture [BMH+00]. . . . 33
2.13 Hierarchical configuration. Dotted lines represent client-

server protocol. 34
2.14 Acyclic peer-to-peer configurations. Solid lines indicate server-

server protocol. 35
2.15 Generic peer-to-peer configuration. Solid lines indicate server-

server protocol. 36
2.16 Event propagation in JEDI. 44
2.17 The COM+ Event Service. 48
2.18 MSMQ Product Architecture. The Queue Manager connects

to other Queue Managers in order to communicate between
different hosts. 51

3.1 An Example XML Document 58
3.2 The Structure of a SOAP Message 61

4.1 Venus states and state transitions. 74

iii

LIST OF FIGURES LIST OF FIGURES

4.2 Symmetric two-synchronization operation in InterMezzo [Bra02]. 78
4.3 The path of an update (figure and text from [K+00]). (a) After

generating an update, a client sends it directly to the object’s
inner ring, as well as to several other random replicas for that
object. (b) While the inner ring performs a Byzantine agree-
ment protocol to commit the update, the secondary replicas
propagate the update among themselves epidemically. (c)
Once the primary tier has finished its agreement protocol,
the result of the update is multicast down the multicast tree
to all the secondary replicas. 82

4.4 Routing using the algorithm of Plaxton et al. In this example
b = 2, k = 2 and the distance measure is the geometrical
distance between the nodes in the figure. The address of the
node is written over the node’s routing table. In the routing
table, the entry (ik, ib) is at row ik column ib; L means that the
entry points back to the node (a loopback entry). The arrows
A and B show the routing of a message from node 00 destined
for node 11. 84

4.5 Object lookup using the algorithm of Plaxton et al. The node
00 publishes O1, whose root node is 11. The arrows A and B
indicate the path of the publishing message. When 10 queries
for O1, it sends the query to 11. However, the location of O1
is discovered at 01 after the first hop, and the message is sent
directly to node 00 (arrows C and D). 84

4.6 Basic anti-entropy executed at server S to update receiving
server R [PST+97]. 89

4.7 A bayou write for a group calendar [E+97]. 90
4.8 A revision tree with two branches 97
4.9 Example of 3-way merging of XHTML documents. The

changes in the upper page are propagated to the lower page
using 3-way merging. 98

iv

Chapter 1

Introduction

One significant trend in software for future mobile systems is the require-
ment of ever-faster service development and deployment. An immediate
implication has been the introduction of various service/application frame-
works/platforms. Middleware is a widely used term to denote a set of
generic services above the operating system. Although the term is popular,
there is no consensus of a definition (see RFC2768). Typical middleware
services include directory, trading and brokerage services for discovery,
transactions, persistent repositories, and different transparencies such as
location transparency and failure transparency. The importance of middle-
ware, that is a set of generic services above operating system and transport
stack, is widely recognized.

The objective of the Fuego Core project is to specify the set of fundamen-
tal enabling middleware services for mobile applications on future mobile
environments and to implement two research prototypes. The project has
adapted a two-level approach to develop the necessary middleware ser-
vices. On the top-level, the work areas characterize the long-term vision in
research for middleware for future mobile internet. On the bottom-level, the
work areas are further split to work items that are addressed in the project.

The work areas in the Fuego Core include

Adaptive Applications. Adaptability is one of the key research areas in
nomadic computing. The basic principle of adaptability is simple.
When the circumstances change, then the behaviour of an application
changes according to the desires of the user. Therefore, we need
means to collect and to present user preferences, which may, in turn,
depend on location, time, access device, properties of connectivity.

The basic principle of adaptability, i.e. the behaviour of an application
changes when the circumstances change, requires that the system de-
tects changes and notifies about them. Therefore, the generic service
elements must include: Environment Monitoring, and Event Notifica-
tion.

1

CHAPTER 1. INTRODUCTION

In environment monitoring there are three primary issues:

• discovery (which equipment are available),
• service location (which services are available), and
• available capabilities (computing power, various storage capa-

bilities, available capacity on communication paths).

Dynamic Reconfigurable Services. Situations, in which a user moves with
her end-device and uses information services, are challenging. More-
over, the nomadic user of tomorrow will not appreciate a static binding
between her and an access device; not even in the case of multi-mode
access devices that can handle several access technologies including
wireless LAN, short-range radio, and packet radio. It must be possi-
ble to move a service session (or one end-point of a service session)
from one device to another.

In these situations the partitioning of applications and the placement
of different co-operating parts is a research challenge. The support
system of a nomadic user must distribute, in an appropriate way, the
parts among the end-user system, network elements and application
servers. In addition, when the execution environment changes in an
essential and persistent way, it may be beneficial to redistribute the co-
operating parts. The redistribution or relocation as such is technically
quite straightforward but not trivial. On the contrary, the set of rules
that the detection of essential and persistent changes is based on is a
challenging research issue.

In the dynamic configuration we have a huge space of research items.
On the conceptual level there are research issues related to profiles,
various kinds of context also including the social context, roles and
trust. On the technical level we must solve the problems related to
authentication, authorization, and delegation.

Mobile Distributed Information Base File and information synchroniza-
tion between different devices is already available but in quite prim-
itive forms. A single information base for a user-possibly different
views for her different roles-and for multiple user groups is a funda-
mental enabler for seamless reconfiguration of the end-user system
for a mobile user and for seamless user roaming from one role to
another one.

The mobile distributed information base should provide consistent,
efficiently accessible, reliable and highly available information base.
This implies a distributed and replicated world-wide "file system" that
also supports intelligent synchronization of data after disconnections.
Shared access and support of transactional operations also belong to
the list of requirements.

2

CHAPTER 1. INTRODUCTION

To summarize, the key enablers for mobile distributed information
base include:

• distributed and replicated world-wide information storage that
provides data consistency, efficient and reliable access and high
availability,

• intelligent synchronization after disconnections, and

• distributed mobile transactions with flexible correctness crite-
rion.

Of the fundamental enablers for future mobile applications, the Fuego
Core project has selected three as the work items of 2002:

1. Event-based systems

This work item addresses the fundamental principle of adaptability-
the behaviour of an application changes when the circumstances
change. Therefore, the system must detect changes and notifies about
them. In other words, the middleware solution must provide service
elements for Environment Monitoring and Event Notification.

2. XML issues on profile presentation, protocol, and transport over wire-
less

XML starts to be the key presentation format for various kinds of
information about capabilities, preferences, and properties. There-
fore, middleware for mobile internet must provide an efficient way of
exchanging XML content and of supporting SOAP.

3. Intelligent synchronization

Of the fundamental enablers for mobile distributed information base
intelligent synchronization is selected as the starting point. The
assumption is that an existing storage system, for example Coda,
OceanStore, or InterMezzo, can be integrated with syncML. The ob-
jective is to build mechanisms that take care of decisions on what and
when to synchronize.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Event-Based Systems

2.1 Introduction

This chapter presents an overview of event systems and distributed event
frameworks with an emphasis on the special requirements presented by
mobile computing. By mobile or ubiquitous computing we mean the new
field of research created by wireless communication and the introduction
of small, mobile devices. Traditionally, event-based systems are based on a
number of event sources and event sinks, which register to receive certain
type of events. Events are found everywhere; in Nature, office buildings
and computer programs. An event-based framework can be decomposed
into two essential parts:

• Event detection, which deals with the detection of the occurrence of a
particular event of interest.

• Event notification, which is the act of notifying interested parties that
an event has occurred.

Many existing platforms employ the synchronous model of method
invocation, in which operations are performed on passive objects. This
model is insufficient for reactive environments, where components need
to react to changes, events, within the system and give timely response.
An option would be to use polling the states of objects, but too frequent
polling burdens the system and too infrequent polling delays the commu-
nication [BMH+00]. Asynchronous events support different applications
types as identified by [BMH+00]:

• Group interaction

• Multimedia support (multimedia control through rules)

• Mobility

5

2.1. INTRODUCTION CHAPTER 2. EVENT-BASED SYSTEMS

• Alarms and exceptions

• Management

Reliable and efficient asynchronous event detection and event notifi-
cation are vital for the development of the next generation-distributed
software for mobile Internet-aware devices. Event frameworks provide
a plug-and-play architecture for creating distributed applications.

Distributed architectures are based on middleware that provides the in-
teroperability layer required for heterogeneous cross-operating system and
cross-language operation and communication. Components from different
systems and different manufacturers can interoperate using middleware,
such as CORBA, where the interface definitions created using the IDL (In-
terface Definition Language) can be shared. CORBA and Java provide the
basis for more complex and interoperable software over various networked
domains.

Currently middleware solutions, such as Java, from the desktop world
are being introduced into the wireless world, where the requirements are
different. Small and wireless devices have limited capabilities when com-
pared with desktop systems: their memory, performance, battery life and
connectivity are limited and constrained. The requirements of mobile com-
puting need to be taken into account when designing an event framework
that integrates with mobile devices. From the mobility and wireless view-
point event systems can be divided into three distinct categories:

1. Traditional event systems designed for fixed network operation.

2. Event systems that support intermittent clients using a client-server
protocol and possibly roaming between access nodes.

3. Ad hoc networks, where clients can also be servers and servers may
roam.

The first category is the most researched and most of the architectures
presented in this chapter fall into this category. Several architectures sup-
port intermittent clients and roaming between access nodes. Ad hoc event
architectures are currently emerging, and they are only mentioned in this
chapter.

From the small device point of view, message queuing is a frequently
used communication method, because it supports disconnectedness. When
a client is disconnected, messages are inserted into a queue and when a client
reconnects the messages are sent. The distinction between the popular
message queue based middleware and notification systems is that message
queue based approaches are a form of directed communication, where the
producers explicitly define the recipients. The recipients may be defined

6

CHAPTER 2. EVENT-BASED SYSTEMS 2.2. EVENT MODELS

by the queue name or a channel name, and the messages are inserted into
a named queue, where the recipient extracts messages.

Notification-based systems extend this model by adding an entity, the
event service or event dispatcher, that brokers notifications between pro-
ducers of information and subscribers of information. This undirected
communication supported by the notification model is based on message
passing and retains the benefits of message queuing. In undirected commu-
nication the publisher does not know, which parties receive the notification.
This applies also to message-oriented middleware such as JMS [Sun01] that
support publish-subscribe type of communication [SAS01].

Undirected communication decouples producers and consumers. In ad-
dition many systems support filtering and pattern detection that are used
to reduce the amount of transmitted information and improve the accuracy
of notifications. Content-based routing is flexible, because it does not re-
quire configuration information pertaining to channel names. Undirected
communication may also be used to deliver the same set of information to a
number of client devices. However, this requires associating user subscrip-
tion information with a set of devices [SAS01] [CN01].

This chapter is structured as follows: Section 2.2 introduces event mod-
els, event routing and a number of requirements for mobile clients. Section
2.3 presents event systems such as the CORBA Notification Service, Siena,
and Elvin. We examine the support for disconnected operation and mobil-
ity in each of the presented event systems. Finally, Section 2.4 presents the
conclusion.

2.2 Event Models

Event models consist of event sources, event listeners, notification services,
filtering services, and event storage and buffering services. In addition,
there may be one or more authentication schemes to enforce security and
access control. This section focuses on the general definition of events and
event models.

2.2.1 Events

An event represents any discrete state transition that has occurred and
is signalled from one entity to a number of other entities. For example,
successful login to a service, the firing of detection or monitoring hardware
and the detection of a missile in a tactical system are all events. An event
may be based purely on software or it may be based on hardware. In
addition, natural systems, such as biological cells, are also event-based
systems. Nerve cells trigger impulses that travel around our body.

The firing of each event is either deterministic or probabilistic. A source

7

2.2. EVENT MODELS CHAPTER 2. EVENT-BASED SYSTEMS

can generate a signal every second making it deterministic. A stochastic
source follows some probabilistic model that can be described using, for
example, a Markov chain. Both event qualities can be modelled by building
statistical or stochastic models of the firing behaviour of the event source.
For example, a correlation analysis can be made between a series of event
occurrences in time or between two event sources. Such an analysis would
measure how strongly one event implies the other or how two event source
firings are related.

Events may be categorized by their attributes, such as what physical
property they relate to. For instance spatial events and temporal events
denote physical activity. Moreover, an event may be a subset of basic event
types, for example an event that has both a temporal and a spatial aspect.

Events can be categorized into taxonomies on their type and complexity.
More complex events, called compound events, can be built on more specific
simple events. Compound events are important in many applications. For
example, a particular compound event can be fired when:

• In a hospital, when the reading of a sensor attached to a patient
exceeds a given threshold and a new drug has been administered in
a given time interval.

• In a location tracking service, where a set of users is in the same room
or near the same location at the same time.

• In an office building, where a motion detector fires and there has been
a certain interval of time after the last security round.

Event-based interaction can be:

• Discrete.

• Continuous, as event streams.

Events can also have different prioritisations, and event aging assigns an ex-
piry time to each event notification. Event expiring prevents the spreading
of obsolete information.

2.2.2 Event Model

The standard client/server communication models in distributed object
computing are based on synchronous method invocations. For exam-
ple, COM+, Java RMI and CORBA use synchronous calls (CORBA 3.0
supports asynchronous invocations). This approach has several limita-
tions [GCSO01]:

• Tight coupling of client and server lifetimes. The server must be
available to process a request. If a request fails the client receives an
exception.

8

CHAPTER 2. EVENT-BASED SYSTEMS 2.2. EVENT MODELS

• Synchronous communication. A client must wait until the server
finishes the processing and returns the results. The client must be
connected for the duration of the invocation.

• Point-to-point communication. Invocation is typically targeted for a
single object on a particular server.

Mobile clients and large distributed systems motivate the use of asyn-
chronous and anonymous one-to-many distributed computing models.
Event-based models address the limitations of the standard client/server
paradigm by introducing two roles: consumers and producers. Since event
models employ differing technical terms, in this chapter we consider event
consumers, listeners, sinks, and event producers, sources and suppliers to
be synonymous.

The event model consists of event listeners and event sources. A listener
expresses interest in an event supported by an event source, and registers
to receive notifications of that event based on a set of parameters. Figure 2.1
presents a general model of the listener-source paradigm, and presents
the actual filtering and notification as a black box, which can reside either
on the source or on the network. Ideally, the event source does not have
knowledge of all the parties that are interested in a particular event.

The event system is a logically centralized component that may be a
single server or a number of federated servers. In a distributed system
consisting of many servers, there are two approaches for connecting sources
and listeners:

• The event service supports subscription of events and routes regis-
tration messages to appropriate servers (usually using a minimum
spanning tree). One optimization to this approach is to use advertise-
ments, messages that indicate the intention of an event source to offer
a certain type of event, to optimise event routing.

• Use some other means of binding the components, for example a
lookup service.

In this context, by event listener we mean an external entity that is
located on a physically different node on the network. However, events are
also a powerful method to enable inter-thread and local communication,
and there may be a number of local event listeners that wait for local events.

2.2.3 Routing

Event routing requires that store and forward type of event communication
is supported within the network on the access nodes (or servers). This
calls for intermediate components called event routers. Each event source

9

2.2. EVENT MODELS CHAPTER 2. EVENT-BASED SYSTEMS

Figure 2.1: General model of the event source and event listener. Event
source fires events, and the listener is notified using some mechanism on
the network or in the client.

is connected to at least one router. Each router needs to know a suitable
subset of other routers in the domain.

In this approach the request, in the worst case, is introduced at every
router to get a full coverage of all message listeners. This is not scalable, and
the routing needs to be constrained by locality or by hop count. Effective
strategies to limit event propagation are zones used in the ECO architecture,
the tree topology used in JEDI or the four server configurations addressed
in the Siena architecture. Siena broadcasts advertisements throughout the
event system, however subscriptions and notifications are routed based on
the advertisements, subscription and filters. Multicast works well in closed
networks, however in large public networks multicast or broadcast may not
be practical. In these environments universally adopted standards such as
TCP/IP and HTTP may be better choices for all communication [IBM02a].

2.2.4 Content-based Routing

Events are published in a named channel, or in an infrastructure of one or
more routers that can use the content of the events in making the forwarding
decision. Named channels are also called as topics, and they represent an
abstraction of numeric network addressing mechanisms. With content-
based addressing clients can change their interests without changing the
addressing scheme. With channel-based messaging, new channels need to
be added to the address space.

Content-based Routing decision is made based on the content, for example
strongly typed fields in the event message.

Subject-based Routing decision is made based on the subject of the event.

10

CHAPTER 2. EVENT-BASED SYSTEMS 2.2. EVENT MODELS

Channel-based (or topic-based) Routing decision is made based on the
channel on which the event is published. A channel is a discrete
communication line with a name.

The producers and consumers must agree on a channel. Content-based
and subject-based are more flexible than channel-based messaging, because
this agreement is not necessary. Channel-based messaging, however, allows
the use of IP multicast groups. The subjects can be allocated to multicast
addresses. Channel-based routing can be emulated with content-based
systems by limiting to a universally defined subject field.

Content-based event routing has been proposed as one of the require-
ments for advanced applications, in particular for mobile users [CW01].
Content-based routing takes place above the network level (level 3), and
can be based on IP multicast networks, for example. In the content infor-
mation model, the users subscribe information based on their preferences.
The information, when it is available, is then delivered based on these pref-
erences. The subscription paradigm abstracts the publishers of information
from the receivers; information is not published to a set of addresses.

Work has been done in using multicast networks to deliver the informa-
tion to the subscribers [CW01] using multicast addresses. The granularity
and flexibility of this approach depends on the size and number of the
virtual multicast addresses. As an alternative Carzaniga and Wolf present
an application-level information broker with a rich information selection
capability.

They define a content-based addressing scheme, by considering the
predicates that define subscriptions as the destination addresses. Data-
grams are implicitly addressed to a node by their content. The predi-
cate model is a set of boolean functions imposed on the datagram model.
Content-based routing is done using an algorithm that uses a forwarding
table, which is a map of interfaces to their receiver predicates.

Content-based systems are contrasted with channel-based and subject-
based systems, because the selection is done based on the whole content.
The other strategies offer only a set of well-defined attributes for selection
purposes. The drawback of content-based systems is scalability.

Filtering

Filtering reduces the number of events sent from the sources to the lis-
teners by matching events against a template. Those events that match
the template are forwarded to the listeners. Matching is usually done on
single events, but may be also performed on compound events. Filtering
improves the scalability of the system. Also, the location of the filtering of
events affects the scalability of the framework. Here we face two separate

11

2.2. EVENT MODELS CHAPTER 2. EVENT-BASED SYSTEMS

issues: the filtering of simple events and the filtering of compound events.
Both kinds of event filtering can be done at several locations:

• At a centralized server (client-server)

• At the listener

• At the event source

• In the infrastructure (event routers)

Source side filtering is more scalable than a centralized server or filtering
at the listener. Schemes that use multicasting and listener side filtering place
the burden on listeners and the communication infrastructure.

Quality of Service

Applications based on event-style communication have varying reliability
requirements. The event system may support from "at-most-once" seman-
tics to "exactly-once" semantics. In addition, there may be availability, per-
formance, scalability and throughput requirements. The diverse nature of
requirements calls for a number of implementations optimized for different
sets of requirements.

Taxonomy

Event models can be grouped into a taxonomy by their properties. As con-
trasted with the client-server paradigm, event models involve one-to-many
communication. Other important aspects for event model classification
are [Mei00]:

• Does the model support distributed operation, local operation, or
both. In a centralized event model the event sources and listeners are
located in the same host, whereas in the distributed model they can
be located on different hosts.

• Support for detecting composite events (compound events). Com-
pound events require more complicated filtering/history mechanisms.

• Support for Quality of Service requirements.

• Support for typed events, generic events, or both. Typed events
have well-defined structure, for example a set of ordered strings, and
generic events do not have an expressive structure (data type any).

• How decoupled the event listeners are from the event sources.

• Is the model subscription-based or advertisement-based.

12

CHAPTER 2. EVENT-BASED SYSTEMS 2.2. EVENT MODELS

• Support for channel-based, subject-based or content-based routing.

• Delivery semantics (best-effort, at-most-once..).

Additional aspects are:

• Support for wireless systems and disconnected operation.

• Does the model support event routing, direct notification etc.

• How interests are defined and discovered. Not all models include
discovery functionality.

Figure 2.2 presents an example taxonomy based on the event architec-
tures explored in section 2.3.

Figure 2.2: Example event model taxonomy.

13

2.2. EVENT MODELS CHAPTER 2. EVENT-BASED SYSTEMS

2.2.5 Requirements for Mobile Computing

The mobile environment poses several challenges for detecting and dis-
tributing events:

• The network connections are intermittent.

• Bandwidth may vary greatly depending on the connection. This
effectively puts constraints on the number of events that can be sent
in a certain time interval, how timely they are, and how reliably they
can be communicated to the other party.

• The devices may have limited system resources (CPU, memory, stor-
age) and may not have capability to pre-process events but send them
as they occur. This motivates an event service located on the fixed
network that provides high-level event support for mobile clients.

• The mobile clients may move to a different geographic location or
roam a different network. It is preferable that the event service works
after a change in connectivity or the service domain.

• The user may wish to share a set of subscriptions between different
devices.

Now, we need to consider the following requirements:

• Timely delivery of events, timely being defined in suitable context
that is application-specific.

• Reliable delivery of events. Events must be delivered as they are.
Events may not become lost.

• Events need to be processed asynchronously.

• Events need to be monitored and notified across domains.

• Event order may not change. If a node sends event A and then event
B, their order must be preserved by using time stamping.

In order to support reliable and fault-tolerant event notification, the
event sources need to provide reliable persistent storage and buffer events.
This is more realizable with fixed network servers, because the mobile
clients do not necessarily have persistent storage.

From the device point of view:

• Transmission has a cost both in transmitted bytes and battery life
(transmission requires energy).

14

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

• How much event history is stored within the device. Distributed event
service should be used only for external purposes, not for internal
monitoring.

• How to deliver notifications to the device in different networks and
protocols. For instance, the bearer may not support push type of
communication.

A mediator [BMH+00] (a proxy) can prevent the disconnected mobile
user from missing events. In this case, the mediator registers events on
behalf of the mobile client and buffers the event notifications. The size of
the accumulated set of events may be fairly large. Therefore, the client
needs some way to prune the event history and decide what events are
crucial for delivery. On the other hand, the client can decide what events
are registered, and may deregister unimportant events when the bandwidth
is low or costly.

The events may also have a limited temporal existence according to
user, system or application requirements. Time-to-live (TTL) timers and
hop counters can be used to remove obsolete events.

From the security point of view we have to take into account:

• Encrypting events so that a third party can not capture them while in
transit.

• Securing the event service and the event bus.

• Access control for registering event listeners.

2.3 Event Systems

This section presents event model implementations. We start from the stan-
dard centralized event model in Java, and continue with the Distributed
Event Model in Java. We present the Java Messaging Service in subsec-
tion 2.3.3, subsection 2.3.4 presents the CORBA Event Service and sub-
section 2.3.5 the Notification Service. In subsection 2.3.6 we examine the
CORBA Management of Event Domains; subsection 2.3.7 presents the Cam-
bridge Event Architecture and subsection 2.3.8 the Siena architecture. In
subsection 2.3.9 we overview Elvin, and subsection 2.3.10 presents a num-
ber of other event systems.

2.3.1 Java Delegation Event Model

The Java Delegation Event Model was introduced in the Java 1.1 Abstract
Windowing Toolkit (AWT) and serves as the standard event processing
method in Java. The model is also used in the Java Beans architecture and
supported in the PersonalJava and EmbeddedJava environments.

15

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

In essence, the model is centralized and a listener can register with an
event source to receive events. Event source is typically a GUI element and
fires events of certain types, which are propagated to the listeners. The
event delivery is synchronous, so the event source actually executes code in
the listener’s event handler. No guarantees are made on the delivery order
of the events [Mei00].

The event source and event listener are not anonymous, however the
model provides an abstraction called an adapter, which acts as a media-
tor between these two actors. The adapter decouples the source from the
listener and supports the definition of additional behaviour in the event
processing. The adapter may implement filters, queuing and QoS control-
ling.

2.3.2 Java Distributed Event Model

The Distributed Event Model of Java is based on Java Remote Method Invo-
cation (RMI) that enables the invocation of methods in remote objects. This
model is used in Sun’s Jini architecture. The architecture of the Distributed
Event Model is similar to the architecture of the Delegation Model with
some differences.

The model is based on the Remote Event Listener, which is an event
consumer that registers to receive certain types of events in other objects.
The specification provides an example of an interest registration interface,
but does not specify such. The Remote Event is the event object that is
returned from an event source (generator) to a remote listener. Remote
events contain information about the occurred event, a reference to the
event generator, a handback object that was supplied by the listener and
a unique sequence number to distinguish the event globally. The model
supports temporal event registrations with the notion of a lease (Distributed
Leasing Specification). The event generators inform the listeners by calling
the listeners’ notify method. The specification supports Distributed Event
Adaptors that may be used to implement various QoS policies and filtering.

The handback object is the only attribute of the Remote Event that may
grow to unbounded size. It is a serialized object that the caller provides
to the event source; the programmer may set the field to null. Since the
handback object carries both state and behaviour it can be used in many
ways, for example to implement an event filter at a more powerful host than
the event source. A mediator component can register to receive events, and
gives a filter object to the source. Upon event notification, the filter is
handed back and the mediator can use it to filter event before handing to
the original event listener.

The specification supports recovery from listener failures by the notion
of leasing. Lease imposes a timeout for event registrations. This is used to
ease the implementation of distributed garbage collection. Since this model

16

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

relies on RMI, it is inherently synchronous. Each notification contains a
sequence number that is guaranteed to be strictly increasing.

2.3.3 Java Message Service (JMS)

JMS (Java Messaging Service) [Sun01] defines a generic and standard API
for the implementation of message-oriented middleware. The JMS API
is an integral part of the Java Enterprise Edition version 1.3. The J2EE
supports the message driven bean, a new kind of bean that enables the
consumption of messages. However, JMS is an interface and does not
provide any concrete implementation of a messaging engine. The fact
that JMS does not define the messaging engine or the message transport
gives rise to many possible implementations and ways to configure JMS.
JMS supports a point-to-point (queues) model and a publisher/subscriber
(topics) model. In the point-to-point model only one receiver is selected to
receive a message, and in the publisher/subscriber model many can receive
the same message.

The JMS API can ensure that a message is delivered only once. At lower
levels of reliability an application may miss messages or receive duplicate
messages. A standalone JMS provider (implementation) has to support
either point-to-point or the publish/subscribe approach or both. Normally,
JMS queues and topics are maintained and created by the administration
rather than application programs. Therefore the destinations are seen as
long lasting. The JMS API also allows creating temporary destinations that
last only for the duration of the connection.

The point-to-point communication model consists of receivers, senders
and message queues. Each message queue is addressed to a particular
queue, and receivers extract messages from the queues. Each message has
only one consumer and the client acknowledges the successful delivery of
a message to the component that manages the queue. In this model there
are no timing dependencies between a sender and a receiver, it is enough
that the queue exists.

In addition, the JMS API allows the grouping of outgoing messages
and incoming messages and their acknowledgements to transactions. If a
transaction fails, it can be rolled back.

In the publish/subscribe model the clients address messages to a topic.
Publishers and subscribers are anonymous, and messaging is usually one
to many. This model has a timing dependency between consumers and
producers. Consumers receive messages after their subscription has been
processed. Moreover, the consumer must be active in order to receive mes-
sages. The JMS API provides an improvement on this timing dependency
by allowing clients to create durable subscriptions. Durable subscriptions
introduce the buffering capability of the point-to-point model to the pub-
lish/subscribe model. Durable subscriptions can accept messages send for

17

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

clients that are not active at the time. A durable subscription can have only
one active subscriber at a time.

Messages are delivered to clients either synchronously or asynchro-
nously. Synchronous messages are delivered using the receive method,
which blocks until a message arrives or a timeout occurs. In order to re-
ceive asynchronous messages, the client creates a message listener, which
is similar to an event listener. When a message arrives the JMS provider
calls the listener’s onMessage method to deliver the message.

JMS clients use JNDI to look up configured JMS objects. JMS administra-
tors configure these components using provider (implementation) specific
facilities. There are two types of administered objects in JMS: Connec-
tionFactories, which are used by clients to connect with a provider, and
Destinations, which are used by clients to specify the destination of mes-
sages.

JMS messages consist of a header with a set of header fields, properties
that are optional header fields (application-specific, standard properties,
provider-specific properties), and a body that can be of several types. Mes-
sage selection is supported by filtering the message header against the given
criteria using an SQL grammar. A JMS message selector allows clients to
define the messages they are interested in. Headers and properties need to
match the client specification in order to be delivered to that client. Mes-
sage selectors cannot reference values embedded in the message body. For
example: "JMSType=’stock’ AND company=’abc’ AND stockvalue > 100"

JMS supports five different messages types: Map, Object, Stream, Text,
and Bytes. MapMessage is a set of name/value pairs, where names are
strings and values are primitive Java types. ObjectMessage is a message
containing a serializable Java object. StreamMessage is a stream of sequen-
tial Java primitive values. TextMessage represents an instance using the
java.util.string class and can be used to send and receive XML messages.
BytesMessage is a stream of bytes.

Typically a JMS client creates a Connection, one or more Sessions and
a number of MessageConsumers and MessageProducers. Connections are
created in the stopped mode. After a connection is started (start() method)
messages start arriving to the consumers associated with that connection. A
MessageProducer can send messages while a Connection is stopped. A Ses-
sion is a single-threaded context for consuming and producing messages.
Sessions act as factories for creating MessageProduces, MessageConsumers
and temporary destinations. JMS defines that messages sent by a session to
a destination must be received in the order in which they were sent.

Messages are acknowledged automatically in the transactional mode
(supported by the Java Transaction API), however if a session is not trans-
acted there are three possible options for doing acknowledgement: lazy
acknowledgment that tolerates duplicate messages, automatic acknowl-
edgement, and client-side acknowledgement. In persistent mode delivery

18

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

is once-and-only-once, and in non-persistent mode the semantics are at-
most-once.

JMS messaging proceeds in the following fashion:

1. Client obtains Connection from ConnectionFactory

2. Client uses Connection to create a Session object

3. Session is used to create MessageProducer and MessageConsumer
objects, which are based on Destinations.

4. MessageProducers are used to produce messages that are delivered
to destinations.

5. MessageConsumers are used to either poll or asynchronously con-
sume (using MessageListeners) messages from producers.

The JMS API (1.0.2b) does not address load balancing, fault tolerance,
error notification, administration, or security. JMS implementations are
available from many vendors, such as IBM (it is supported in MQSeries),
Sun Microsystems (J2EE), The ExoLab Group (OpenJMS), SoftWired (iBus/-
/Mobile), Oracle (8i and later) etc.

JMS and CORBA Interoperability

The communication models of JMS and CORBA are similar, however in-
tegration is necessary in the areas of message conversion, filtering, and
the incorporation of point-to-point mode, which uses queues (CORBA uses
publish-subscribe). The Notification Service supports structured events
defined in IDL, and JMS supports the five different message formats.

OMG is working on a Notification Service / JMS Interworking docu-
ment [OMG02a] and currently the initial submission deadline has passed
with a submission from Alcatel, Fujitsu, IONA, and PrismTech. The RFP
deals with mappings between message types, reconciliation between differ-
ent QoS properties, the ability to maintain transactional message contexts
across the services, and implementations which facilitate end-to-end mes-
saging between the services.

The specification defines a bridge that manages and interconnects an
event channel with a JMS destination. The principles behind the Bridge
IDL definitions were to provide backward compatibility with the program-
ming models of NS and JMS. The Bridge is a stateful entity that mediates
messages between the two systems. Structured events are used to im-
prove performance. The Bridge is also used to automate the connection
setups between channels and destinations. A BridgeFactory object supplies
Bridge objects depending on the parameters: the channel, destination, type

19

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

of communication (push/pull), and message type (sequence, single). Since
JMS does not support pull at the source side, this is not supported.

In the implementation of PrismTech’s OpenFusion [Pri01], the JMS event
producer is extended by a client-side library that transforms JMS messages
to CORBA Notification Service structure events. JMS consumers may use
push and pull, but the consumers of the Notification Service may only use
one of these two approaches.

JMS only allows clients to specify filters on the message properties.
To keep the information filterable, this data needs to be included in the
filterable body of a structured event. The JMS message interface supports
three attributes that are also supported in the Notification Service:

1. DeliveryMode (persistent, non-persistent which maps to best effort in
CORBA NS)

2. Expiration (expiration in milliseconds, set to QoS in the variable Time-
out)

3. Priority (Mapped to notification Priority QoS in the variable header)

4. Other user-defined name-value pairs are converted to IDL using the
standard primitive mapping.

Since Notification Service uses the Extended Trader Constraint Lan-
guage and JMS uses the where clause of SQL92, the Notification Service
needs to be extended to support SQL92.

Figure 2.3: The OpenFusion Notification Service with JMS publish-sub-
scribe interoperability.

Wireless JMS

The iBus//Mobile software from SoftWired consists of a server-side gate-
way for mobile clients and a JMS compatible messaging server (iBus//Mes-
sageServer). The gateway enables communication between a wide variety

20

http://www.softwired-inc.com/products/mobile/mobile.html

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

Figure 2.4: The OpenFusion Notification Service with JMS point-to-point
interoperability [Pri01]

of devices running different operating systems, such as PalmOS, Symbian,
and PocketPC. The gateway supports communication over SMS, WAP, TCP,
UDP, and GPRS. The system supports corresponding Java virtual machines,
J2ME (CLDC and CDC), PersonalJava, and J2SE [R+01a].

All the communication between clients and the gateway is transmitted
in binary form. From the JMS provider’s viewpoint the gateway is a regular
JMS client and from the client’s viewpoint the gateway is a communications
hub and a wrapper for different transport and representation formats. In the
case of SMS the gateway accepts the incoming messages and a component
within the service domain can respond with SMS.

The client side library takes a minimum of 70k and at runtime the
CLDC version takes a minimum of 50k of Java heap (as a comparison a
8MB Palm has a 150k Java heap). The iBus system supports security in
the form of access control, certificates, and symmetric/antisymmetric keys.
Cryptographic functions are supported from third-party libraries. If the
bearer does not support push-type connections, one connection is used
for sending client data to the server and another connection is used for
communication from the gateway to the client. Each HTTP request goes
over the first connection: send data to the servlet, and return. The second
connection is open and blocks until there is traffic; after receiving messages
the connection is immediately re-established. The underlying library hides
the differences between the protocols.

2.3.4 The CORBA Event Service

The CORBA Event Service specification (current version 1.1) defines a com-
munication model that allows an object to accept registrations, and send
events to a number of receiver objects [Sie99]. The Event Service supple-
ments the standard CORBA operational call client-server communication
model and is part of the CORBAServices that provide system level services

21

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

for object-based systems. In the client-server model illustrated in Figure 2.5,
the client makes a synchronous IDL operation on a specified object at the
server. The event communication is unidirectional (CORBA oneway oper-
ations) [OMG01a].

Figure 2.5: The standard CORBA client-server model of invoking operations
from client to the target object.

The Event Service extends the basic call model by providing support
for a communication model, where client applications can send messages
to arbitrary objects in other applications. The Event Service addresses the
limitations of the synchronous and asynchronous invocation in CORBA.

The specification defines the concept of events in CORBA: an event
is created by the event supplier and is transferred to all relevant event
consumers. The set of suppliers is decoupled from the set of consumers, and
the supplier has no knowledge of the number or identity of the consumers.
The consumers have no knowledge of which supplier generated the event.

The Event Service defines a new element, the event channel, which asyn-
chronously transfers events between suppliers and consumers. Suppliers
and consumers connect to the event channel using the interfaces supported
by the channel. An event is a successful completion of a sequence of oper-
ation calls made on objects: consumers, suppliers, and the event channel.

The event channel performs the following functions:

22

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

• It allows consumers to register interest in events, and stores the reg-
istration information.

• It accepts events generated by suppliers.

• It forwards events from suppliers to registered consumers.

The Event Service is defined to operate above the ORB architecture: the
suppliers, the consumers, and the event channel may be implemented as
ORB applications and events are defined using standard IDL invocations.

Push and Pull

The CORBA Event Service provides two models for initiating the transfer
of events between suppliers and consumers. The first model is the push
model, in which suppliers send events to consumers (Figure 2.6). In this
case, the suppliers are active, and the consumers are passive. Moreover,
the event channel actively delivers events to the consumers. In the second
model, the pull model (Figure 2.7), the consumers request events from the
suppliers. Now, the consumer actively waits for pull requests to arrive.
Upon the arrival of a pull request, the event is generated and sent to the
pulling consumer. CORBA supports both blocking and non-blocking pull.

Figure 2.6: Example of an event propagation implementation.

The Hybrid Model

It is also possible to mix the push and pull models in one application,
because the event channel decouples the consumers and the suppliers from
each other. It is possible to connect suppliers using the push model and
consumers using the pull model. In the hybrid model, the event channel
does not take an active role in delivering the event to the consumers.

23

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Figure 2.7: Pull Model and the Event Channel.

Figure 2.8: The hybrid model mixing Push and Pull models.

Connecting Suppliers and Consumers

The Event Service specification does not include a mechanism for locating or
discovering consumers or suppliers, however it provides the administrative
operations for connecting the suppliers and the consumers. Each new
event consumer added to the event channel returns a proxy supplier. The
proxy supplier follows the supplier interface and adds a new method for
connecting a consumer to the proxy supplier. Each new event supplier
added to the event channel, returns a proxy consumer. The proxy consumer
has a new method for connecting to the proxy supplier.

A supplier is registered by taking a proxy consumer from the event
channel and connecting it with the supplier. Similarly, an event receiving
application takes a proxy supplier from the event channel and connects to

24

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

it by providing a consumer. Each admin object is a factory that creates the
proxy interface that is used in connecting the clients and the event sources.
Consumer admins create proxy suppliers and supplier admins create proxy
consumers.

Typed and Untyped Event Communication

The data about an event can be passed as invocation parameters or return
values. Events are not objects, because the CORBA object model does not
support passing objects by value (2.3 supports valuetypes). Event data is
application specific and can be either untyped or typed.

In untyped communication the event is propagated by invoking a series
of generic push and pull operations. The push operation takes a single
parameter of the type any, which allows any IDL defined data type to be
propagated, and stores the event data. The pull operation has no parameters
and transfers event data in its return value, which supports the type any. In
untyped communication both the supplier and the consumer applications
need to agree on the data format of the event.

In typed event communication events are propagated through an appli-
cation specific interface created by the programmer in IDL. The programmer
defines the interface for event propagation that is used by consumers and
suppliers. Parameters can be of any suitable data type supported by the
IDL language.

To setup typed push-style communication, the consumers and suppli-
ers exchange object references (TypedPushConsumer and PushSupplier).
The supplier invokes a method to get a reference that supports the typed
consumer interface I. The particular reference is associated with the Typed-
PushConsumer interface and needs to be agreed on by both the consumer
and the supplier. The supplier uses this reference to invoke operations on
the consumer.

In the typed pull model consumers request event information using
some mutually agreed interface. The parties exchange the PullConsumer
and TypedPullSupplier interfaces, and an object reference supporting the
typed interface is obtained. Once the reference is obtained, the consumer
can invoke operations on the supplier.

Discussion

The CORBA Event Service supports different implementations of the Event
Channel, and this allows a wide range of approaches for implementing
Quality of Service and delivery issues. Moreover, the event consumer and
supplier interfaces support disconnection.

The CORBA Event Service addresses some of the problems of the stan-
dard CORBA synchronous method invocations by decoupling the interfaces

25

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

and providing a mediator for asynchronous communication between con-
sumers and suppliers. The supplier does not have to wait for the event to
be delivered to the consumer. Moreover, the event channel hides the num-
ber and identity of the consumers from suppliers using the proxy objects
(transparent group communication). The supplier sends events to its proxy
consumer, and the consumer receives events from its proxy supplier.

However, the specification does not address several important issues,
such as Quality of Service support. Applications may have requirements for
event notification in terms of reliability, ordering, priority and timeliness.
Furthermore, the specification does not provide a system for event filtering.
Event filtering needs to be implemented using a proprietary system within
the event channel by adding a mechanism for selective event delivery.
Event channels can be composed, because they use the same consumer/-
supplier interfaces. An event channel can push an event to another event
channel. Typed event channels can be used to filter events based on event
type [Bar01] [OMG01a].

In addition, the specification does not address compound events, but
suggests that complex events may be handled by creating a notification tree
and checking event predicates at each node of the tree. The drawback of
the tree is that the number of hops needed to deliver an event increases.
This motivates the use of a centralized filtering service.

The use of proprietary event service implementations restricts the in-
teroperability of applications. Applications that use one proprietary event
service implementation may not interoperate with another application that
is based on a different event service implementation.

2.3.5 CORBA Notification Service

The CORBA Notification Service (current version 1.0) [OMG01b] extends
the functionality and interfaces of the Event Service to support better inter-
operability [Bar01]. One of the most significant additions to the Notifica-
tion Service is event filtering. Filters allow consumers to receive particular
events that match certain constraint expressions. Filtering reduces the num-
ber of events sent to the consumers and improves the scalability of the event
handling system, limiting the scalability of the mechanism.

Figure 2.9 presents the components in the CORBA Notification Service,
which derive from the Event Service discussed in the previous section. The
event channel has been extended to support a number of admin objects. The
Notification Service allows the definition of filters at the proxies. Moreover,
each admin object is seen as the manager of the set of proxies it has created.
Admin objects may be associated with QoS properties and filter objects.
The QoS properties and filter objects of the admin object are transferred to
each proxy it creates, however the QoS properties may be changed on a per
proxy basis.

26

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

Figure 2.9: Components in the CORBA Notification Service [GCSO01].

Filters

Filters are CORBA objects that support the addition, modification, and re-
moval of constraints. Constraints are used to match event message values
and refer to variables that are part of the event notification message. Con-
straints are either event types or written in a constraint language. Variable
names can refer to all parts of the current notification. The current notifica-
tion is expressed with the dollar sign ’$’.

A sample notification constraint:

$.type_name == StockAlert
$.market_name == ’NASDAQ’
$.ticker == ’Company’
$.price > ’100’ or $.price < 80

The default constraint grammar is Extended TCL (Trader Constraint
Language specified by the Trading Service). The Event Notification specifi-
cation adds the notion of mapping filter objects. Each proxy supplier may
have an association with a mapping filter object, which affects the priority
of the events it receives and the lifetime property of the events it receives.

27

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Quality of Service (QoS)

The Notification Service defines standard interfaces that allow the control of
characteristics over the delivery of the notification. Service characteristics
at different levels in the protocol stack are represented using name/value
pairs. QoS properties, tuples of form <String, Any>, can be used with
an event channel, admin objects, proxy suppliers, proxy consumers, and
message instances.

Characteristics include:

• Discard policy that determines which notifications are discarded when
resource limits apply (queues are full).

• Earliest delivery time.

• Expiration time, which indicates the time range when the event is
valid.

• Maximum number of notifications that can be queued for a single
consumer. This effectively places an upper bound that lessens the
load presented by misbehaving consumers.

• Order policy, which specifies the order in which notifications are
buffered for delivery.

• Priority of events.

• Reliability of event delivery

• Both event reliability and connection reliability. If fault-tolerance
properties are specified, the Notification Service reconnects to the set
of clients and delivers all non-expired events to consumers after a
crash or disconnection. At the message level: Best effort, persistent.

Furthermore, the event channel supports the following QoS properties:

• MaxQueueLength, which specifies the maximum number of events
that can be queued.

• MaxConsumers, which specifies the maximum number of consumers
that can be connected to the channel.

• MaxSuppliers, which specifies the maximum number of suppliers that
can be connected to the channel.

28

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

Structured Events

The Notification Service defines a standard data structure for the events.
The structured event illustrated in Figure 2.10 is a strongly typed event
message that consists of a header and a body. The header contains two
sections:

• the first stores fixed information, such as domain_name, event_name,
and type_name.

• The second section stores the variables and optional information about
the event. This is a sequence of properties to hold QoS information
related to the notification.

The body of the structured event stores the actual event data, and it is
also divided into two sections:

• the filterable data, which is a sequence of properties. This part con-
tains the fields that the consumers use to base filtering decisions on.

• the payload data.

The header and body are structured into two parts mainly because of
performance reasons. When filterable data has its separate compartment,
it is not necessary to touch the payload data upon filtering. Moreover, the
notification could be contained within the optional header fields leaving
the body empty. This would be even more streamlined.

Discussion

Since the Event Channel is a CORBA object, it limits the number and com-
plexity of any given event channel. Therefore, it becomes important to
create, manage, and specify federations of event channels. Each event
channel has a master queue and a number of consumer queues. Each queue
has some maximum capacity, which may be enforced using QoS policies
supported by the specification. One way to relieve the bottleneck of the
centralized event channel is to distribute these queues as CORBA objects,
however this kind of solution is still centralized. Since NS supports the
federation of channels by connecting the supplier and consumer proxies,
the system supports scalability.

Channel federation can be used to:

• Improve performance by distributing consumers on several event
channels. Since an event channel is a CORBA object, it may become a
bottleneck if the number of consumers (or producers) becomes large.
Event channels may also be used to enhance local delivery by assign-
ing each event channel only local subscribers. In this case we have
only one network invocation, and a number of local invocations.

29

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Figure 2.10: The structured event: Event header and event body.

• Improve reliability by having multiple event channels for the same
information. If one event channel fails, it does not necessarily prevent
consumers from receiving the notifications.

• Improve flexibility by grouping consumers and producers into logical
units (event channels).

Currently the initial submission deadline for an RFP (Request For Pro-
posals) for Realtime Notification has passed and the deadline for revised
submissions is June 3, 2002. This specification would extend the notifica-
tion service with predictable (bounded) notification behaviour in order to
support realtime and safety-critical systems.

2.3.6 CORBA Management of Event Domains

CORBA Event Service and Notification Service do not specify an event dis-
covery service or a mechanism how to federate event channels. Moreover,
the procedure for connecting event channels is complex. The OMG Telecom-
munications Domain Task Force addresses these issue in the CORBA Man-
agement of Event Domains Specification [OMG02b], which specifies an
architecture and interfaces for managing event domains. An event domain
is a set of one or more event channels grouped together for management

30

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

Figure 2.11: CORBA Notification Service channel federation.

and improved scalability. The specification defines two generic domain
interfaces for managing generic, typed, and untyped channels. Moreover, a
specialized domain for both channels and logs defined by the OMG Telecom
Log Service specification.

The specification addresses [OMG02b]:

• Connection management of clients to the domain.

• Topology management

• Sharing the subscription and advertisement information in an event
domain, even when connections between event channels change at
runtime.

• Event forwarding within a channel topology.

• Connections between event channels.

It supports the creation of channel topologies of arbitrary complexity,
allowing cycles and diamond shapes in the graph of interconnected chan-
nels. However, if events may reach a point in the graph by more than one
route duplicate events need to be detected and removed. Moreover, if no
timeouts are specified, events in a cycle will propagate infinitely. There-
fore, the specification defines mechanisms that are used to detect cycles or
diamonds in the network topology. Graph topology enforcement is done at

31

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

channel connection time, and illegal connections are refused by the domain
management.

Event suppliers inform the proxy consumers of event type changes
using the offer_change callback. The channel is responsible for sharing
this information with the consumers by executing offer_change on them.
The consumer may be another channel and thus the change may propagate
throughout the channel topology. Subscription changes work similarly, and
the channel is responsible for invoking the subscription_change operation
on all the suppliers.

Event suppliers attached to the channel can obtain the types of sub-
scriptions of event channels anywhere downstream by invoking obtain_-
subscription_types on the proxy consumers. Similarly event consumers
can obtain the event types offered by suppliers on any event channel down-
stream by invoking obtain_offered_types on its supplier channels.

2.3.7 The Cambridge Event Architecture

The Cambridge Event Architecture (CEA) uses the publish-register-notify
paradigm [BMH+00], in which the object publishes its interface, for example
specified in IDL (Interface Definition Language, which is different from the
IDL in CORBA). This interface includes the events it is capable of notifying.
A client invokes the object synchronously and can register for events by
indicating parameters or wildcards. The template system provides a rudi-
mentary filtering by matching parameters one by one. The object accepts
registrations and notifies the clients that match the registration template.
The notification is performed when the event firing conditions and access
restrictions are satisfied (Figure 2.12). The paradigm supports direct source-
to-client event notification.

In CEA an object, if asked, publishes the events it is capable of notifying
in IDL. The object has a register method in its interface that has parameters
for the type of event and wildcards. Event occurrences are objects of a
specific type, and the set of types defines the level of event detection and
notification granularity. CEA enforces access control upon registration, and
authentication is based on a parameter value.

CEA supports the definition of intermediate services, which are called
event mediators in the architecture. Event mediators act as middlemen
between primitive event sources and the event clients, and provide the
facilities for detecting more complex events. Moreover, if the event source
cannot afford the overhead to support template matching, it can send all its
events to the mediator. The mediator then matches the template on behalf
of the source.

The mediator is capable of providing equivalent functionality to the
CORBA event service. The CORBA event service registers interests in all
notifiable events with event sources and supports both a synchronous pull

32

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

Figure 2.12: A publish-register-notify event architecture [BMH+00].

interface and an asynchronous push interface. Composite events can be
detected by giving the mediators the capability to filter simple events of
different types across different sources.

The composite event detection functionality supported in CEA is a fea-
ture that is not present in many event systems. The event composition is
supported by the combination of event templates. Composite events are de-
tected by monitors, which are busy until the event is detected and notified.
A composite event specification language may be used to design a mon-
itor that detects complex templates. The system has been demonstrated
by implementing an active badge system that monitors badges within a
building.

2.3.8 Scalable Internet Event Notification Architecture

Siena (Scalable Internet Event Notification Service) is an Internet-scale event
notification service developed at the University of Colorado. Siena balances
expressiveness with scalability and explores content-based routing in a
wide-area network. The basic publish-subscribe mechanism is extended
with advertisements that are used to optimize the routing of subscriptions
[CRW99].

Several network topologies are supported in the architecture, includ-
ing hierarchical, acyclic peer-to-peer, and general peer-to-peer topologies.

33

http://www.cs.colorado.edu/users/carzanig/siena/

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Servers only know about their neighbours, which minimizes routing table
management overhead. Servers employ a server-server protocol to com-
municate with their peers and a client-server protocol to communicate with
the clients that subscribe to notifications. It is also possible to create hybrid
network topologies.

Siena is similar to IP-multicast, however the two mechanisms differ
in the way they support the groups of subscribers. IP groups are not
very expressive. They partition the IP datagram address-space and each
datagram belongs at most to one group. Clearly, this creates problems if an
event is to be delivered that spans several groups of subscribers.

Four different server topologies have been identified in Siena:

• Centralized

• Hierarchical (Figure 2.13)

• Acyclic peer-to-peer (Figure 2.14)

• Generic peer-to-peer (Figure 2.15)

Figure 2.13: Hierarchical configuration. Dotted lines represent client-server
protocol.

34

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

Figure 2.14: Acyclic peer-to-peer configurations. Solid lines indicate server-
server protocol.

Naming and Filtering

Siena is implemented with a flat event namespace, that is, event names
have no structural correlation with each other. An event consists of a set of
attribute-value pairs. Each attribute has a name and a value. Siena supports
the following types: null, string, long, integer, double, and boolean.

A filter has the form of attribute name, constraint operator, and con-
straint. Siena does not support wildcards in the attribute name so the
attribute names must match exactly to the names in the published event.
A filter may include several filtering clauses, which are ANDed together.
Thus every filtering clause or component must return true in order for the
filter to pass the event. Siena supports the following operators: equal, less
than, greater than, greater than or equal to, less than or equal to, string
prefix, string suffix, always matches, not equal, and substring.

An example event:

string stock "abc"
int value 2.53

An example filter:

string stock = "cde"
int value > 1.0
int value < 1.5

Siena supports patterns, which are based on the event attribute values
and event combinations. A pattern is a sequence of filters that is matched

35

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Figure 2.15: Generic peer-to-peer configuration. Solid lines indicate server-
server protocol.

to a temporally ordered sequence of notifications. Network latencies may
cause some events to arrive in the wrong order, and these are ignored by
the Siena solution.

Routing

In Siena, each event consists of a set of attribute-value pairs that are matched
with filters. Each server on the event system routes events to other servers
based on the subscription-information, advertisement information, and fil-
ters. Each subscriber may specify a filter to constrain the subscription. In
the same fashion, each advertisement may also include a filter. Siena evalu-
ates the filters and follows a policy, where events are replicated downstream
and filtered upstream. This means that events are replicated to the clients at
the last possible moment, thus reducing bandwidth necessary to transmit
the events. Upstream filtering means that events are filtered as close to the
sources as possible in order to reduce the number of uninteresting events
transmitted over the network. Simple filter syntax allows the decompo-
sition of a complex filter into several more general filters, which can be
evaluated upstream. A filter is only applied if it is less general than the one
used in upstream.

The same principle of upstream filtering applies also to event patterns.
Patterns are decomposed (factored) into elementary filters that are dele-
gated to other servers. In the delegation process a server tries to assemble

36

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

subpatterns that are delegable to other servers.
Siena uses covering relations to determine when a filter covers a no-

tification, a subscription covers a notification, an advertisement covers a
notification and an advertisement covers a subscription. For example, sub-
scription S1 covers S2 if it evaluates to true in every instance where S2 is
true. Servers propagate the most generic subscription that covers a given set
of subscriptions. This minimizes the downstream data structures, however,
the complex computation cost is paid closer to the subscriber, because the
subscriptions need to be matched and evaluated. The results of Siena indi-
cate that the covering relations exhibit a complexity that is quite reasonable
for a scalable service.

The Siena system supports two different notification semantics: sub-
scription-based semantics and advertisement-based semantics. In sub-
scription-based semantics subscriptions are introduced at every node of
the event service and a notification is routed if it covers a subscription.
In advertisement-based routing servers use the information provided by
event producers to route incoming subscriptions. A subscription is only
forwarded if it covers the advertisement.

Forwarding algorithm

The forwarding algorithm that was developed in conjunction with the Siena
project consists of a forwarding table and a set of processing functions.
Conceptually the forwarding table is a mapping between predicates and
interfaces to neighboring nodes. Each predicate is a disjunction of filters,
where each filter is a conjunction of elementary conditions. Therefore each
filter must return true in order for a predicate to map to an interface. Each
filter may map to several interfaces [CDW01].

The forwarding algorithm iterates over the event attributes. It searches
for a partial match from the set of filters, where a constraint belonging to a
filter is matched by the given attribute. If the filter (with the partial match)
is not yet associated with an interface, the algorithm increases a counter
to keep track of matched constraints for the given filter. In addition, if the
counter size is equal to the number of constraints in the filter, the filter is
said to match. After processing one filter the algorithm checks if all filters
are matched. The algorithm stops if either all attributes or all filters are
processed.

The number of interfaces thus imposes an upper bound on the pro-
cessing along with the number of attributes and filters. The pseudocode
presented in [CDW01] uses a one-to-one mapping of filters and interfaces,
which leads to incorrect behavior if one filter is associated with several
interfaces. The forwarding algorithm is optimized using binary trees and
lookup indexes for attributes used in the filters.

37

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

The performance and scalability of the forwarding algorithm were dem-
onstrated by running experiments with 1000 messages and various numbers
of filters and other parameters. It was found that the algorithm has good
absolute performance and good cost amortization over a variety of loads.
The constraint index, which acts as a lookup table for attribute names over
constraints, is used for the quick detection of attribute names that have no
matching constraints. If no attributes match the event can be discarded by
the router.

Implementation

The current Siena implementation is a prototype that consists of Siena
servers and client-level interfaces. The C++ version supports the peer-to-
peer server and the Java version supports hierarchical servers. Currently,
the C++ implementation is not compatible with the Java version. The Siena
implementation uses TCP/IP for communication.

Simulation

The algorithms and topologies used in Siena were examined in a simulated
environment. The hierarchical client-server architecture should be used
when there are low numbers of parties that subscribe and unsubscribe
frequently. The acyclic peer-to-peer model was found to be more applicable
to situations where the total cost is dominated by notifications and there
are many ignored notifications [CRW99].

Current and Future Developments

The follow-up project to Siena, Son of Siena, involves the use of XML in
representing events and XML routing. In addition Columbia University has
developed the XML-based Universal Event Service (XUES) that consists
of three main services that support event handling for the Kinesthetics
eXtreme (KX) real-time monitoring architecture. The system inputs events
using the Event Packager, analyses events using the Event Distiller and
dispatches events using the Event Notifier. The system interacts with other
event systems using XML, FleXML and Siena.

During the development of Siena-XML interface [Ere00] several prob-
lems with translating an XML-based hierarchical namespace to a flat names-
pace were identified and addressed. In the conversion process the nested
structure of XML documents is converted into flat names that preserve the
hierarchy by separating the hierarchies with dots. This is a typical way
of describing hierarchical content; another would be to use the Windows
or Unix file system notation. Now, a problem arises when there are du-
plicate elements in a hierarchy, which translate to an item with multiple

38

http://www.ucf.ics.uci.edu/~jerenk/siena-xml/

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

values. Siena does not support this, and the Siena-XML interface currently
ignores these duplicate values. One solution would be to include support
for wildcards or multiple sets of values, for example simple list objects.

In the future Siena is envisaged to integrate at the network service
level, coexisting for example with TCP/IP instead of working above the
network level. This would eliminate an extra protocol layer, and provide
greater effiency in routing and forwarding. From the Siena viewpoint
TCP/IP performs explicit address routing and Siena is based on content-
based addressing. The risk in using Siena as a network service is that
content-based routing is more computationally expensive than explicit-
address or subject-based routing [Ros01b].

There is also work to make Siena support satellite-based wireless com-
munication. Satellite-based communication has desirable properties for
transmitting events, because routing is not necessary when the events are
broadcasted rather than sent using point-to-point communication lines.
Thus it is possible to notify large numbers of interested parties in one hop.
However, wireless networking is more unreliable than wireline networking.
Moreover, the receiving devices may be different from desktop computers,
thus requiring the solution to cope with limited resources.

Siena has also been used as a peer-to-peer network similar to Gnutella.
The Java-based Quad uses the Siena prototype and supports query, adver-
tise, and response. One of the differences between Quad and Gnutella is
that with Gnutella the messages are propagated to all servers and filtering is
performed by the provider at the last step. The main architectural difference
between Gnutella and Quad is the separation of clients and servers. Thus
the general advantage of peer-to-peer systems in dynamic networking is
lost [Hei01].

One of the findings of the Siena project is that expressiveness and scal-
ability are in conflict. Expressiveness is related to flexibility of notification
and routing. Scalability, on the other hand, is about vast dimensions, het-
erogeneity, decentralization, and the use of resources.

2.3.9 Elvin

Distributed Systems Technology Centre (DSTC) has developed the Elvin
system since 1993 and it has grown from a single person research project to
an effort with a team of programmers and researchers. Elvin is a general
event notification service, which aims to improve on features identified
in a 1995 survey of commercial event filtering software. Elvin started as
a publish-subscribe notification service, but currently it is referred to as a
content-based routing service. The Elvin team aims to standardize the Elvin
protocol through IETF, and the Elvin protocols are written in the style of
IETF drafts. DSTC was a contributor to the OMG Notification Service RFP
and one of the submitters of the CORBA Notification Service.

39

http://elvin.dstc.edu.au/index.html
http://elvin.dstc.edu.au/index.html

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Elvin uses a client-server architecture in notification delivery. Clients
establish sessions with Elvin servers and subscribe and publish notifica-
tions. An Elvin notification is a list of name-value pairs, similar to Siena.
Basic primitives are: 32- and 64-bit integer, 64-bit double precision floating
point, internationalised string (UTF-8 encoded), or an array of bytes. Sub-
scription expression are defined using logical expressions using a C-like
syntax: stock == "abc" && value > 80. The expressions are evaluated with
Lukasiewicz’s tri-state logic that uses an additional value of indefinite (i.e.
true, false, indefinite).

Elvin has language bindings for C/C++, Java, Python, Smalltalk, Emacs
Lisp and Tcl. Elvin is content-based, because it allows routing decisions to
be made based on the whole message. Elvin features a decoupled security
model, in contrast with the traditional point-to-point model, in which com-
munication between publishers and subscribers is authenticated with keys.
Producers and consumers can have overlapping key sets. This supports
multi-party authorization.

Service discovery is done using a lightweight protocol that is based on
multicast. Once a server has been deployed on the network, clients use the
protocol to discover the server and dynamically register. Clients also listen
to router advertisements, which are also distributed using multicast.

Clustering

Elvin supports local clustering of servers that improves scalability and
distributes the local load. Clustering is used to implement a distributed, but
single subscription address space. Routers within a cluster communicate
using a reliable multicast protocol over an IP network. An Elvin router may
force a client to reconnect to another server in order to reduce load. The
Elvin cluster is similar in functionality to a web farm. An Elvin router is a
daemon process that runs on a single server and distributes Elvin messages.
Each router in an Elvin cluster shares client subscription information with
every other node. Not all subscription information is shared; only sufficient
information in order for a router to decide if a given notification has any
subscribers at any server.

The initial forwarding decision in server-server communication is done
based on a list of terms. This hasty approach results in a number of unnec-
essary notifications at the router level. The Elvin team aims to improve this
in the next version of the system.

The Elvin cluster topology consists of a single master router and a num-
ber of slave routers. The master router maintains management data. All
slave routers listen to management traffic within the cluster and keep infor-
mation about every node. Routers also keep information about subscription
terms of other servers, current states, list of URLs offered by a router for
client connection, and current router load and statistics. Master servers lis-

40

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

ten for join packets and keep track of the cluster as a whole. A new master
router is elected using an election protocol if the old one fails.

Messages are first analyzed at a local router and then multicast to the
cluster. Each packet must contain the unique router identifier for every
node in the cluster, which has a matching term.

Communication between clients and routers employs RPC-style com-
munication with acks and nacks. Delivery has best effort, at-most-once
semantics. In the client-server protocol the server may drop notifications,
but is eligible to warn the client that it has done so.

Federation

There is a different protocol for linking distributed clusters of servers to a
federated system. The Elvin federation protocol assumes that the federated
topology forms a spanning tree. Moreover, the linking protocol supports
the definition of pull filters that constrain the notifications sent to other
clusters.

Quench

In Elvin terminology Quench means an operation supported by all event
producers that gives the producers the possibility to evaluate a subscrip-
tion expression to cease producing events that are no longer needed and
determine which notifications should be produced. In CORBA this would
mean that the first event channel refrains from forwarding unnecessary no-
tifications (CORBA does not support client side filtering). The quench is a
semantic extension of the subscribe mechanism

In Elvin quench is implemented in the client-server protocol. Any client
may request to be notified when the subscription information of the server
changes. The client may request information on named attributes in sub-
scriptions. The requested information is sent as an abstract syntax tree.
There is support also for an automatic quench, which is implemented in the
client library.

Mobile Users

Elvin has been extended to support mobile users. One of the requirements
was persistence in order to keep undelivered notifications. Elvin is, by
design, non-persistent so a prototype proxy was designed to store notifica-
tions. The proxy model extends the client-server architecture of Elvin by
introducing the proxy as the third component. Proxies act as normal clients
to servers, but as a proxy server to clients. In this design, clients connect to
these proxies, which mediate the Elvin service [SAS01].

41

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

The proxy is able to handle multiple clients with separate sets of sub-
scriptions. Elvin did not support subscription grouping by the client, so
support for this was added to the system (the concept of a session). These
sessions need not be client specific, but rather they may span multiple
clients or applications. This stems from the observation that many people
have several devices, but may wish to receive the same set of information
regardless of the medium. In order to manage the storage space for un-
delivered notifications, the proxy supports the definition of a time-to-live
(TTL) for each subscription. In addition, clients may specify the maximum
number of notifications to keep.

In the current prototype clients explicitly connect to the proxy, and they
must connect to the same proxy to retrieve notifications. Proxy discovery
and roaming between proxies is not supported. Elvin proxy service is
proposed as a solution to proxy roaming, and client migration between
networks, however the difficulty lies in that the proxy is stateful entity.
Normal Elvin servers are stateless.

Non-destructive notification receipt

For users who use many different devices and wish to share notifications,
Elvin supports non-destructive notification receipt. This means that the
proxy does not destroy a notification upon its successful notification. Elvin
ensures that notifications are never delivered to the same client more than
once.

Because sessions may contain a number of clients, Elvin supports ad-
ditional management functionality regarding the set of subscription set by
clients. Each client is informed of the current subscription status. There may
also be a number of sessions per client, in which case only one notification
is sent even if there are multiple matches.

2.3.10 Other Event Architectures

JEDI

Java Event-based Distributed Infrastructure (JEDI) is a distributed event
system developed at Cefriel, Politenico di Milano. In JEDI the distributed
architecture consists of a set of dispatching servers (DS) that are connected
in a tree structure [CN01]. Each DS is located on a node of the tree and all
nodes except the root node are connected to one parent DS. Each node has
zero or more descendants. Event subscription and unsubscription requests
are propagated by each DS upwards towards the root. Event notifications
are processed similarly and forwarded by the local DS to its parent. Upon
receiving an event, each DS checks its descendants if they have an interest
in the event, and, if required, forwards the event down the tree.

42

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

This strategy requires that a given DS knows the event requests of its
descendants in order to make the forwarding decision. Moreover, since all
requests and notifications are propagated upwards the tree, the commu-
nication and processing overhead of the nodes near the root may become
a bottleneck. If any of the nodes near the root become disabled, parts of
the tree become isolated. In this case the system needs to deal with seg-
mentation and be able to mend the tree or negotiate a new root and a new
tree.

A JEDI event is an ordered set of strings, the first string being the
name of the event followed by event parameters. An Event Dispatcher
can subscribe to a single event or an event pattern. Event patterns are
used to filter events, based on parameter matching, for example foo(aa*,bb)
matches all foo-named events that have exactly two parameters and the
first parameter starts with aa and the second parameter is exactly bb.

JEDI preserves causal ordering of messages, that is, if event e1 caused
the firing of event e2, e1 must be delivered first to all interested subscribers.
This mechanism allows a pair of components to synchronize through the
generation of events [CNF01].

The JEDI architecture is being extended to support mobile clients and
ad-hoc configuration [CNP00]. Publish/subscribe middleware is a good
candidate for context-aware computing. Asynchronous interest-based com-
munication is a good start for building decoupled and adaptive software
components. Compositionality and reconfigurability are being emphasized
and JEDI supports mobility with moveOut and moveIn operations. One
issue is run-time configuration of the dispatching system, which is also
investigated by the JEDI project.

The dispatching servers in the JEDI architecture support mobility by al-
lowing clients to disconnect, move to a new dispatching server and connect
while retaining all the notifications. The dispatching servers manage tem-
porary storage for notifications. They also coordinate that no duplicates
are received and that the notifications are causally ordered [CN01]. The
new dispatching server contacts directly the old one in order to receive the
accumulated notifications. The old DS notifies its parent dispatching server
to route any further notifications for this client to the new DS.

Notifications are routed in the JEDI dispatching tree from producers to
consumers and there is no possibility for adapting the routing strategy to
reflect changes in the pattern of communication. The system offers good
performance if the tree is organized in a good way that minimizes network
traffic. In essence, when clients migrate from one dispatching server to
another the load placed by the servers changes. It may be necessary to
re-create the dispatching topology to reflect these changes.

JEDI approaches the adaptation of publish/subscribe systems to more
dynamic environments by extending the event routing mechanism by add-
ing a new spanning tree routing algorithm. Now, a delegate leader is

43

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Figure 2.16: Event propagation in JEDI.

responsible for each subscription. The delegate accepts subscriptions of
similar type and becomes the leader of the subscribers. It also manages
the distribution of the group in the tree. Each dispatcher knows the group
leaders for all subscriptions [CNF01].

The JEDI approach is based on dynamically defining the dispatching
tree by using approaches similar to multicast routing. The first strategy is
to create a minimal spanning tree for each pair of publisher and group of
subscribers, but it is considered to be inefficient. The second strategy is to
have a single routing tree for each group of subscribers and have different
publishers for the same class of events use the same tree.

They use a method called the Core Based Tree Strategy, in which the
dispatchers are connected in a possibly cyclic graph and each dispatcher
knows its neighbours. Dispatchers broadcast all unique subscriptions to all
servers, and all subsequent subscriptions of the same type are sent to the
party that sent the original subscription. The original source dispatcher has
implicitly become the leader of a group of subscribers and maintains access
to that group. Now, the source may balance load by assigning subscriptions
to dispatching servers. All dispatchers know all group leaders, and those
dispatchers that belong a group know the dispatching tree of that group.
When a component unsubscribes, the associated dispatcher either leaves

44

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

the group, continues to route notifications, or, if it was a leader, the system
needs to elect a new leader for that group.

The mobility support in JEDI is still under consideration, for example
the latency of updating the dispatching trees when clients are moving very
frequently and in the case of abrupt disconnections are still open issues.
They are looking at what kind of abstractions we need at lower levels in
order to detect disconnections at upper level. The scalability of the JEDI sys-
tem to Internet-wide use is an open issue. JEDI was used to implement the
Orchestra Process Support System (OPSS) workflow management system
(WFMS) [CNF01].

The JEDI project ended in 2000 and Cefriel has continued to work on
event architectures. They have a project on fault-tolerance and scalabil-
ity issues in distributed communication based on the publish/subscribe
paradigm. They continue to use the JEDI event dispatchers as a reference
implementation. The goal of this research is to implement a fault-tolerance
JEDI.

Later the JEDI subscription propagation algorithm was improved by in-
troducing advertisements. This new algorithm is similar to the Siena work,
and covering relations to optimize routing. The impact of advertisement
was evaluated using simulation, and their results show that with advertise-
ment the root node spends much less time processing subscriptions. Their
simulation results of 8-85 dispatchers indicate that the processing time of
advertisements is quite low (2.65%-2.9%) [BNFT00] [BNT00].

ECHo

ECHo is a high-performance data transport mechanism that is based on
event channels [EBS01]. ECHo uses channel-based subscriptions (similar
to the CORBA Event Service). ECHo’s derived event channel mechanism
implements filtering by adding an application supplied derivation function
F to all listeners of a particular event channel and transfering all events that
are generated by the sources and passed through the filters to a derived
event channel. This scheme resolves issues in the delivery of unwanted
events. ECHo is especially optimized for streaming data and data trans-
mission. ECHo has been shown to perform better than Jini (distributed Java
events), CORBA Event Channels, and XML-based messaging. ECHo was
developed at Georgia Tech and the source is available for academic research
purposes.

Gryphon

The Gryphon system was developed at the Distributed Messaging Sys-
tems group at IBM T.J. Watson Research Center. Gryphon is a Java-based
publish-subscribe message broker intended to distribute data in real-time

45

http://www.research.ibm.com/gryphon/

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

over a large public network. Gryphon uses content-based routing algo-
rithms developed at the research center. The clients of Gryphon use an im-
plementation of the JMS API to send and receive messages. The Gryphon
project was started in 1997 to develop the next generation web applications
and the first deployments were made in 1999.

Gryphon is designed to be scalable, and it was used to deliver infor-
mation about the Australian Open to 50000 concurrently connected clients.
Gryphon has also been deployed over the Internet for other real-time sports
score distribution, for example the Tennis US Open, Ryder Cup, and moni-
toring and statistics reporting at the Sydney Olympics.

Gryphon supports both topic-based and content-based publish-sub-
scribe, relies on adopted standards such as TCP/IP and HTTP, and sup-
ports recovery from server failures and security. In Gryphon, the flow of
streams of events is described using an information flow graph (IFG), which
specifies the selective delivery of events, the transformation of events and
the creation of derived events as a function of states computed from event
histories.

Information flow graphs contain stateless event transforms that com-
bine events from various sources and stateful event interpretation functions
that can be used to derive trends, alarms, and summaries from published
events. Each event is a typed tuple. Stateful events depend on the event
history. States are used to express the meaning of an event stream and the
equivalence of two event streams.

The Gryphon model consists of information spaces, which are either
event histories or states. Event histories grow monotonically over time as
new events are published. Event sources and sinks are modelled as event
histories. States capture certain relevant information about event streams
and they are typically not monotonic. Information spaces are defined using
information schemas. Dataflows are directed arcs that connect nodes in the
graph, which needs to be acyclic [BKS+99].

Gryphon supports four types of dataflows. Select is an arc that connects
two event histories with the same schema. Each arc is a predicate on
the attributes of the event type in the information space. All events that
satisfy the constraint are delivered to the destination information space. The
transform arc connects any two event histories which may have different
schemas. Each arc has a rule for mapping event types between the two
spaces. This rule may include functions that transform particular event
attributes. The collapse arc connects an event history to a state using a
rule. The rule maps a new event and a current state into a new state. The
expand arc is the inverse of collapse, and links a state to an information
space. When the state at the source of the arc changes, the destination space
is updated in such as way that the sequence of events it contains collapses
to the new state. This transformation is non-deterministic.

They have two techniques for the implementation of systems based on

46

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

IFGs. First is the flow graph rewriting optimization that allows stateless
IFGs to be used with multicast technology. The second is an algorithm
for converting a sequence of events to the shortest equivalent sequence of
events.

The information flow graph is abstract and separated from the physical
topology of the network. The mapping of an IFG to a network of message
brokers is nontrivial. Gryphon reduces an arbitrary IFG by rewriting it. All
the select operations are moved together and closer to publishers and all the
transform operations are also grouped together closer to the subscribers.
Transform operations are done at the periphery of the network.

The Gryphon system allows the representation of event histories as
states, which is interesting especially for mobile and disconnected users.
Wireless users would benefit if a system could inform them with a sum-
mary of events that occurred while they were disconnected (the state). The
Gryphon system detects failed brokers and reroutes traffic around failed
nodes. Moreover, the system incorporates several security mechanisms:
access control, and four authentication methods.

Gryphon supports the JMS publish/subscribe API, and supports topic-
based subscription. In addition, clients may specify filters using the WHERE
clause of SQL92 supported by JMS. Gryphon extends the publish/subscribe
one-to-many model with request-reply and solicit-response models. By us-
ing unique topics JMS users can use request-reply style messaging. In the
solicit-response model a client may make an advertisement to which one or
several clients may respond privately.

The basic unit of the Gryphon multibroker configuration is the cell,
which is a group of fully connected servers. Cells may be further linked
together for geographical scaling through link bundles. Link bundles pro-
vide redundant connections between cells, which includes load-balancing
and fault-tolerance not provided by gateway-based approaches. The inter-
nal protocols and systems ensure that cycles are avoided and messages are
routed around failed nodes.

COM+ and .NET

Standard COM and OLE support asynchronous communication and the
passing of events using callbacks, however these approaches have their
problems. Standard COM publishers and subscribers are tightly coupled.
The subscriber knows the mechanism for connecting to the publisher (in-
terfaces exposed by the container). However, this approach does not work
very well beyond a single desktop. Now, the components need to be active
at the same time in order to communicate with events. Moreover, the sub-
scriber needs to know the exact mechanism the publisher requires, however
this interface may vary from publisher to publisher making this difficult to
do dynamically. (ActiveX, COM use the IconnectionPoint mechanism for

47

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

creating the callback circuit, an OLE server uses the method Advise on the
IoleObject-interface). Furthermore, this classic approach does not allow
filtering or interception of events [Pla99] [Sri01] [Mic02].

COM+ Event Service The COM+ event service [Pla99] [Mic02] is an op-
erating system service that provides the general infrastructure for connect-
ing publishers and subscribers. The service is a Loosely Coupled System
(LCS), because it decouples event producers from event subscribers using
the event service and a catalog for storing available events and subscription
information. In this architecture, an event is a method in a COM+ interface
called the event method, and it contains only input parameters.

Figure 2.17: The COM+ Event Service.

The following steps are required for producing an event:

1. An event Class is registered.

2. Subscriber registers for an Event.

3. Publisher creates an Event Object at run time.

4. Publisher fires the Event by calling the method in the Event Object.

5. Event Object reads the Subscription List from the Event Store.

6. Delivers the event to the subscriber by calling the appropriate method.

48

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

The change in the COM+ Event Service is the addition of the event
service in the middle of the communication. The event service keeps track
of which subscribers want to receive the calls and mediates the calls. The
event class is a COM+ component that contains the interfaces and methods
a publisher calls to fire events and a subscriber needs to implement in order
to receive the event. Event classes are stored in a COM+ catalog that is
updated either by the publishers or by administration.

Subscribers register their wish to receive events by registering a sub-
scription with the COM+ event service. A subscription is a data structure
that contains the recipient, event class and which interface or method within
that event class the subscriber wants to receive calls from. Subscriptions
are also stored in the COM+ catalog either by the subscribers or by admin-
istration. Persistent subscriptions survive restarting the operating system,
transient subscriptions will be lost on restart or reset.

The publishers use the standard object creation functions to create an
object of the desired event class. This event object contains the event sys-
tem’s implementation of the requested interface. The publisher then calls
the event method that it wants to fire. The event system implementation of
that interface looks in the COM+ catalog and finds all the subscribers who
have expressed interests in that event class and method. The event system
then connects to each subscriber, using direct creation, monikers, or queued
components, and calls the specified method. Event methods return only
success or failure. Any COM client can become a publisher and any COM+
component can become a subscriber.

The current event system has several limitations. The subscription
mechanism is not itself distributed and there is no support for enterprise-
wide repository. Secondly, event communication in the system is done
either by DCOM or Queued Components, which are both one-to-one com-
munication mediums. The delivery time and effort increases linearly with
the number of subscribers, which means that the system is not scalable to
firing events to many subscribers.

However, client-side disconnection is supported with queued compo-
nents. COM+ supports components that record a series of method invo-
cations (event occurrences) and are able to play them back in the recorded
order. These components can be distributed using messages. Since the
event object may be defined as queuable, a disconnected client may play-
back the desired event object upon reconnection.

COM+ Events can be extended to support filtering, which needs to be
implemented either on the publisher side or on the subscriber side. If an
event is filtered by a component on the publisher side, it is never delivered
to the event service. If an event is filtered on the subscriber side the event
service will make the decision of whether to deliver the event to a particular
subscriber [Mic02].

Filtering on the publisher side is done by attaching a filter object on the

49

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

event object interfaces (which correspond to events). The filter may query
the subscription information and, for example, change the firing order for
a set of subscribers. The subscriber-side filtering is done using parameter
filtering for each subscription and method invocation. Parameter filtering
evaluates the subscription FilterCriteria property against the parameters of
the event method. The filter criteria string recognizes relational operators,
nested parenthesis, and the logical keywords AND, OR, and NOT.

Interoperability with .NET The COM+ Event System needs to generate
some metadata in order to interoperate with the .NET world. However, an
abstract definition of the Event Interface, Event Classes, and their attributes
is needed [Kis01].

.NET The .NET framework supports events at many levels. There is sup-
port for programming language level events, interoperability with COM
events. The interoperation of Visual Basic .NET code and legacy COM
component events is done using a runtime callable wrapper (RCW). In VBN
listeners create event handlers, which are added to sources. The connection
between events and event handlers is implemented by special objects called
delegates. The benefit of the .NET runtime is that the events from compo-
nents written in different languages, say C# and VB, are interoperable.

Microsoft’s messaging infrastructure is called Microsoft Message Queu-
ing (MSMQ) [Mic99]. In this kind of architecture, applications receive and
send messages using queues. MSMQ supports disconnected operation and
is especially useful in intermittently connected Windows CE/PocketPC de-
vices. MSMQ allows application writers to asynchronously send messages.
MSMQ CE version can, for example, be used for

• Messages transferred when in range (delivery tracking, quality con-
trol)

• Messages transferred once in a while (intelligent set-top boxes, inven-
tory control, . . .)

• Producer and Consumer are not active at the same time

MSMQ Product Architecture

MSMQ queues are either private or public. Public queues are stored in a
directory service called Message Queue Information Store. Public queues
are more expensive to use, because directory access is not free. Moreover,
Windows CE clients cannot host public queues. The CE MSMQ indepen-
dent client can operate independently if the server is unavailable and store
messages locally. The servers route and store messages and support clients
in the form of client proxy server and queue manager. On the other hand,

50

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

Figure 2.18: MSMQ Product Architecture. The Queue Manager connects to
other Queue Managers in order to communicate between different hosts.

MSMQ supports also dependent clients that cannot store local messages
and need the server. The architecture supports three delivery options. Fast
memory-based reliable store and forward supports network loss, but not re-
boot and cannot guarantee exactly-once semantics. Persistent guaranteed
store and forward supports reboot, and persistent transactional message
queuing guarantees exactly-once in-order delivery. Transactional guaran-
tee at commit time is about delivery to the local queue. In essence, the
system supports local all-or-nothing guarantee [Mic99].

The MSMQ Windows CE-version (2.12+) supports roaming and dy-
namic adapter switching. It tracks Network Interface Cards (NIC) and
restarts immediately after reconnection. The transparent storage is based
on one queue per file. The footprint of the system is around 100-150K. The
CE implementation has several limitations: clients must use direct names,
supports only private queues, the routing is limited, transactions are not
supported (once and in-order are supported), no system support for en-

51

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

cryption or ACL and no remote queue access. The system can be deployed
in a client-server or client-client environment and also for message-based
IPC within a device.

The next version of MSMQ, Message Queuing 3.0, is available in Win-
dows XP and supports messaging over the Internet, one-to-many messag-
ing model and message queuing triggers [Mic02]. HTTP is supported as
an optional transport protocol and an XML-based SOAP extension is in-
troduced that defines a reliable end-to-end messaging protocol. MSMQ is
by default based on a proprietary TCP-based protocol. The system also
supports real-time messaging multicast using the Pragmatic General Mul-
ticast (PGM) protocol [IET02]. This protocol supports only an at-most-once
quality of service and does not support transactional sending. The MSMQ
3.0 programming model is extended to allow an application to send a single
message to a list of destination queues.

Message Queuing Trigger is a service that allows an application to assign
functionality in a COM object to be triggered when a message arrives in a
particular queue. Each trigger is associated with a queue and applies a set
of rules for every message arriving in that queue. An action is executed
when all conditions in a trigger hold [Mic02].

Message routing is done using the lowest-cost route that is available.
If a network fails, the next lowest-cost route is used to deliver the mes-
sage. Administrators define costs for each network with the management
software (MSMQ explorer).

Websphere MQ

IBM’s MQSeries, currently known as Websphere MQ, is one of the most
popular MOM products for electronic business. The product supports
heterogeneous any-to-any communication between 35 different platforms.
MQ is compatible with JMS and integrates with Java Beans 2.0 (EJB), XML,
and JSP framework and servlets. MQ also supports SOAP for web service
creation. JMS 1.0.2 compliant embedded JMS provider supports point-to-
point and publish-subscribe messaging [IBM02b].

MQSeries Everyplace enables access to enterprise data and supports
mobile workers. Everyplace is available for a number of platforms, for
instance Linux, WinCE, EPOC, and PalmOS. The PDA type messaging is
similar to messaging for other platforms with queue managers. A queue
manager manages queues that store messages, and applications communi-
cate with their local queue manager. Remote queues are owned by remote
queue managers, and each message that is inserted into a remote queue
gets transmitted over the network. The queue manager may support a
local queue, in which case the client is capable of supporting asynchronous
communication. If no local queue is present, the client is bound to syn-
chronous communication. Another configuration option is whether the

52

CHAPTER 2. EVENT-BASED SYSTEMS 2.3. EVENT SYSTEMS

client supports bridges, and is capable of exchanging messages, with other
MQSeries queue managers.

A typical client-server configuration is a scenario where a server hosts
the queue manager and clients connect to it with a bi-directional communi-
cations link (with a proprietary MQSeries protocol). The client infrastruc-
ture is quite lightweight, because it is dependent on the server queue man-
ager. In a multi-server scenario, clients employ message channels, which
support unidirectional, safe, and asynchronous message exchange. Chan-
nels are a form of end-to-end service provision and consist of the source
queue manager, a number of intermediate managers, and the destination
queue manager. The footprint of the system is 64K for Palm and 100 K for
a class file with Java devices [IBM02b].

2.3.11 Discussion

The following list gives an overview of the discovery and event delivery
mechanisms used in the event and message architectures presented in this
paper.

CORBA Event Service Discovery method is unspecified. Centralized com-
ponent for event propagation (Event Channel) that provides anonym-
ity.

CORBA Notification Service Discovery method is unspecified. Central-
ized component for event propagation (Event Channel) that pro-
vides anonymity. Components may discover the event types and
subscribers in an event channel.

Siena Access nodes advertise services (advertised/unadvertised). Four
different server topology configurations: client-server, hierarchical,
acyclic peer-to-peer, and generic peer-to-peer. Events are routed.

JMS Discovery using JNDI. Messages are published to queues or topics.
Not a full event service.

Cambridge Event Architecture Discovery method is unspecified. Direct
notification, filtering may be also implemented by a mediator. Also
support for CORBA Event Service.

Java Distributed Event Architecture Does not specify an interest registra-
tion service. Direct notification, the generator knows the listeners.

JEDI (Java Event-based Distributed Infrastructure) Subscriptions proc-
essed by the infrastructure. Event Dispatcher is a centralized com-
ponent that supports event subscription and unsubscription. The
distributed implementation of system consists of a number of EDs
connected into a tree.

53

2.3. EVENT SYSTEMS CHAPTER 2. EVENT-BASED SYSTEMS

Gryphon Subscriptions processed by the infrastructure. Content-based
routing through large-scale public networks. Uses JMS API for clients.

ELVIN Discovery of servers using multicast/unicast within a cluster. In-
frastructure manages subscriptions. Message routing, client-server
and server-server protocols. Different protocol for inside clusters and
between clusters.

The following listing presents the support for wireless and mobile clients
in the architectures:

CORBA Event Service Partial support for disconnected operation. Events
are stored at Event Channels.

CORBA Notification Service Partial support. Events are stored at Event
Channels, QoS, possibility for querying status.

Siena No mobility (mobility has been discussed; an extra layer). Wireless
(satellite) support under work.

JMS Durable subscriptions support intermittent clients.

Cambridge Event Architecture Limited. Disconnected operation possible
using a proxy.

Java Distributed Event Architecture No, supports mediators (proxies).

JEDI (Java Event-based Distributed Infrastructure) JEDI supports mes-
sage buffering and mobility with two commands: move_out and
move_in. Further support is under work. Load balancing through
subscription groups. In the future, ad hoc networking.

Gryphon Support for disconnected users (buffering). Support for event
history collapsing (summarization).

ELVIN ELVIN has been extended to support disconnected clients using a
proxy. Clients connect to the proxy. No mobility between proxies.

MQSeries, Websphere MQ Compatible with JMS. Supports disconnected
operation (buffering).

MSMQ Buffering. Supports the changing of the network card etc.

54

CHAPTER 2. EVENT-BASED SYSTEMS 2.4. CONCLUSIONS

2.4 Conclusions

Message oriented middleware and event notification are becoming more
popular in the industry with the advent of the CORBA Notification Service,
the Java Messaging Service, and other related specifications and products
from many vendors. Many research projects have addressed and are ad-
dressing issues of scalability, compound event detection, mobility, and fault
tolerance, to name a few topics. There are many ways to classify event sys-
tems, and many possibilities for their use depending on the requirements.

Traditional MOM systems are getting influences from event-based sys-
tems. For instance, JMS supports both queues and publish-subscribe style
communication with filtering. However, these systems usually lack sup-
port for distributed coordination in notification delivery and employ topic-
based routing. Current event systems are evolving towards content-based
routing, which uses the whole notification as an address. In content-based
systems clients can change their interests without changing the addressing
scheme (adding a new topic).

Scalability has been emphasized in Siena, and it has been designed
for Internet-wide scalability and tested in a simulation environment with
various network topologies. However, scalability introduces latency, which
creates problems for notification semantics and mobility. Other systems
tackle scalability and fault tolerance by creating clusters (Elvin) or cells
(Gryphon) that contain connected servers. These clusters are connected
using point-to-point links and possibly different protocols. Multicast and
fault tolerance can be provided within the clusters. Event systems are
logically centralized, however the CORBA Event Channel is also physically
centralized, creating a possible bottleneck.

Ad hoc networks are emerging with the introduction of short-range
radio communications. Ad hoc event systems support the dynamic addition
and removal of event servers (or event dispatchers). However, ad hoc event
topologies are currently an emerging research topic and some research
issues have been raised in JEDI.

From the mobile Internet and ubiquitous computing view point JEDI
and Elvin have examined a more thorough support for disconnected opera-
tion. JEDI supports both mobility and disconnected operation as a service,
and Elvin only disconnected operation (with a few additional features) as an
extension to the original architecture. Almost all message queue-products
support disconnection with various semantics. One important decision is
whether to include this support as an extension or as an integral part of the
event service. If fault tolerance and at-most-once semantics (or roaming)
are to be supported, it may be necessary to integrate this functionality at the
service level. Another open issue is whether event service should reside at
the network level or at the application level (OSI stack). For Internet scale
routing, as proposed in Siena, it might be beneficial to have some support

55

2.4. CONCLUSIONS CHAPTER 2. EVENT-BASED SYSTEMS

at the network level.
Only a few architectures support complex compound event filtering.

Usually event filtering is done using simple parameter wildcard matching
(JEDI), simple clauses (COM+, Elvin) or SQL (JMS, Gryphon), and Ex-
tended TCL (CORBA). Compound event detection is supported in CEA
with event templates and in Siena by detecting a sequence of simple filters.
Compound event detection is also a feature that may be integrated as an
external component or within the infrastructure.

Many systems do not consider the process of locating and connecting
producers, or locating event channels (Notification Service). Some architec-
tures, such as Siena, JEDI, and Elvin support this within the infrastructure.
There are two completely different problems: one is locating an access point
using multicast or unicast to a known address, and another is to use either
the infrastructure or some other service to locate channels or subscribe. In
systems such as Siena and JEDI, subscribing is accomplished by using sim-
ple string-format requests. With CORBA it is necessary to obtain an event
channel and go through a more complicated procedure in order to obtain
references to proxy objects. This process of obtaining the event channel
reference according to interests is not specified.

Many message queue products are supporting XML-based solutions,
such as SOAP, as one of the transport options. MQSeries, MSMQ, and
.NET support SOAP and Siena has XML bindings as well. XML has many
applications in messaging and event-based communication. XML can be
used to define the content of messages. For example, JMS facilitates XML-
based messages and the routing of XML.

However, the building blocks of the semantic web, such as ontologies,
are not yet supported. Ontologies and XML-derived languages could well
be used to define events and event systems, and improve interoperability.
XML and a suitable ontology would enable the specification of complex
event monitoring tasks that are uploaded to routers or, for example, web
services. In the future, it is envisaged that event applications have policies
(specified in XML, for example) for event semantics, buffering and other
information that affects the delivery of notifications.

56

Chapter 3

XML Protocols

Services provided over the Internet are becoming increasingly a major part
of the current world. Currently the most often used system for imple-
menting these services is a Web browser sending its service requests to Web
servers, which then generate the responses dynamically. This system leaves
much to be desired as anything more complex has to be done with add-ons
such as cookies. Therefore the need for a more flexible and powerful system
is obvious.

The client-server, Request-Response paradigm described above con-
tributes much to the inflexibility of current service models. A new general
architecture and a protocol to go with it are needed, if new service models
are required. This system should also be simple to implement and provide
enough flexibility to allow rapid development and deployment of various
services.

We will review the concepts of XML and Web Services and then con-
centrate on the protocol seen as the basis of these services. We will also
discuss issues related to these new services in wireless environments and
go through some proposed solutions.

3.1 XML

Currently the standard way of marking up document structure on the World
Wide Web (WWW) is Hypertext Markup Language (HTML), which is based
on Standard Generalized Markup Language (SGML) (the technical term
for HTML is an SGML application). SGML is a framework for creating
markup languages. This is done by writing a Document Type Definition
(DTD), which describes the allowed markup tags and their syntax. SGML
documents are typically hierarchical, i.e. elements (content between a start
tag and its corresponding end tag) contain other elements in addition to
text.

The intended way for an application to parse an HTML document is to

57

3.1. XML CHAPTER 3. XML PROTOCOLS

implement a full-blown SGML parser, which uses the HTML DTD to parse
each element according to its defined syntax. However, SGML allows DTD
writers to leave certain parts optional, which is useful for both cutting
the size of documents (e.g. by omitting end tags for specified elements)
and for decreasing the ratio between markup and actual content. This
makes writing an SGML parser difficult, and so WWW browsers typically
implement only an HTML parser.

The World Wide Web Consortium (W3C), aware of the problems with
HTML being an SGML application, set out to simplify SGML. The re-
sult of this simplification is now known as Extensible Markup Language
(XML) [W3C00a]. XML does not allow implicit content: all start tags must
have a corresponding end tag. In addition, XML does not contain some
rarely-used features of SGML.

<?xml version="1.0"?>
<message status="urgent">
<from>Boss</from>
<subject>Reports</subject>
<text>
I haven’t yet received those reports you promised
to deliver yesterday. I need them ASAP.

</text>
</message>

Figure 3.1: An Example XML Document

An example XML document is shown in Figure 3.1; tags are limited by
<>, end tags begin with /. The part between a start tag and its corresponding
end tag is called an element and the material strictly between them is
called the element’s content. Each element except the root (message in the
example) is contained in another element, called its parent element. This
contained element is naturally called a child element of its parent. An
element may contain attributes inside its start tag (status="urgent" in our
example). These attributes typically affect the processing of the element in
some application-defined way.

As with SGML, specific markup languages can be created with XML
using a DTD. However, DTDs are not seen as a good fit for XML so there
have emerged a few alternatives. The most visible of these is XML Schema
([W3C01b] and [W3C01c]), a W3C Recommendation. XML Schema syntax
is XML instead of the DTD language, so it seems to be a better fit for XML
data. Also, XML Schema allows a more fine-grained and flexible approach
to restricting element content. DTDs are still expected to last for a while,

58

CHAPTER 3. XML PROTOCOLS 3.2. WEB SERVICES

though, mostly due to their already-familiar syntax and established use
base.

3.2 Web Services

The term Web Services has in recent times risen to prominence. The point
of Web Services is to unite a large variety of different platforms into large
distributed systems using simple, standardized protocols and interfaces.
XML is an important component of Web Services as they are realized today.

The definition of a Web Service is not very clear-cut. However, there are
certain overall characteristics that fit into all used definitions. The central
one of these is the use of XML practically everywhere. XML is used to
describe the service interfaces, to locate services and even to encode the
actual messages. XML is beneficial since it is flexible, standardized and
popular.

The W3C has also embraced the Web Services area with its Web Services
Activity, which was started in January 2002 as an extension to the XML
Protocol Activity. This activity consists of the Architecture, Description and
XML Protocol Working Groups. The other Working Groups besides the
XML Protocol one are still in their infancy, but the Description one has a basis
in the Web Services Description Language (WSDL) specification [W3C01g].
WSDL does not define a new syntax but rather reuses XML Schema syntax,
since that provides a good fit for also describing interfaces.

It is expected that in the near future the number of mobile devices having
a continuous wireless connection to a network will increase rapidly. Because
of this, it is important to evaluate the various Web Service technologies in
light of the unique challenges offered by mobility. Of the three parts of
Web Services, protocol, description, and discovery, the most obvious part
to concentrate on is the protocol since that one most clearly is affected by
the move to wireless networking. In addition, if server components can be
on a mobile platform, discovery will be more complicated than with fixed
services, though this will probably be handled with special addressing
schemes suitable for mobility rather than by changing the actual discovery
process.

3.3 Protocols

The W3C maintains a table of various XML protocols and their feature lists.
This is a pretty diverse collection; the only unifying aspect of these protocols
is that they use XML as their messaging format. Of these protocols, the most
interesting for different messaging purposes is W3C’s SOAP ([W3C01e] and
[W3C01f]), which is also used as a basis for some other mentioned protocols.

59

http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/arch/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2000/03/29-XML-protocol-matrix

3.3. PROTOCOLS CHAPTER 3. XML PROTOCOLS

Below we will be concentrating on SOAP. However, the emerging issues
are mostly related to XML use as a message format and our considerations
should be applicable for other XML-based messaging systems.

3.3.1 History

The origins of SOAP lie with UserLand Software. Their Frontier product
is a content management system for the WWW. It also includes a Remote
Procedure Call (RPC) interface to more easily provide interconnections be-
tween various services on the WWW. For this RPC system, they designed a
new protocol, XML-RPC [Win99].

XML-RPC is a minimal protocol, intended to be used only for simple
RPC needs. There are provisions only for a single Request-Response round
trip messaging, there are only a few basic datatypes and the only transfer
protocol is Hypertext Transfer Protocol (HTTP). These can also be seen as
advantages of XML-RPC. Due to its simplicity, it is easy to implement and
there are in fact dozens of implementations in several different languages.
There are also no provisions for extensions so the specification has remained
stable for several years.

Even though other communication patterns can be built on top of a
RPC framework, this would require careful specification of interfaces and
messaging semantics. This led to the need for an extensible messaging
system. Microsoft had expressed interest in utilizing XML-RPC in their
future products, so they teamed with UserLand to produce such a system,
which was named SOAP, for Simple Object Access Protocol.

SOAP gained popularity quite fast after its initial launch and other com-
panies joined Microsoft and UserLand in developing SOAP further. Version
1.1 was published as a W3C Note [W3C00b] in May 2000 by Microsoft, IBM,
Lotus, DevelopMentor, and UserLand. After this, SOAP was adopted by
W3C’s newly formed XML Protocol Activity for standardization. This ac-
tivity has published Working Drafts of version 1.2 of SOAP during 2001, the
latest one being from December. Recently this activity was retitled the XML
Protocol Working Group inside the newly formed Web Services Activity.

3.3.2 Features

We will be concentrating on the features of SOAP version 1.2. There may be
a few points where we might mention that a feature first appeared in this
version.

The SOAP message structure is shown in Figure 3.2. A SOAP message
is an XML document with the root element being Envelope. This element
contains one or two elements, the first of these being an optional Header
and the second one being a mandatory Body. The Header may contain any
number of child elements, called Header Blocks. The SOAP specification

60

CHAPTER 3. XML PROTOCOLS 3.3. PROTOCOLS

Header Block

Header Block

Header Body

Envelope

Figure 3.2: The Structure of a SOAP Message

does not address the content of the Body element in any way, other than
requiring it to be well-formed XML and specifying its structure in the case
of errors, so-called SOAP Faults. This leaves it to each application to define
how the content of the Body element is to be interpreted.

The extensibility of SOAP stems from the fact that the content of the
Header element is very loosely specified. There are practically no require-
ments on the type or content of individual header blocks. The only se-
mantics that are defined for header blocks are a few optional attributes
describing the encoding of the block, the intended recipient of the infor-
mation in the block, and an indication of whether the block’s semantics
must be understood by the recipient. This loose specification allows appli-
cation developers to freely define their own header blocks with appropriate
semantics.

SOAP’s extensibility allows it to be used in a wide variety of situations.
There is in fact no necessity for SOAP messages to be responded to: the
specification assumes only a one-way message transfer from the sender to
a receiver. However, as the W3C’s XML Protocol Usage Scenarios docu-
ment [W3C01a] describes, by defining a few header blocks, SOAP can be
used to support such communication patterns as Request-Response, RPC,
Event Notification and Conversation. In addition, there are provisions for
independent intermediaries to be placed on the path between the initial
sender and the ultimate receiver.

SOAP version 1.1 was still practically tied to HTTP as a transfer protocol.
There was no other specified protocol mapping nor was there a suitable
protocol framework to assist in using other protocols. This has changed in
version 1.2, where the HTTP binding was removed to the Adjuncts section of
the specification and replaced in the main part by a generic protocol binding
framework. This framework should make it easier to use SOAP over non-
HTTP transfer protocols, and in fact there already are implementations of
SOAP that support other protocols. In particular, the XML Protocol Working
Group is attempting to specify a SOAP binding for email to illustrate the
usefulness of the binding framework.

61

3.3. PROTOCOLS CHAPTER 3. XML PROTOCOLS

There has been only very little SOAP-specific work done on security
aspects of Web Services. Currently the only way of having some security
with SOAP is to use Secure Sockets Layer (SSL), as is done with HTTP.
However, the Web Services world is much more complex than the plain Web
world and SSL does not address all relevant issues such as authentication in
connection with intermediaries and third parties, or security after a message
has reached its destination.

The security situation is changing now that people realize SSL is not
sufficient for the needs of SOAP. The W3C is working on encryption, sig-
natures, and key management in the context of XML and the results of
these efforts should be easily applicable to SOAP also. There already is an
application of XML signatures to SOAP published by Microsoft and IBM as
a W3C Note [W3C01d].

3.3.3 Current State

As mentioned above, SOAP is now officially being developed by the W3C.
It is still at the Working Draft stage, which means that the Working Group is
still making modifications. Version 1.2 seems to be quite stable, as many of
the still-open issues only require clarification and in most cases discussion
has converged to an acceptable solution.

The XML Protocol Working Group was originally chartered to be dis-
banded in April 2002. However, this timetable would have required the
Working Group to publish a Candidate Recommendation in April 2001 and
a Recommendation in September 2001. Since SOAP is still at the Working
Draft stage, it seems that the timetable will slip by at least a year, with a
Recommendation expected to be published in late 2002.

SOAP’s roots in XML-RPC are also somewhat of a hindrance to full
utilization of SOAP’s features. XML-RPC is a RPC protocol over HTTP,
as was SOAP in the beginning. However, the current version of SOAP is
neither RPC- nor HTTP-specific. Even so, people often associate SOAP with
these two concepts and this misconception also causes misunderstandings
of the SOAP specification.

3.3.4 Implementations

SOAP has indeed become popular in recent times. There are already dozens
of implementations conforming to the SOAP 1.1 specification, available in
all popular, and also some less popular, programming languages for all
common platforms. Apache, the leading Web server, has a full implemen-
tation and newer Web browsers also contain client-side functionality.

There are also several SOAP toolkits available for various languages.
The most popular in the Open Source world is undoubtedly the SOAP::Lite
module for Perl. Microsoft also includes its own SOAP toolkit in their .NET

62

http://httpd.apache.org
http://www.soaplite.com/
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/

CHAPTER 3. XML PROTOCOLS 3.4. XML OVER WIRELESS

development framework. There are also SOAP bridges so that CORBA or
COM objects can be exposed as Web Services. UserLand Software maintains
a comprehensive list of SOAP 1.1 implementations.

Interoperability testing of the various implementations is hampered by
the fact that there is no good test suite. Therefore interoperability can only
be expected in common cases and more obscure parts of SOAP probably do
not get much interoperability testing. The XML Protocol Working Group
will change this by designing comprehensive conformance requirements
and a test suite to go with these requirements. However, this work is still
in an early stage.

Current SOAP implementations only conform to SOAP version 1.1, and,
as mentioned above, the lack of a conformance suite precludes exact deter-
mination of how conformant various implementations are. It is understand-
able that implementations of version 1.2 have not appeared, since it is still at
Working Draft stage and may change before becoming a Recommendation.
The XML Protocol Working Group keeps a partial list of 1.2-conformant
implementations and their statuses. It is expected that most vendors will
release 1.2-conformant implementation after the Recommendation has been
issued.

3.4 XML over Wireless

If XML Protocols are intended for use in the services of the future, the needs
of mobile users must be taken into account. Mobile users are typically
behind low-bandwidth wireless links and the protocols and data formats
originally designed for wired networks may be too heavy for wireless con-
nections.

3.4.1 Problem Areas

There are several problems in trying to use SOAP over a wireless connection.
The most obvious of these is that XML documents tend to be quite large,
since the tag names are usually quite descriptive and XML does not allow
certain redundant information to be left out. Also, the typical underlying
transfer protocol in SOAP implementations is HTTP, which might not be
suitable for typical wireless environments.

3.4.2 Different XML Protocols

One solution to problems with SOAP would of course be to abandon SOAP
completely in favor of a simpler protocol. A common alternative would be
XML-RPC, whose messages are quite a bit smaller than the typical SOAP
message, since XML-RPC does not concern itself with extensibility like
SOAP does.

63

http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/
http://www.soapware.org/directory/4/implementations
http://www.w3.org/2000/xp/Group/2/03/soap1.2implementation.html
http://www.w3.org/2000/xp/Group/2/03/soap1.2implementation.html

3.4. XML OVER WIRELESS CHAPTER 3. XML PROTOCOLS

Switching to XML-RPC would naturally incur some losses also. XML-
RPC is tied to HTTP, which, as mentioned above, might not be suitable. The
only communication pattern available with XML-RPC is RPC with a very
simple type system. While careful specification of interfaces would permit
implementation of other communication patterns, SOAP has the advantage
of having these patterns built in.

Another problem with using a non-SOAP protocol would be that the
majority of Web Services in the future is expected to understand only SOAP,
since multi-protocol Web Service implementations are not very common.
This would necessitate the creation of XML-RPC-to-SOAP bridges and
probably also specifying the internal workings of these bridges.

3.4.3 Transfer Protocols

The only transfer protocol currently specified for SOAP is HTTP, which is
practically always used over TCP. However, TCP is not very well suitable for
wireless links and HTTP itself is somewhat heavy. Of the implementations,
SOAP::Lite for Perl supports several protocols other than HTTP including
FTP, raw TCP and Jabber, an instant messaging protocol. Microsoft’s .NET
also supports an instant messaging protocol.

A new protocol framework, Blocks Extensible Exchange Protocol (BEEP),
was published by the Internet Engineering Task Force (IETF) in March 2001
as a Request for Comments (RFC) [Ros01a]. BEEP is a peer-to-peer proto-
col that supports connection sharing between logically separate sessions.
There already exist implementations of BEEP for Java, C and some other
languages. In some circles, a suitable BEEP-based protocol is seen as a
possible replacement for HTTP.

The Internet Engineering Steering Group (IESG) has recently approved
a proposed SOAP mapping on top of BEEP [OR02] to be published as an
RFC as soon as coordination with the Internet Assigned Numbers Author-
ity (IANA) results in assigning standard numbers for profiles and such.
There is also work underway in mapping BEEP on top of Stream Control
Transmission Protocol (SCTP), which is expected to be a popular transport-
layer protocol in wireless environments.

3.4.4 Compression

Compression of XML documents sent over the network would seem to be
the method that gives the largest payoffs. There are three different ways
to approach compression: non-XML-specific methods, methods taking ad-
vantage of XML’s inherent structuring and binary XML, which preserves
the document structure even in compressed form.

64

http://www.beepcore.org/beepcore/projects.jsp

CHAPTER 3. XML PROTOCOLS 3.4. XML OVER WIRELESS

Generic Compression

Generic compression algorithms can naturally be used also for XML doc-
uments. They are to be expected to perform well due to XML documents
being text and the element parts being highly repetitive.

Generic compression is already publically available in SOAP implemen-
tations. For example, the popular SOAP::Litemodule for Perl implements
transparent deflate compression using the zlib compression library. In
addition, the popular Apache web server has an extension module (not
SOAP-specific) for zlib compression of served documents.

Typical compression algorithms achieve good compression ratios by
exploiting redundancy in the data. From this it follows that they perform
better on larger documents. While XML in general might be used for even
very large data collections, the individual SOAP messages are quite small,
typically well under 1KB. Therefore the compressor may perform badly,
possibly leaving the compressed size to over 50% of the original size.

XML Compression Methods

Since XML is as popular as it is, it is to be expected that XML-specific efforts
are also made, in compression as in other fields. XML-specific compressors
typically exploit the additional structure present in the data. Usually these
compressors can also exploit DTDs and XML Schema definitions of the
document structure to achieve even better compression.

Two well-known XML-specific compressors are XMill and XMLZip. Of
these, XMLZip seems to be defunct as its creator, XML Solutions was ac-
quired by Vitria, who have not included XMLZip in their product line.
There are also other compressors, such as ICT’s XML-Xpress compres-
sor, but these compressors are typically proprietary and may depend on
patented algorithms.

Let us now take a closer look at the XMill compressor as its working
principles are publically available. The XMill compression is based on
splitting the XML document into a structure stream, which contains the
tags and at least one, possibly more, content streams. Each of these streams
is separately compressed with deflate compression.

Now, XMill achieves a better compression ratio than generic compres-
sion, since the structure stream containing all the tags has more redundancy
on its own than as a part of the whole XML document. In addition, by
grouping element contents that are expected to be similar (such as, in the
case of RPC, all integer parameters) into their own content streams, the
content streams also become highly redundant and susceptible to efficient
compression. In addition, XMill allows users to specify the structure of
the content inside elements to achieve even better compression (such as
compressing generic dotted-decimal IP addresses to the theoretical limit of

65

http://www.gzip.org/zlib/
http://www.research.att.com/sw/tools/xmill/
http://www.garshol.priv.no/download/xmltools/prod/XMLZip.html

3.4. XML OVER WIRELESS CHAPTER 3. XML PROTOCOLS

four bytes).
XMill also does not require DTDs to be available for the data like some

other XML compressors. This is a benefit since SOAP prohibits the use of
DTDs for any part of the data. However, this benefit should disappear as
the XML community moves away from DTDs and toward XML Schema
definitions, which are also the basis for WSDL, the interface description
language for Web Services. A drawback of XMill, like of other XML com-
pressors, is that the methods require quite a bit of data, and can therefore
be even worse than generic compressors on small message sizes, such as
we have with SOAP.

Binary XML

A specific type of XML-specific compression is binary XML, which is differ-
ent enough to merit separate treatment. In binary XML tags are replaced by
binary tokens, reducing each tag to one or two bytes. Standard attributes of
elements can also be tokenized in this way. The benefits of using a binary
encoding also manifest themselves even on shorter messages, like those
used in SOAP. In addition, it is also possible to compress the content of
elements independently of the tag compression.

Another benefit of this tokenization is that the document can be parsed
directly from the compressed form without having to uncompress first,
since the original structure remains intact; only the tags are changed. Also
on the sending end the sender could generate binary XML directly. These
could be beneficial since handling strings, which regular XML requires, is
more time-consuming than handling pure binary data.

One well-known format of binary XML is WAP Binary XML (WBXML).
This was published by the WAP Forum as a W3C Note [W3C99] for the
needs of Wireless Application Protocol (WAP), which needs to be suitable
for small devices with wireless connections. In WBXML the tokens are
divided into code spaces and during encoding/decoding there is a default
code space at each point in processing.

There is already further work done based on WBXML. The best-known
is Millau [GS00], which extends WBXML to more efficiently encode certain
common data types such as integers. Since Millau is also an encoding
system, it also assigns the binary tokens into code pages in a way that
should give a good compression ratio. In addition, Millau compresses the
string data (both the string table and the element content). In experiments,
Millau reduces document sizes to 20% of the original. This ratio stays
constant, unlike with gzip, which improves as the document size increases.
Because of this, Millau appears to perform worse than gzip for document
sizes over 5KB.

The Millau system also includes APIs for processing the encoded for-
mat directly without needing to convert it to XML first. This provides a

66

CHAPTER 3. XML PROTOCOLS 3.5. SUMMARY

clear speedup even in the cases where the parser is call-compatible with
traditional XML parsers, i.e. the parse events or tree it generates have the
actual tag names instead of tokens. By having the parser use only tokens
further speedup is achieved.

3.5 Summary

Judging from industry support, the deployment of Web Services is about to
increase quickly in the near future. With increasingly more sophisticated
and powerful mobile devices coming to market, the number of users in
wireless environments wanting to use these services seems likely to also
grow rapidly. Reconciling the protocol overhead of Web Services with the
still quite limited data transfer capabilities of wireless devices is therefore
very important.

One option would of course be to do nothing and accept the overhead
of Web Services as a natural part of communication, even in the wireless
world. This attitude reputedly works for some people. The obvious benefit
would be that there would be no need to implement a separate solution for
wireless devices. Instead, any Web Service implementation would suffice
for both the wireless and the wired worlds. This option should be kept in
mind as a baseline due to its simplicity, but tests should be done comparing
it to various proposed improvements.

Switching from SOAP to another Web Service protocol would not be
very beneficial, as this would require customized bridging solutions with
message translation. But switching to another transfer and lower layer pro-
tocols could be used with ordinary SOAP intermediaries that understand
the transfer protocols. There would in this case be no need to touch the mes-
sages except insofar as SOAP intermediaries normally do while processing
a message. The wisest course here would be to identify solutions that are
expected to become popular, so that there would be fewer problems with
support. Currently SOAP over BEEP appears to have the most momentum,
with BEEP running on top of either TCP or SCTP.

Generic XML compression schemes should also be ignored as they typ-
ically perform worse than more generic compression on SOAP messages.
Here the deflate compression method, which is expected to be supported
quite widely, should be kept as a baseline, and proposed other schemes
compared with it. Some form of binary XML would seem like a better
alternative and should be investigated. Millau could be a suitable base for
further work; especially SOAP-specific token codes could be assigned. In
addition, extending the format with a caching system would remove the
need of sending a message-specific full string table with each message, since
it is quite possible that several messages use the same element types.

67

3.5. SUMMARY CHAPTER 3. XML PROTOCOLS

68

Chapter 4

Synchronization

4.1 Introduction

As stated in the introduction of this document, one of the long term goals of
the project is a mobile distributed information base (MDIB) especially suited
for XML storage, with characteristics such as high availability, consistency
and support for weakly connected and disconnected operation. In this
chapter we will review research relevant to this topic, with focus on data
synchronization.

Data synchronization (see e.g. [Syn00]) is traditionally understood to be
the process of making two sets of data look identical. An exact definition of
the term seems to be lacking (the term is not included common computing
dictionaries), and it is used in slightly different meanings depending on the
context. Here, the term will have the following meaning:

Data synchronization Assume two sets of data that have some parts in
common. Data synchronization between the sets is the process of
making the common parts identical, after changes have occurred in
either or both sets. The synchronization process should not ignore
changes made to the common part in either set.

As an example of data synchronization, as defined above, consider two
data sets S1 = {a, b, c} and S2 = {b, c, d}. Now, if S2 is updated to {b, c′, d′} and
synchronized with S1, the update to c ∈ S1 ∩ S2 should be propagated to S1,
which when synchronized becomes {a, b, c′}.

In the reviewed work, synchronization is usually not the main research
topic. Typically the research concentrates on something that entails syn-
chronization as a integral part, such as a distributed file system or a shared
database. The only work that specifically deals with synchronization re-
viewed here is the SyncML synchronization protocol.

Although it would be interesting to review work that concentrates on
synchronization, it is certainly beneficial to view it as an integral part of

69

4.1. INTRODUCTION CHAPTER 4. SYNCHRONIZATION

a system, as the described synchronization methods in these cases solve
an actual synchronization problem. The holistic perspective also helps to
recognize different aspects of the synchronization process, such as:

• Policies regarding when, what and how to synchronize.

• Conflict resolution mechanism, including conflict resolution policies.

• Low-level network transportation method (e.g. FTP, SSL).

• Caching and maintaining cache coherency.

• Consistency guarantees for synchronized data.

• Locking and session semantics.

• Methods for gathering and transporting updates (e.g. change log,
deltas).

Throughout this document, we have tried to describe these aspects, to the
extent they are applicable, for each of the reviewed systems.

Given the long-term goal of the MDIB, the review focuses on the syn-
chronization mechanisms in distributed storage systems and how suitable
these are for operation in a mobile environment. Particular points of interest
on synchronization from a mobile perspective are:

• Are unexpected disconnections handled well?

• Does the protocol save bandwidth?

• Is the architecture suitable for peer-to-peer operation?

• Is the protocol or architecture too complex for mobile devices?

• Is the architecture scalable?

• Is the architecture secure?

The distributed storage systems included in the review are Coda, Inter-
Mezzo, OceanStore and Bayou. Coda and InterMezzo are distributed file
systems, whereas OceanStore is a highly available and fault tolerant data
storage facility designed to be deployed on a global scale. Bayou is a dis-
tributed database, designed from the ground up with disconnections in
mind.

In addition, we review the SyncML synchronization protocol as an ex-
ample of a synchronization protocol that is not tied to a particular applica-
tion, and that is supported by a range of mobile devices. Furthermore, we
take a look at the rsync protocol, which was specifically designed to enable

70

CHAPTER 4. SYNCHRONIZATION 4.2. CODA

efficient file updates over slow networks. Finally, we ponder the question
of what “intelligent synchronization” could actually mean and give some
examples, the most important of which is the 3DM tool for 3-way merging
of XML data.

We are also interest in how easily a system could be utilized in the Fuego
Core project. We have tried to evaluate each system in this respect as well,
by looking as such issues as:

• Is the system well-documented?

• What is the API provided to application programmers?

• What is the implementation status?

• Is there any source code available?

4.2 Coda

The Coda file system [Bra98, SK92, MES95, Sat96, BBHS, S+90, Cod], orig-
inating at the Carnegie Mellon University and building on the heritage of
the famous Andrew File System, is perhaps the most well-known file sys-
tem with support for weakly connected and disconnected operation. Since
its initial development during the years 1990–91, and subsequent enhance-
ment for weak connectivity in 1993–95 it has been extensively studied and
refined. Coda is quite mature: the ongoing development concentrates on
allowing Coda to be widely deployed.

The features of main interest in Coda are:

• Support for disconnected operation

• Support for weakly connected∗ operation with adaption to available
bandwidth

• Free and relatively mature source code available

• Support for write-access to shared file systems in disconnected mode

• The ability to ensure the availability of important files during discon-
nected operation

• Cross-platform. Client and server software is available on several
platforms†.

• Excellent compatibility with legacy applications.

∗High-latency, low-bandwidth (typically 9.6–64kbps) connections with occasional in-
voluntary disconnections. Typically wireless links.

†They have even managed to get it running on Windows 9x.

71

4.2. CODA CHAPTER 4. SYNCHRONIZATION

In addition, Coda supports replicated file servers for higher performance
and fault tolerance, server recovery, and client authentication and access
control using a Kerberos-like scheme combined with access control lists.

The architecture of Coda follows the client/server paradigm. The design
is optimized for access patterns exhibiting little to no concurrent writes to
the same objects. On the server side, Coda stores files using its own scheme,
meaning that you cannot just “start sharing” an existing file system.

Coda exhibits a hierarchical architecture. At the highest level of orga-
nization, there is the Coda cell. The clients and servers in a cell share the
same common names pace and configuration information. Each cell has a
server designated as the System Control Machine (SCM), which is responsible
for the maintenance of the configuration databases. Movement of clients
between cells is currently not possible, so a cell would typically contain the
entire shared file tree of an organization.

The Coda name space, which appears as a directory hierarchy under a
mount point (typically /coda) is populated by volumes. Volumes are subtrees
of a server directory hierarchy, typically larger than a single directory but
smaller than an entire partition. For instance, a home directory /home/ctl
on server A could be exported to the Coda name space as /coda/home/ctl.
You are allowed to export a volume inside the directory structure of another
volume.

Volumes may be replicated across several servers for fault-tolerance.
The group of servers replicating a volume is the Volume Storage Group (VSG),
and the servers in the VSG available at a given instant to a client is referred
to as the client’s Active VSG (AVSG).

Security in Coda was designed on the basis that servers are trusted,
whereas clients are not. For authentication and authorization during a
session, Coda clients use a token obtained from a server in exchange for the
correct password. Permissions are granted based on looking up the user
who owns the token in the system’s ACL.

4.2.1 Storage and Update Model

In this section, the operation of the Coda client and server is described first,
after which the interaction between client and server is examined. Server-
to-server communication is not described in detail, as the main interests lie
in the mobile aspects of Coda.

On the client side, Coda makes aggressive use of caching, not only to
improve performance, but mainly to make files available in states of weak
connection or disconnection. The Coda client, consisting of a relatively
small kernel-level module and the cache manager Venus, has three main
responsibilities:

• Cache management: Checking currency of files in the cache, fetching

72

CHAPTER 4. SYNCHRONIZATION 4.2. CODA

files and making sure that the files the user has selected for off-line
availability are in the cache.

• Propagating changes from the client file system to the server. Changes
include modifications to files, directories and permissions.

• Maintaining a log of changes to the file system, when changes cannot
be propagated immediately. This log is called the client modification
log, CML

The server part of Coda, called Vice, performs the following tasks:

• Manages server storage. File data is stored on the file system pro-
vided by the OS. Coda metadata, such as volume and directory in-
formation, is stored in a transaction-enabled raw partition to provide
fault-tolerance.∗

• Grants and executes callbacks (in Coda terminology “breaks”) to
clients when an object is modified.

• Applies CMLs received from clients.

• Performs conflict detection and resolution.

• Handles server-to-sever replication, initiated by clients detecting stale
data on a server.

Coda uses session semantics for shared files. The session starts when a
file is opened and ends when the file is closed. Coda treats files as atomic
objects, meaning that concurrent modifications at different locations in a file
will result in conflicts. Consistency and recoverability of Coda metadata
is provided through the use of the recoverable virtual memory (RVM) [MS91]
transaction handling module.

Hoarding, Emulating and Write-disconnected

The interaction between Venus and Vice takes place in three states: hoard-
ing, emulating and write-disconnected (this state was called the reintegrating
state before support for weak connectivity was added). These states corre-
spond to being connected to a fast network (hoarding), disconnecting and
working on the road (emulating) with occasional weak connectivity (write-
disconnected) and finally returning back to the home network (hoarding).
The states and possible transitions are depicted in figure 4.1.

In the hoarding state client changes to directories, files and permissions
are immediately propagated to all servers in the AVSG (replication is thus

∗Replaced by a binary file on Windows.

73

4.2. CODA CHAPTER 4. SYNCHRONIZATION

Hoarding

Emulating Write-
disconnected

Disconnection

Connection
D

is
co

nn
ec

tio
n Strong

connection

W
eak

connection

Figure 4.1: Venus states and state transitions.

primarily handled by clients sending their updates to all servers in the VSG)
in addition to the locally cached copies. Each client chooses∗ a primary server
in the VSG, from which it fetches current objects and receives callback no-
tifications (“breaks”) when objects on the server are updated. The callback
notifications are thus used to mark cached objects invalid. A client alerts
the primary server to initiate server-to-server replication, if it detects that
any of the members in the AVSG has an old version of an object. Object
currency is detected through the use of version vectors†.

When Venus detects that the client has been disconnected from the
network, it enters the emulating state. Ideally, the application user is not
affected at all by the disconnection, as Venus tries to emulate connected
operation in this state (hence the name of the state). The ability to continue
using the file system as if nothing had happened during disconnection is a
feature pioneered by Coda.

In disconnected operation, we can no longer be assured that the objects
in cache are up-to-date, and the penalties for a cache miss are fatal — the
file cannot be accessed at all. To prevent vital files from being absent from
the cache, the user is able to specify a list of files, called the hoard database,
that should always stay in the cache (so-called “sticky” entries)‡. As the
modifications to the client cannot be propagated we store them in the CML,
which is replayed on the servers in the AVSG once reconnected. As in the
hoarding state, modifications are still applied to cached entries immediately.
To save resources (and bandwidth at reconnection) the CML is subjected to
optimizations, e.g. entries describing the creation, writing and subsequent

∗Selection techniques include random selection or selection based on server load.
†See [P+83]
‡Files from the hoard database can still be evicted from the cache, if space is insufficient.

74

CHAPTER 4. SYNCHRONIZATION 4.2. CODA

deletion of an object (the life cycle of a temporary file) are purged from the
CML.

When the client is reconnected to the network (either over a weak or
strong link), Venus enters the write-disconnected state, and the process of
reintegrating the changes between the server and client starts. As modi-
fications may have occurred on the server side, the cached entries on the
client may be stale. Furthermore, to propagate the modifications local to
the client we need to send the CML to the AVSG.

As the connection may be weak, we need to consider bandwidth usage
during reconnection. Overlooking this fact made early incarnations of
Coda unbearably slow when reconnecting over a weak link. Fortunately,
with the introduction of rapid cache validation, trickle reintegration and
user-assisted miss handling, performance over weak connections improved
enormously. These techniques are described below.

To minimize cache validation traffic, version stamps for volumes as
well as individual files are maintained. Version stamps for volumes en-
ables validation of a large amount of files in a single sweep, provided no
modifications have occurred to the volume, as is frequently the case. Using
volume version stamps enables rapid cache validation.

Trickle reintegration is a process whereby the client continues generating
updates to the CML instead of sending them directly to the AVSG, although
the device is connected. The CML is allowed to age for some time, enabling
optimizations to be done before it is sent to the AVSG. For instance, if the
CML is allowed to age 10 minutes before being transmitted, we can optimize
away a file create/delete pair 9 minutes apart. To increase responsiveness,
an upper bound is set on the size of the transmitted CML chunks. The
tradeoff of trickle reintegration versus hoarding is weaker consistency.

As opposed to fully disconnected operation, cache misses can be han-
dled in the write-disconnected state. In case of a low bandwidth-connection,
the delay experienced by the user when fetching large objects may, how-
ever, be prohibitive (a cache miss for a 1M file on a 9.6kbps link will cause
a delay of some 20 minutes!). User assisted miss-handling means that in
cases where huge transfer times∗ would result, Coda will query the user
before initiating the transfer.

Reintegration and Conflict Handling

Reintegration, which takes place constantly in the write-disconnected state,
and when entering the hoarding state, reconciles the differences between a
client and the servers. Reintegration consists of the following steps:

1. Venus reserves some resources from the server, which it has already
tentatively handed out.

∗Actually, a nifty mathematical model involving priorities and transfer times is used.

75

4.3. INTERMEZZO CHAPTER 4. SYNCHRONIZATION

2. The CML is transmitted to the AVSG, which executes the CML oper-
ations, at the same time checking for conflicts. Some conflicts can be
solved automatically (such as adding of files to the same directory),
but not all: for instance, if a file has been modified on the server since
disconnection, as well as on the disconnected client the conflict can-
not be automatically solved. In such cases, it is possible to have Coda
invoke application-specific resolvers to handle the conflict.

3. Updated files are fetched from the client.

If the CML causes a conflict, the log is rejected and the corresponding entries
flushed from the client cache. In this case the user must resolve the conflicts
manually.

4.2.2 Coda as a MDIB

When it comes to support for mobility, Coda is well though out. There is
support for weakly connected operation, including unexpected and spuri-
ous disconnections. The weaknesses of Coda lie in the requirements not
specifically related to mobility: it is not design to scale on a global to level,
since there are no guarantees for strong consistency (ACID) nor support for
transactions.

It should also be noted that the design of Coda, especially the authen-
tication and authorization system, is based on the client/server model. An
interesting question is if Coda could be extended to support operation in
peer-to-peer mode.

4.2.3 Practical Issues

The sources for Coda are publicly available, and the system has reached
a high level of maturity for research software. The semantics are easy
to understand, lots of documentation is available, and the storage API is
familiar to Unix programmers. In short, Coda should provide an excellent
platform for experimentation.

4.3 InterMezzo

InterMezzo [Bra01, Bra02, IMW] is a newcomer in the family of distributed
file systems with support for disconnected operation. The goal of the In-
terMezzo project is to achieve the same benefits as Coda as well as close to
local file system performance, but with a simpler architecture.

The architecture of InterMezzo was heavily inspired by that of Coda
and several researchers have been involved in both projects. Like Coda, In-
terMezzo makes use of aggressive caching and has session semantics based

76

CHAPTER 4. SYNCHRONIZATION 4.3. INTERMEZZO

on file open and close. The update propagation scheme is similar to that
of Coda’s weakly connected operation. The main differences are that In-
terMezzo utilizes the underlying file system to a higher degree (no special
partition required on the server) and that many performance optimiza-
tions unrelated to networking has been performed, such as moving code to
kernel space and introducing asynchronous calls between the InterMezzo
modules.

InterMezzo consists of two modules:

1. The kernel file system code, called Presto, which gathers a log of
modifications to the file system. This log is called the kernel modification
log (KML).

2. The cache manager, which is responsible for keeping the cache up-
dated and sending the KML to the system’s peer.

The cache manager originally consisted of a single program called Lento.
Lento, which can still be used, has since been superseded by a HTTP-based
approach consisting of a generic web server (such as Apache) and a program
called InterSync. In the following discussion, we will assume that InterSync
is used. Lento essentially does the same as InterSync combined with a web
server, differences are mainly in how communication is initiated. The use
of a web server for communications automatically adds support for secure
transfers and proxies to InterSync.

4.3.1 Storage and Update Model

InterMezzo is a filtering file system [HP94] that sits on top of an existing
journaling file system capable of supporting nested transactions, such as
Linux’ ext3, ReiserFS and XFS. The underlying file system stores files in the
same directory hierarchy and with the same names as those seen in Inter-
Mezzo file system, with the addition of some special files and directories
for control purposes. InterMezzo relies on the journaling abilities of the
underlying file system to handle recovery and guarantee consistency. The
advantage of this design is that it leverages the performance and transaction
handling capabilities of an existing file system (unlike Coda which uses its
own transaction handling system, the RVM).

InterMezzo can be set up for both one- and two-way synchronization. In
the former case, changes are only propagated from the server to the client.
In this case it is sufficient for the client to use InterSync without having
an InterMezzo partition, since no modification log needs to be sent to the
server.

In the case of two-way synchronization, we need to track changes on
the client as well, and thus the shared files must reside on an InterMezzo
partition. Two-way synchronization can be performed in two different

77

4.3. INTERMEZZO CHAPTER 4. SYNCHRONIZATION

HTTP Server InterSync

Kernel

Ioctls

Upcalls

Kernel

InterSync HTTP Server

Ioctls

Possibly tunneled
Network

Possibly tunneled
Network

Upcalls

Figure 4.2: Symmetric two-synchronization operation in InterMezzo
[Bra02].

ways: one is to use a web server on the server side only, in which case the
client KML is pushed to the web server, the other is to have web servers on
both client and server. In the latter case, which we will examine, the client
and server operate symmetrically. See figure 4.2.

Modifications on the server side are propagated to the client by having
InterSync fetch the KML (through a normal HTTP file request) regularly
from the server. InterSync then processes the KML, fetching the correspond-
ing file from the server whenever a file modification record is encountered.
As an alternative to polling the KML, synchronization may also be initiated
by a message from the server whenever modifications occur. Furthermore,
InterSync can be configured to only fetch the modified files when they are
actually accessed on the client. Some optimizations are done when process-
ing the KML, such as not fetching temporary files or fetching the same file
multiple times.

Modifications on the client are propagated similarly by having the server
download the KML of the client.

The scheme described above raises the question of how a server handles
the KML when synchronizing to several clients (with different times of
previous synchronization). The answer is that the server stores the last
successfully retrieved record of the KML for each client, and only sends
more recent records of the KML to the corresponding client. Unbounded
growth of the KML is prevented by having it periodically truncated. To be
able to restore a heavily out-of-date client, InterMezzo maintains another
log, the synchronization modification log (SML), which only contains object
creation records.

Presumably, one can use server-granted write permits (callbacks), such

78

CHAPTER 4. SYNCHRONIZATION 4.3. INTERMEZZO

as those used in Coda, to guarantee a higher degree of consistency. Un-
fortunately, permit handling is described too vaguely in documentation to
give an overview here.

Conflict detection is handled by checking the KMLs for conflicting op-
erations. Assume that the KMLs gathered since the point of synchronized
directory trees are L1 on the client and L2 on the server. The client receives
L2 in order to perform reintegration. We need to check for possible conflicts
between the logs L1 and L2, such as modifications to the same file.

Conflicts are automatically resolved according to a given policy by gen-
erating new logs Llocal

1 , Llocal
2 and Lremote

1 , so that Llocal
1 Llocal

2 when applied on
the client, yields the same result as applying L2Lremote

1 on the server (Lremote
1

is the KML sent to the server). The following policies are mentioned:

• Mobile policy and High availability policy∗. The conflicting is kept
on the client. When a conflicting server object is detected, the client
object is moved away to another location.

• Re-synchronization policy. Used for heavily out-of-date systems,
which need to apply the SML.

The details of generating Llocal
1 , Llocal

2 and Lremote
1 can to some extent be found

in [Bra02]. The need for Llocal
2 and a Llocal

1 differing from Lremote
1 arise due to

the fact that conflict resolution mechanism may require different operations
to take place on the server and client.

4.3.2 InterMezzo as a MDIB

InterMezzo implements basic support for disconnected operation, and can
thus operate in a mobile environment. However, there is no explicit sup-
port for weakly connected operation as there is in Coda. Noting the large
improvement in performance that was achieved in Coda by accounting for
weak connections, one suspects that InterMezzo could be improved as well.
Techniques that come to mind is protocol optimization and delta transfers.

InterMezzo was designed for simplicity, which should be advantageous
in mobile environments. Especially the layered file system design and
KML gathering seem efficient and elegant, provided that an underlying
journaling file system is available. On Linux-based platforms, this should
not be a problem; there is even a journaling file system for flash devices
available: JFFS2 [Woo].

High availability and scalability have been considered to some extent,
but cannot be compared to the massive approaches taken in e.g. OceanStore
(see the next section).

∗The exact difference between these remains elusive in [Bra02]. In fact, it is stated that
they are the same if “the failed node [in a fail-over cluster] is the client”

79

4.4. OCEANSTORE CHAPTER 4. SYNCHRONIZATION

Although the basic design of InterMezzo is client/server, it exhibits a
great deal of symmetry between these. This speaks for easy adaption to
peer-to-peer operation. Compared to Coda, the lack of a special file struc-
ture on the server should be advantageous and enable users to start sharing
any file system almost “ad-hoc”.

4.3.3 Practical Issues

Sources and documentation for the InterMezzo project are available from
the project web site. There is some testimony that InterMezzo has reached
a level of maturity where it can be used on a day-to-day basis [Bar02]. The
sharing semantics are familiar from Coda and the API is the standard Unix
file API.

On the downside, we note that there are only a few documents on
InterMezzo, some of which appear outdated ([Bra01]) and others rather
unfinished and unclear ([Bra02]). “Use the source, Luke∗” appears to be an
appropriate motto for those wishing to learn the details of InterMezzo. The
use of kernel code (especially with the introduction of InterSync) will make
deploying on other platforms than Linux harder.

Security in InterMezzo seems to be fairly rudimentary as it is of now.

4.4 OceanStore

The OceanStore project [R+01b, K+00, OSW] at University of California,
Berkeley is an attempt at constructing a secure highly available and reliable
storage system on a global scale. The system is envisaged to support the
storage needs of some 10 billion users, amounting to a total capacity of
roughly 1018 bytes. The distinguishing features of OceanStore is its mas-
sive scale, content-based routing, strong support for security and use of
introspective techniques to optimize the performance of the system.

The fundamental unit of storage in OceanStore is an encrypted binary
object, identified by a fixed-length globally unique identifier (GUID). Ob-
jects are stored persistently and new versions are automatically created
with each update. To give the illusion of mutable objects, there is a nam-
ing mechanism by which the latest, or active, version of an object can be
addressed.

To facilitate fault tolerance and increase performance, active objects are
automatically replicated and distributed among the network nodes as seen
fit by the system. Older versions of an object are stored in a highly fault-
tolerant archival mode. In archival mode, an object is encoded using erasure
codes and divided into fragments, which are spread over a large number

∗That is: read the source code.

80

CHAPTER 4. SYNCHRONIZATION 4.4. OCEANSTORE

of servers. To reconstruct the original object, any sufficiently large subset
(e.g. 30%) of the fragments may be used.

The devices participating in the OceanStore infrastructure are nodes in
an overlay network∗ on top of an existing IP infrastructure. The main feature
of the overlay network is its ability to route messages (e.g. data reads) to the
the closest† instance of a stored object. As this routing mechanism is one of
the fundamental enablers of fault tolerance and replication in OceanStore,
we will look at it in some detail in the next section.

The architects of OceanStore have done their outmost to eliminate single
points of failure from the system. This is reflected throughout the design,
and especially in the subsystem called the inner ring (or primary tier‡), which
handles global ordering and commitment of update operations as well as
provides a source of data with strong consistency guarantees. The task that
the inner ring performs is typically handled by a single authoritative server
in other distributed storage systems (e.g. Bayou and Coda).

Each object is assigned a set of servers, which form its inner ring. The
servers in the inner ring agree on updates using a Byzantine agreement pro-
tocol [LSP82], guaranteeing consistency among the replicas. The protocol
allows any m out of 3m + 1 servers to fail, without the ring going inopera-
tional. The penalty for this high level of fault-tolerance is a large amount of
network traffic between the servers in the inner ring§.

In addition to the replicas in the inner ring, there may exist secondary
replicas of an object throughout the system, distributed in the form of trees
rooted at servers in the inner ring. The secondary replicas do not provide
any guarantees regarding consistency or currency.

Updates are propagated to the secondary replicas in three manners: they
are propagated down the tree of replicas from the inner ring, replicas may
send requests for updates up the tree, and finally in an epidemic manner (as
in Bayou). During epidemic update, the replicas quickly spread tentative
updates among themselves and pick a tentative serialization order. Tenta-
tively updated replicas can be read by applications which do not require
strong consistency guarantees. See figure 4.3.

To the application developer OceanStore provides its services through
sessions. Sessions may be created with different levels of consistency guar-
antees, similarly to Bayou. As expected, there is a tradeoff between con-
sistency guarantees and connectivity: in case of disconnection or weak
connectivity, strong consistency cannot be guaranteed.

The basic assumption regarding security in OceanStore is that the in-

∗That is, an application-level virtual network on top of an existing physical one, such as
Gnutella.

†According to some metric, e.g. latency.
‡The terminology varies: [K+00] uses primary tier, [R+01b] uses inner ring.
§It should be noted that in [K+00] it is argued that the overhead of the Byzantine

agreement protocol is not in fact very large.

81

4.4. OCEANSTORE CHAPTER 4. SYNCHRONIZATION

2

2

2

2

2

2

2

2 2

2

2

2

C 2
2

2

2
C 1

1

1

1

1

(a)

2

2

2

2

2

2

2

2 2

2

2

2

C 2
2

2

2
C 1

1

1

1

1

(b)

2

2

2

2

2

2

2

2 2

2

2

2

C 2
2

2

2
C 1

1

1

1

1

(c)

Figure 4.3: The path of an update (figure and text from [K+00]). (a) After
generating an update, a client sends it directly to the object’s inner ring, as
well as to several other random replicas for that object. (b) While the inner
ring performs a Byzantine agreement protocol to commit the update, the
secondary replicas propagate the update among themselves epidemically.
(c) Once the primary tier has finished its agreement protocol, the result of
the update is multicast down the multicast tree to all the secondary replicas.

frastructure is untrusted. In practice this means that no node besides the
client is allowed to see unencrypted data, limiting read access to those in
possession of the encryption key. Write access is controlled through signed
access control lists. By being very fault-tolerant OceanStore should also be
relatively immune to denial-of-service attacks. Measures have also been
taken to prevent malicious servers from replacing or changing objects they
do not have access rights to. However, we cannot get away without trusting
anyone: there are some specially assigned servers that we will need to trust
to carry out protocols as well as distributed consistency management for
us.

OceanStore was designed to be self-maintaining. This implies two fun-
damental properties: fault-tolerance (the mechanisms of which were de-
scribed above) and self-repair. The mechanisms for self-repair in OceanStore
include the ability to automatically handle both unexpected and advertised
insertions and removals of nodes, processes that monitors the network for
suboptimal routes and that periodically sweep through the OceanStore to
check and repair objects (using archival fragments) as well as models for
predicting server and disk failures.

To further reduce the need for manual tuning, introspective processes,i.e.
processes that observe the system and make tunings based on the obser-
vations, have been deployed. Introspection is used for cluster recognition,
whereby clusters of closely related files (e.g. a set of files a user is actively
working on) are recognized. This clustering information, along with in-
formation on usage patterns, is utilized by another introspective process,
the replica manager. The replica manager is able to intelligently prefetch
files to a server close to the user: your mail is automatically fetched to your

82

CHAPTER 4. SYNCHRONIZATION 4.4. OCEANSTORE

workstation during office hours and to your PDA while traveling. If this
actually works in practice remains to be seen; the authors appear optimistic,
nonetheless.

4.4.1 Routing to Data

According to [K+00] OceanStore uses a twofold approach for routing to
data. First, a fast probabilistic algorithm, based on Bloom filters, is used
to look for the data in nearby nodes. Bloom filters [Blo70] are a way of
compactly representing sets, with some probability for false matches. The
nodes store Bloom filters for the objects in adjacent nodes up to some depth.
If a filter indicates a match we can route directly to the corresponding node.
The probabilistic routing algorithm is not mentioned in the later publication
[R+01b], indicating that it might have been dropped.

If the probabilistic routing fails, a slower, reliable method based on the
Tapestry [ZKJ01] overlay and routing infrastructure, also developed at UC
Berkeley, is used for routing the messages to the closest instance of the
stored object. Tapestry implements a variation of the routing mechanism
introduced by Plaxton, Rajaman and Richa in [PRR97], with enhancements
for fault-tolerance and dynamic insertions and removals of nodes. The rout-
ing and location method used in Tapestry uses the same general method,
described below, as that of Plaxton et al.

Assume a name space of bk nodes. Each node N in the network is
assigned a unique address in the range [0, bk

− 1]. When routing to a
destination node D, the address of the node (which we will also denote
with D, since there is no risk of confusion) is divided into k blocks bk−1 . . . b0
so that D =

∑k−1
i=0 bibi, with each block in the range [0, b − 1]. For instance,

using b = 16 and k = 4 the blocks of the address AB09 (base 16) would be 9,
0, B and A.

Each node N maintains k neighbor maps with b entries, where the entry
(ik, ib) contains the route to the closest node C (including N itself), whose
ik:th block equals ib and the blocks ik−1 . . . 0 match the corresponding block
in N.

Routing to a destination node D is done one block at a time, starting
from block 0. Assume i is the current block. The next hop from a node N
is given by looking up the node at position bi in the i:th neighbor map, i.e.
the entry (i, bi). In this way, the destination is solved digit by digit. The
maximum length of the path is trivially k (but usually less, since several
neighbor map entries are loopback entries). For a routing example, see
figure 4.4.

Locating an object O1, located at a sever node S works as follows. A
hash function is used to calculate a mapping from O1 to a node R, which is
the “root node” of the object. When O1 is created at S it is published to the
infrastructure by sending a message 〈S,O1〉 from S to R, which states that

83

4.4. OCEANSTORE CHAPTER 4. SYNCHRONIZATION

L 01
L 10

L 01
00 L

10 L
11 L

10 L
01 L

A

B

00 10 11

01

Figure 4.4: Routing using the algorithm of Plaxton et al. In this example
b = 2, k = 2 and the distance measure is the geometrical distance between
the nodes in the figure. The address of the node is written over the node’s
routing table. In the routing table, the entry (ik, ib) is at row ik column ib; L
means that the entry points back to the node (a loopback entry). The arrows
A and B show the routing of a message from node 00 destined for node 11.

L 01
L 10

L 01
00 L

10 L
11 L

10 L
01 L

A

B
C

<O1,11>

00 10 11

01

<O1,11>

<O1,11>

D

Figure 4.5: Object lookup using the algorithm of Plaxton et al. The node 00
publishes O1, whose root node is 11. The arrows A and B indicate the path
of the publishing message. When 10 queries for O1, it sends the query to
11. However, the location of O1 is discovered at 01 after the first hop, and
the message is sent directly to node 00 (arrows C and D).

O1 can be found at S. All nodes on the path from S to R (including R) store
this information. When addressing O1 from a node C we send a message
destined for R (R is obtained from O1 using the same hash function that S
used). At some point (at latest when reaching R) the message will route
through a node that has knowledge of O1, which then is able to forward
the message to S. See figure 4.5. If a replica of O1 is published at another
server S′, the publishing works similarly, with the addition that the message
〈S′,O1〉 replaces 〈S,O1〉 at each node where S′ is closer than S.

4.4.2 Update Model

OceanStore provides different guarantees on consistency and data currency.
Locks are not used, avoiding the problems traditionally associated with

84

CHAPTER 4. SYNCHRONIZATION 4.4. OCEANSTORE

locking, e.g. stale locks and too aggressive locking preventing sharing of
data. The basic ideas used are:

• An update consists of (predicate, action) pairs. The actions of the first
predicate that evaluates to true is executed atomically, and the update
commits. If no true predicate is found, the update aborts.

• A strongly consistent and current copy of an object can always be
obtained from the servers in the inner ring.

These ideas are similar to those used in the Bayou system, with the difference
that merge procedures are not used, and the inner ring has the role of
the primary replica in Bayou. The fact that only ciphertext is stored in
OceanStore limits the available predicates that can be used in the update
operations, and the substitution of a primary replica with a group of server
complicates the update procedure. In [K+00] the authors acknowledge that
these issues are problematic, and not yet resolved.

The predicates available for updates are block-compare, predicate on
metadata, such as compare-size and compare-version, as well as a search predi-
cate for searching the ciphertext for an string (without revealing the cleartext
of the search string). Assuming certain types of block cipher, such opera-
tions as replace-block, delete-block and insert-block are available.

ACID semantics can be achieved by using the compare-block predicate to
check the read set of the transaction, and write the updated data with replace-
block. If an application requires that reads returns data that is current and
strongly consistent (e.g. a banking transaction) it needs to communicate
with the inner tier; as the secondary replicas may contain outdated and
tentative data. Strong consistency is thus not available to a mobile device
(unless it itself is the inner tier).

One may question whether the update scheme really is sufficient for
handling concurrency. Consider the transaction {a = a + 100, b = b − 100}
(which may signify the transfer of $100 from account b to account a). In
OceanStore, we need to read the amounts a and b, and then construct an
update that checks that the amounts are the same that we read before
updating them. The problem is that we cannot do the read and update
atomically, and thus there is always the possibility that another transaction
updates the amounts in between — in which case the update aborts and
we must start all over. However, there is no guarantee that the update will
succeed on the second try, or any subsequent for that matter.

The predicate-action update scheme is also able to handle simple conflict
resolution automatically. As an example, if we always want the more recent
version to persist, we can use the compare-version predicate to check if the
version number has increased since the last read, and discard the write if
that is the case.

85

4.4. OCEANSTORE CHAPTER 4. SYNCHRONIZATION

The mapping between object names (such as a human-readable file
name) and object handles (which are used internally to access objects, i.e.
GUIDs in the case of OceanStore) are handled by hashing over the object
name and some additional information, such as an encryption key. Objects
can also be named by hashing over the object’s content, as in the case of
archived objects.

4.4.3 Mobility and OceanStore

The authors speak of the possibility for disconnected operation in OceanStore.
And indeed the fundamental enablers are there: local replicas can be stored
in the mobile device, and data writes need not propagate immediately.
There are, however, several aspects of OceanStore which are suboptimal in
the mobile environment under consideration in Fuego Core.

There is no mentioning of the protocols used by OceanStore having been
optimized for saving bandwidth or roundtrips. The amount of different
protocols active in OceanStore appears quite large: client update requests,
epidemically propagated updates, pushed updates to secondary replicas,
update requests from replicas, several introspective processes exchanging
system state as well as processes sweeping through all the stored objects. In
a mobile environment, presumably several of these would processes need
to be disabled to conserver bandwidth.

A general design principle of OceanStore seems to use soft state when-
ever possible. Soft state means that the state information decays over time;
if not refreshed frequently enough the state is deleted. The requirement for
refreshes at certain intervals does not fit well into the mobile world.

Client updates are not optimized for limited bandwidth, there are for
instance no delta transfers; furthermore, the use of ciphertext makes it
harder to add such transfers to the protocol.

Putting a member of the inner ring on a mobile device seems quite
infeasible, given the additional overhead of the rather heavy Byzantine
agreement protocol (an estimated 6 roundtrips and O(n2) amount of com-
munications [K+00]). In practice this means that no mobile device can
contain an authoritative replica of an object.

Unexpected disconnections is another issue that the system needs to
deal with. Practical implications are that protocols should minimize the
amount of state and connection buildups and teardowns should be light.
The update messages seem to be stateless and hence well suited for mobile
operation. Connection buildups, on the other hand, may be problematic,
as a Tapestry node upon entry in the network needs to build a routing
table. The routing table can be cached, but if one moves to a different access
point, the old routing table may not be valid. Routing over the wireless hop
should probably not be done using Tapestry.

86

CHAPTER 4. SYNCHRONIZATION 4.5. BAYOU

Judging from [R+01b, K+00] OceanStore uses many rather complex pro-
tocols, and is itself complex. However, in a mobile environment, we need to
minimize complexity as CPU cycles and bandwidth are usually very con-
strained. As for security, the fact that OceanStore was designed with strong
security in mind from the ground up is a merit in the wireless environment.
Furthermore, OceanStore is not dependent on a server infrastructure, and
should thus be able to work in peer-to-peer mode.

4.4.4 Practical Issues

So how does one test and deploy OceanStore? The short answer is: you
don’t. At the time of writing OceanStore is not available for download.
[R+01b] states that the system is not yet “fully operational”. However, the
underlying routing framework, Tapestry, is available for download at the
OceanStore website [OSW].

To the programmer, OceanStore provides (or is envisaged to provide)
several alternatives. The base API provides full access to OceanStore func-
tionality in terms of sessions and session guarantees, updates and callbacks
(which are used to inform the application of when e.g. an update commits
or aborts). On top of this API, more familiar APIs (called facades) have
been implemented: a Unix file system, a transactional system, and a WWW
gateway. The facade APIs allow legacy applications to harness the benefits
of OceanStore.

4.5 Bayou

Bayou [PST+97, E+97, D+94, BaW] is a storage system designed with the col-
laboration of frequently disconnected users in mind. In Bayou, the database
used by a collaborative application is aggressively replicated to provide
high availability. To facilitate work in off-line mode Bayou abandons the
requirement for strong consistency among replicas and instead introduces
a number of different guarantees for weakly consistent operation.

New data may be written to any available replica. From there changes
will eventually propagate to all replicas by means of the update propagation
mechanism, which in Bayou is anti-entropy. A very interesting idea in
Bayou is the bundling of write checks and merge procedures with database
updates.

Other important features of Bayou are:

• Use of committed and tentative data (as in OceanStore).

• Different session guarantees for weakly consistent data are provided.

• Built on the relational database model.

87

4.5. BAYOU CHAPTER 4. SYNCHRONIZATION

• Should be suitable for peer-to-peer operation due to the anti-entropy
update mechanism and easy replica insertion and deletion.

The project was carried out during the years 1993–97 at the famous Xerox
Palo Alto Research Center (PARC). During the course of the research project
several collaborative applications were built on top of Bayou, including a
group calendar and an email application.

4.5.1 Storage and Update Model

The storage system at each replica consists of a log of writes∗ and the
database that results from applying these writes in order. In theory, the
write log on each server contains all writes to the database,† received either
from clients or other replicas. The task of the update mechanism is to reach
an eventual agreement among all the servers on the set of writes in the log,
as well as the order of the writes.

When a server receives and accepts a client write it assigns the write an
accept stamp, and associates the server ID with the accept stamp. The accept
stamps are assigned in a monotonically increasing fashion, and define an
ordering for all the client writes received by a specific server: if write A is
accepted before write B, A will precede B in the ordering. This ordering
is called the accept-ordering. The accept ordering is maintained in the write
log.

When receiving a write from another server, the write already has an
accept stamp, which is left unmodified. Each server stores the last received
accept-stamp in a version vector, indexed by the server that assigned the
accept stamp. For instance, if the version vector on a server S were {S :
1000,S1 : 2002,S2 : 3003}, it would mean that the accept stamp of latest
client write on S was 1000, and that it so far has received client writes to S1
up to accept stamp of 2002, and client writes to S2 up to 3003.

Using these concepts, we can present the basic operation of the anti-
entropy update propagation mechanism:

Write operations are propagated between pairs of servers. A server
S propagates the writes it has received by contacting a randomly chosen
replica R, and asks R for its version vector V. S then iterates through its
write log, sending any write from a server s with an accept stamp a to R, if
V[s] < a. That is, S only sends writes to R that R has not seen previously.
The pseudocode for basic anti-entropy is shown in figure 4.6. Using this
scheme, all writes will eventually reach all replicas, according to the theory
of epidemics. Also note that the accept ordering allows compact repre-

∗A write in Bayou terminology is a procedure that generates a set of updates to be
applied to the database. A write may for instance delete a row in a relational table.

†In practice, writes that have been committed can be discarded from the write log.

88

CHAPTER 4. SYNCHRONIZATION 4.5. BAYOU

anti-entropy(S,R) {
Get R.V from receiving server R
now send all the writes unknown to R
w = first write in S.write-log
WHILE (w) DO

IF R.V(w.server-id) < w.accept-stamp THEN
w is new for R
SendWrite(R, w)

w = next write in S.write-log
END

}

Figure 4.6: Basic anti-entropy executed at server S to update receiving server
R [PST+97].

sentation, in the form of version vectors, of all the set of writes seen by a
server.

In practice Bayou exhibits some modifications to the basic anti-entropy
scheme:

• Writes are divided into committed and tentative writes. One database
replica is designated to be the primary replica and it determines a total
ordering of writes by assigning a monotonically increasing commit
sequence numbers (CSNs) to all writes it receives.

On all servers, the writes that have been assigned a CSN are commit-
ted. The committed writes are ordered before any write without a
CSN in the write log. Writes without CSNs are tentative writes.

To accommodate for this modification, each server R maintains a
counter of the highest CSN assigned to a write. During anti-entropy,
the sender S checks if it has a higher CSN, and in that case sends the
CSNs of all writes between R.CSN and S.CSN to R, along with any
writes unseen to R. R.CSN is then updated to S.CSN.

• The introduction of committed writes allows Bayou servers to trun-
cate the write log. Any write with a CSN may be removed from
the write log, as we know that its position in the log will no longer
change and hence its effect on the content of the database has been
determined. The tradeoff is that if we need to perform anti-entropy
with a server beyond the log truncation point, the entire database
needs to be transmitted.

• Anti-entropy through transportable media. We can easily export the
update log from a given starting point to e.g. a CD-ROM, and play
back this log on a number of replicas. The receiving replicas just
ignore any updates they have seen before.

89

4.5. BAYOU CHAPTER 4. SYNCHRONIZATION

Bayou_Write(
update = {insert, Meetings, 12/18/95, 10:00am, 60min, "Project Meeting: Kevin"},
dependency_check = {

query = "SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 11:00am AND end > 10:00am",

expected_result = EMPTY},
mergeproc = {

alternates = {12/18/95, 12:00pm};
newupdate = {};
FOREACH a IN alternates {

check if there would be a conflict
IF (NOT EMPTY (

SELECT key FROM Meetings WHERE day = a.date
AND start < a.time + 60min AND end > a.time))
CONTINUE;

no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, "Project Meeting: Kevin"};
BREAK;

}
IF (newupdate = {}) # no alternate is acceptable

newupdate = {insert, ErrorLog, 12/18/95, 10:00am, 60min, "Project Meeting: Kevin"};
RETURN newupdate;}

)

Figure 4.7: A bayou write for a group calendar [E+97].

• Casual ordering of writes. To provide the session guarantees pre-
sented later on, a casual write order is introduced, which allows us to
determine if at the time of write B to a server S, another write A was
known to S. This can be implemented with a modification to accept
stamp assignment which still preserves the condition of monotonic
increase.

• Light-weight server creation and retirement. Bayou use special writes
(that propagate as normal writes through anti-entropy) to indicate
server creation and retirement. To accommodate for light-weight
server creation and retirement, each server needs to support version
vectors whose size can be dynamically adjusted.

The write operations in Bayou were designed to be very flexible to account
for the loss of strong consistency. Each write operation has three parts: a
dependency check, an update set and a merge procedure.

The update set consists of updates, insertions and deletions to the
database. The dependency check specifies the conditions that must hold
in order to apply the update set to the replica. It consists of a generic SQL
query and the expected result of the query. A write passes the dependency
check if the query returns the expected result when executed on the replica.
The dependency check is thus used to detect conflict situations.

If the dependency check fails, the merge procedure part of the write
is executed. The purpose of the merge procedure is to provide alternate
courses of action when the update set could not be applied. In other words,
the merge procedure can be used to handle conflict resolution, but may also
defer it by e.g. writing the offending record to an error log.

As an example, consider the write to a group calendar in figure 4.7. The
update set of the write tries to reserve the conference room for Kevin from

90

CHAPTER 4. SYNCHRONIZATION 4.5. BAYOU

10 to 11am on December 18th. The dependency check of this write is to
verify that the conference room is indeed empty at this time. The merge
procedure tries to reserve the conference room at an alternate time, and if
that fails, notifies Kevin by inserting the failed reservation in an error log.

[E+97, D+94] present a number of session guarantees for weakly con-
sistent replicated data that have been implemented in the Bayou project.
These are:

Read Your Writes ensures that reads within a session sees any previous
writes within that session. Without the RYW guarantee, a deleted
message could reappear during a mail reading session.

Monotonic Reads guarantees that successive reads will see an increasingly
current view of the database. That is, if an application has seen the
effects of a set W of writes, the set of writes seen by subsequent
reads, W1, are guaranteed to be larger than W: W1 ⊇ W. Without the
monotonic reads guarantee, you might see a document in a directory
listing, but get a “document does not exist” error when opening it.

Writes Follow Reads ensures that traditional write/read dependencies are
preserved in the ordering of writes at all servers (i.e the guarantee
holds across sessions). WFR entails constraints on write operations
with respect to ordering and propagation; if one of these is relaxed we
get the WFR Ordering and WFR Propagation guarantees. Without the
WFR guarantee, you could see responses to an article in a newsgroup
before seeing the original article.

Monotonic Writes states that within a session writes must follow previous
writes. As an example need for monotonic writes, consider storing
a library and subsequently the application that uses it in a Bayou
database. Without monotonic writes, you might see the application,
but not the library.

4.5.2 Mobility Issues

Bayou was designed with disconnected operation in mind, and hence works
quite well in that respect. Anti-entropy handles disconnections well, as
the process can simply continue from the last received write when the
connection is re-established. Furthermore, only a small amount of state
is needed before the transmission of writes can start. No optimizations
have, however, been made for weakly connected operation. As stated in
[PST+97], quite a lot of bandwidth could be saved by optimizing the write
messages propagated during anti-entropy.

The fact that each mobile device may work as a server raises some serious
concerns regarding security, as one cannot naively trust every mobile server

91

4.6. SYNCML CHAPTER 4. SYNCHRONIZATION

to be friendly. A discussed in [S+97], some level of security can be achieved
by digitally signing each write operation and maintaining a trusted server
site that keeps a full log of operations. The overhead of essentially having to
sign every message is, however, not negligible and will impact performance.

Although the basic idea of anti-entropy update propagation appears
simple, and thus should be suitable for implementation on mobile devices,
one should not overlook that the current design requires an underlying
database as well as an interpreter for the merge procedures.

4.5.3 Deployment Issues

The only documentation available on Bayou appears to be the papers listed
at the project’s web site. No source code nor binaries appear to be available
for download. Deploying a Bayou-like system would most likely involve
rewriting our own implementation from scratch.

4.6 SyncML

SyncML [Pab02, Syn02b, Syn02a, SyW] is an industry initiative to stan-
dardize the way data synchronization is handled in mobile devices. Syn-
chronization has traditionally been handled in an application-specific and
often proprietary manner, which leads to limited interoperability between
applications, lack of support for different transport methods as well as an
inconsistent user experience, due to differing designs. The goal of the ini-
tiative is to be able to remedy this situation, and enable “mobile devices that
support synchronization with any networked data” (and vice versa). Par-
ticipating companies include wireless heavyweights Ericsson, Nokia and
Motorola as well as IBM.

To this end the SyncML initiative has specified a synchronization frame-
work. The essential parts of the framework are the SyncML Synchronization
protocol, the SyncML Representation Protocol as well as bindings for var-
ious transport protocols, such as HTTP and OBEX. The synchronization
protocol defines the high-level interaction between a device and its peer.
This entails connection setup, authentication, synchronization (in several
modes) and object ID mapping procedures. The representation protocol
presents the protocol messages in detail in terms of syntax, parameters and
result codes. Consider authentication for instance: the former specification
defines when and which messages are sent, while the latter gives the format
for each of the messages sent. The representation protocol also introduces
the ability to filter and search the database as well as execute commands on
the peer.

For the reminder of this document, we will simply refer to the various
protocol specifications as the SyncML protocol. The SyncML protocol has

92

CHAPTER 4. SYNCHRONIZATION 4.6. SYNCML

the following features:

• Multiple transport protocols. SyncML can work over HTTP/TCP,
OBEX, WSP and Bluetooth.

• Support for synchronization of any data that can be expressed as a
collection of (key,value) pairs. Values may be arbitrary binary data,
including XML documents, vCards, email messages etc.

• Optimized for the mobile environment.∗

• Leverages existing technologies such as XML, HTTP and TCP/IP.

The SyncML architecture is client/server, the mobile device normally being
the client and its strongly connected peer the server. The synchronization
mechanism is based on the transmission of updates between the client
and the server. Typically, the client sends its updates to the server, which
reintegrates them (possibly solving conflicts). The server then sends its
set of modifications (including possibly resolved conflict entries) back to
the client, which stores them in its database. The update operations allow
insertion, deletion, replacement and copying of objects.† Several modes of
synchronization are supported, used to bring either or both devices up to
date, and accounting for the possibility of a missing update log:

• Two-way synchronization. Client-initiated synchronization, where
updates are transferred from client to server and vice versa.

• Slow sync. The client transmits its entire dataset to the server, after
which the server transmits updates to the client. Used instead of two-
way synchronization if the client update log cannot be used for some
reason (e.g. the log is lost).

• One-way sync from client. Updates are transferred from client to
server only.

• One-way sync from server. Updates are transferred from server to
client only.

• Refresh sync from client. The client sends its entire dataset to the
server, overwriting any corresponding data in the server database.

• Refresh sync from server. Like refresh from client, but the entire server
dataset is transferred to the client.

∗It would indeed be very interesting to know exactly how SyncML was optimized for
the mobile environment. Besides a few spurious comments in the specifications, the author
has found no document justifying this claim.

†A somewhat odd limitation is that there is no operation for renaming objects, presum-
ably due to the way IDs are assigned in SyncML.

93

4.6. SYNCML CHAPTER 4. SYNCHRONIZATION

The SyncML protocol does not specify how conflicts are resolved; this
matter is up to the implementation of the synchronization engine. The
protocol does, however, define some messages and status codes relating to
conflict resolution, e.g. a status code indicating that a conflict was resolved
by merging the conflicting records.

To know from which point in the update logs synchronization should
occur, as well as to enable devices to synchronize with multiple peers,
synchronization anchors are used. The anchors mark positions in the update
logs (similarly as positions in the KML in InterMezzo are remembered) for
each peer, and are used to check that no updates are lost or being applied
more than once on successive synchronizations.

When adding items in disconnected mode, there is the question of how
to allocate new object IDs. In systems such as Coda, this is solved by
tentatively assigning IDs, which are then verified upon synchronization.
SyncML takes a different approach: each client manages its own set of IDs
(called local IDs). During synchronization a map (stored on the server)
between local IDs and server (global) IDs is generated.

The authentication methods supported by SyncML works similarly to
HTTP basic and digest authentication.

4.6.1 Deployment Issues

At a first look, SyncML seems like a good protocol to use when providing a
synchronization interface to existing software or to use as a synchronization
platform on top of which more advanced concepts, such as intelligent syn-
chronization policies, can be built. Upon closer inspection, however, one
cannot help noticing some issues that will make it harder to use SyncML in
practice:

• The SyncML Reference Toolkit is no longer available for download (it
has been at some point). Scary-looking legalese at the site warns you
that the SyncML protocols may be covered by patents.

• The SyncML web site is lacking usable information for developers.
The only thing you will find are the protocol specifications.

• The specifications are quite confusing and badly organized; finding
information is hard. [Syn02b], for instance, references non-existing
chapters in representation protocol documents.

• [Ste01] concludes that the industry (excluding the founders of SyncML)
have been slow on adopting the protocol.

Furthermore, the SyncML protocol is not very simple, given the relatively
straightforward task it sets out to provide a solution for. One may ask what

94

CHAPTER 4. SYNCHRONIZATION 4.7. ADDING INTELLIGENCE

a database search operation has to do in the protocol, as it adds a great
deal of complexity by requiring that the protocol is able to access the data
it synchronizes, not just to transport it.

4.7 Adding Intelligence

In the Fuego Core project we want to go beyond plain data synchronization
by adding “intelligence” to the synchronization mechanisms. The term
intelligent synchronization does not appear∗ to be established in the scientific
community, and thus we need to define what it actually means. The current
thinking in the project is that intelligent synchronization would entail:

• Policies.

– when and where to synchronize (depending on connectivity,
pricing, demand etc.).

– what to synchronize (automatically fetch files that are important
in the current user context).

– how to synchronize (different methods yield different tradeoffs
between bandwidth and CPU cycles).

• Synchronization across “similar”.† data.

– synchrnization across different data formats.

– synchronization in the form of 3-way merging.

4.7.1 Synchronization Policies

Examples of synchronization policies that address different aspects of when,
what and how can be found from existing systems. Some examples are listed
below:

Coda In [MES95] a model of user patience is used to determine if a cache
miss should be handled transparently or if the user should be asked
for confirmation before fetching the object. The threshold depends
on available bandwidth and the priority of the object (which the user
can set). For instance, a 1 megabyte object at medium priority would
be fetched transparently at a link speed of 64kbps, whereas the user
would be asked for confirmation on a 9.6kbps link.

∗This claim is based on web searches and searches in some publication databases.
†This notion has not yet been formally defined, but presumably would go along the

lines that two data sets A and B are similar if there exists a function f that is one-to-one and
onto such that f (A) = B.

95

4.7. ADDING INTELLIGENCE CHAPTER 4. SYNCHRONIZATION

[HKZ02] describes an extension to Coda that allows users to either
specify the maximum amount of time or money that should be spent
on reintegration. The implementations of the polices are not very
sophisticated, they simply stop the reintegration process whenever
the maximum has been reached — there is, for instance, no prioritizing
of objects to fetch.

The policies described in [MES95], [HKZ02] are examples of a “what”
policy.

Network/Unplugged [Mob01] describes an “intelligent delta selection pro-
cess” which is employed in a commercial synchronization tool called
Network/Unplugged. The tool utilizes deltas for object synchroniza-
tion, and different types of deltas can be used depending on the user
needs. The available methods are block level differencing, byte level
differencing and write monitor differencing. Detailed descriptions of
these methods are not publically available, but from [Mob01] it ap-
pears that byte level differencing essentially works as Unix diff and
block level differencing as diff, but where each token corresponds to a
block of bytes. Write monitoring works by gathering a modification
log, which is passed to the peer.

Each of these methods present a different level of tradeoff between
bandwidth and computing resources. Block level differencing saves
least bandwidth, but requires the least amount of CPU cycles. For cer-
tain files (such as databases), write monitoring saves most bandwidth,
but least CPU cycles. This is thus an example of a “how” policy.

Original Coda, IntelliMirror The original implementation of Coda [SK92],
which did not have support for weakly connected mode, exhibits a
very simple policy of when to synchronize: synchronize when the
device is reconnected to the network. The same type of simple policy
is employed in Microsoft’s IntelliMirror [Cor99] for network folders
that have been made available for off-line use.

4.7.2 Synchronizing Similar Data

The idea of using filters (also known as “file converters”) to change the
format of an object is well known. Considering that filtering can be initiated
automatically, e.g. running the filter whenever the source object changes,
we easily see how this could be applied in a synchronization framework:
in addition to the update propagation stage we add a filtering stage to the
process. Systematic integration of filtering facilities in a synchronization
system might be an interesting starting point for intelligent synchronization.
Data filtering is, however, a vast topic on its own and has not been surveyed
in this document.

96

CHAPTER 4. SYNCHRONIZATION 4.7. ADDING INTELLIGENCE

Rev 1 Rev 2 Rev 3

Rev 2.1Rev 2.1 Rev 2.1Rev 2.2

Rev 2.1Rev 4

Figure 4.8: A revision tree with two branches

An interesting∗ technique for synchronizing similar data without explicit
filtering is that of 3-way merging. The technique is well known among
software developers, and works as follows:

Consider a the development of a software module in a single file. After
the development of the initial version, two parallel branches of the module
are created, with branch A containing some options not found in branch B.
After a while we may have the revision tree depicted in figure 4.8. Assume
that an important bug fix was added to branch A between revision 3 and
4 and that the bug also exists in branch B. We would like to apply the fix
used in branch A to branch B a well.

This can be done with a 3-way merge of revision 3, 4 and 2.2, which
computes the changes between revisions 3 and 4, and applies them to
revision 2.2. Here we also see what is meant by synchronization of similar
data: revisions 3 and 2.2 are not identical, but contain sufficiently similar
data for us to be able to use the bug fix from revision 4 directly on revision
2.2.

In [Lin01, 3DW] the 3dm tool capable of 3-way merging of hierarchical
data in the form of unordered trees (in this case XML files) is presented. The
similarity relationships between hierarchical datasets are generally more
complex than those for text files, but the same idea applies: when the same
substructure is found in both datasets, changes in the common substructure
may be propagated from one dataset to another.

Illustratory use cases can be found in [Lin01], including an example of
synchronizing two versions of a web page, one written for a constrained
device and the other for desktop viewing. Changes made to the version for
constrained devices are propagated to the desktop version using nothing
but old and new versions of the XHTML files (no XSLT transformations,
style sheets etc). Figure 4.9 illustrates this example.

Hierarchical 3-way merging and disconnected operation fit very well
together. As a result of disconnected operation, there is a need to reinte-
grate changes, possibly from multiple concurrently modified versions. By
performing successive 3-way merges one can integrate the changes from
any number of modified copies of a base file. Assume the base file is b and

∗In the opinion of the author, who incidentally designed the system being presented....

97

4.7. ADDING INTELLIGENCE CHAPTER 4. SYNCHRONIZATION

Figure 4.9: Example of 3-way merging of XHTML documents. The changes
in the upper page are propagated to the lower page using 3-way merging.

98

CHAPTER 4. SYNCHRONIZATION 4.8. DELTA TRANSFERS

the modified copies are b1, . . . , bn. A file which incorporates all modifica-
tions can be obtained as m(b, . . .m(b,m(b, b1, b2), b3) . . . , bn), where m denotes
the 3-way merging operation.

Furthermore, in addition to the common insert/update/delete opera-
tions, 3dm supports subtree copy and move operations. These operations
are very important for the successful reintegration of hierarchical data. Con-
sider for instance that a subtree has been moved in one version v1, and a
node in the subtree has been updated in another version v2. A reasonable
way of integrating these two changes is to move the subtree as well as up-
date the node in the subtree. However, if no move operation is available, the
subtree move has to be expressed as node deletions and insertions, leading
to an delete/update conflict between v1 and v2. Note that this is indeed due
to a limitation of the available operations: if we would actually had deleted
the subtree and inserted new nodes somewhere else, the change log would
be identical to a subtree move, but in this case a conflict should occur.

The ability to recognize subtree move and copy operations in addition
with the 3-way merging ability of 3dm allows it to reintegrate tree structures
that have undergone arbitrary edits, consisting of insert, delete, update,
move and copy operations in a reasonable∗ manner. If reintegration fails,
the tool also is able to generate detailed information about the conflicting
operations.

4.8 Delta Transfers

In the case of data synchronization, it is very common that a previous ver-
sion of the data we want to transmit exists at the receiving end. Frequently,
the previous version is also quite similar to the new version, opening up
the possibility for delta transfers, i.e. transmitting only the changes between
the previous and new version, and subsequently reconstructing the new
version on the receiving end using the old version and these changes.

The systems discussed do indeed make use of delta transfers on some
level: Coda only transmits modified files upon reconnection (instead of
blindly copying the entire file tree), as does InterMezzo. Bayou servers
send write logs instead of the entire database when synchronizing with
their peers. Delta transfers can, however, potentially be used to a much
higher degree in these systems, by utilizing delta transfers for individual
files (binary objects) as well.

In [HKZ02] a modification to Coda is presented where file updates
are handled by delta transfers. The deltas between files are generated by
running the well-known GNU diff utility on the old and new versions, the
old version being known to exist at the receiving end. The output of diff is

∗“Reasonable” merging behavior is defined in detail in [Lin01]. Integrating a move and
update as a move combined with an update is an example of this reasonable behavior.

99

4.8. DELTA TRANSFERS CHAPTER 4. SYNCHRONIZATION

transmitted over the network, where it is used to generate the new version.
Experiments on text files in [HKZ02] indicate 65–95% savings in the number
of bytes transferred between client and server. Although these numbers are
overly optimistic (no transfers of binary files, on which diff performs much
worse, were included) they show the potential of delta transfers on the file
level.

A file synchronization algorithm explicitly developed for high latency,
low bandwidth links is presented in [Tri99]. The algorithm, implemented
in the freely available rsync tool, can be used on both binary and text files,
and does not assume that a particular version of the target file exists or
is retrievable on the receiving end, as is the case in [HKZ02]. However,
the more similar the existing version on the receiving end is, the more
bandwidth can be saved.

Assume that we have two devices A and B, and we want to transmit a
file F from A to B. On B exists a file F′, which is somehow related to F (e.g. F
is a newer version of F′). The basic∗ rsync algorithm consists of three stages:

1. B splits F′ into blocks and calculates a message digest† for each block.
Let the digests be S1 . . . Si. The digests are transmitted to A.

2. On A, F is scanned for blocks whose digest match one of the digests
S1 . . . Si. As a result, we can express F as a sequence of verbatim bytes
from F interleaved with references to matching block digests. This
sequence is transmitted to B.

3. B now constructs F using F′ and the received sequence. When ver-
batim bytes are read from the sequence, these are written directly to
F. When a reference to a matching digest is read, the corresponding
block from F′ is written to F.

Thus, if for instance both files are binary files, and F would be identical
to b1 . . . bkF′, where b1 . . . bk are some bytes inserted at the start of F′, the
algorithm would transfer the sequence b1 . . . bk followed by references to
the digests S1 . . . Si. Assuming a block size of 1024 bytes, 4 bytes to index
the digests, k = 1024 and that the size of F′ is 1M, roughly 5k of data would
be transmitted instead of 1M. In contrast to GNU diff, the algorithm is also
capable of handling moves of data (which show up as block reorderings).

In practice rsync may perform much worse due to small but scattered
changes (block matches are destroyed by a few nonmatching bytes), as well
as compressed data (changes in data at position i may affect all bytes emitted
by a compressor after it has passed over position i). Some interesting
thoughts on how to remedy this problem are given in [Tri99].

∗For brevity, several important details have been omitted here, such as the use of two
types of message digests.

†The message digest is much shorter than the block. A block may be e.g. 1 kb while the
digest is 16 bytes (the size of the MD4 digest originally used).

100

CHAPTER 4. SYNCHRONIZATION 4.9. CONCLUSIONS

4.9 Conclusions

Among the reviewed systems there is none that would readily fit the role
of an mobile distributed info base. Each system has its strengths and weak-
nesses. To design an info base for operation in a mobile environment we
need to combine the best aspects of these systems. Coda and InterMezzo
appear to be the most promising starting points. In Coda’s case there is
a certain maturity emerging from over a decade of research, the fact that
it addresses several of the concerns of the mobile environment, as well as
freely available source coda. InterMezzo, being derived from Coda, should
have many of its strengths, as well as a simpler design, well suited for
mobile devices.

OceanStore, while being an interesting concept with many good ideas, is
in practice not mature yet to be used as a starting point. Bayou is especially
interesting in the sense that it is the only system working as a shared
database (as opposed to a shared file system). If it appears more useful to
develop a database type of info base, Bayou is the natural starting point.
The source code for Bayou is, however, not publically available, requiring
considerable amount of programming to even get a base system up and
running.

It should noticed that there are several design features that all of the
systems have in common. If designing an info base on our own, we should
carefully consider deviating from these:

• Acceptance of the tradeoff between strong connectivity and consis-
tency versus weak connectivity and consistency. There is an agree-
ment that strong consistency on weak connections is infeasible.

• Use of aggressive caching. Indeed, it is hard to imagine providing
high availability in disconnected mode without large caches.

• Support for write access while disconnected. Read-only operation
during disconnection is not a viable alternative.

• The use of optimistic locking, with subsequent reintegration and con-
flict resolution. Write or read locking is not used in any of the systems
to avoid conflicts.

Some issues in this review appear to be orthogonal, and it should thus be
possible to “pick and choose” the best approaches from different systems.
As an example of this, consider e.g. cache coherency approaches and object
transfer mechanisms: it should be possible to modify the object transfer
mechanism (by using such techniques as delta transfers) without affecting
the cache coherency mechanism.

An important question, which this review touches only the surface of, is
that of storing data mostly as XML. What are the features that can be built

101

4.9. CONCLUSIONS CHAPTER 4. SYNCHRONIZATION

into an info base, if most of the data is XML? Are there any advantages to be
gained? Especially the 3DM tool should prove interesting in this context.

Furthermore, we need to address the question of whether to base the
info base design on a database or a file system. These approaches have
different optimal usage scenarios. Databases are more suited for retrieving
and storing single records in a vast dataset whereas file systems are more
efficient and easy to use for traditional “document-based” applications,
such as text editors, drawing tools etc. An interesting approach would be
to combine both, e.g. by allowing the file system to be aware of the structure
of files containing XML data.

At least two possible paths of continued research can be envisioned:

1. Developing the underlying synchronizing file system or database, but
not yet address such issues as synchronization policies.

2. Concentrate on developing policies. A synchronization policy engine
would be constructed on top of an existing prototype info base, such
as e.g. a combination of Coda and SyncML.

Naturally, combinations of these are also possible. It would for instance
seem to make sense to pursue the first alternative as far as to have a proto-
typing platform, after which one could try approaching the issue of policies.

102

Bibliography

[3DW] 3dm development web site. http://tdm.berlios.de. 20

[Bar01] D. Bartlett. CORBA junction: CORBA 3.0 notification service.
IBM developerWorks, 2001. 2.3.4, 2.3.5

[Bar02] M. Bar. Keeping in sync. Byte Magazine, January 2002. 4.3.3

[BaW] Bayou homepage. http://www2.parc.com/csl/projects/
bayou/. 4.5

[BBHS] P. Braam, R. Baron, J. Harkes, and M. Schnieder. The Coda
HOWTO (version 1.00). http://www.coda.cs.cmu.edu/doc/
html/coda-howto.html. 4.2

[BKS+99] G. Banavar, M. Kaplan, K. Shaw, R.E. Strom, D.C. Sturman, and
Wei Tao. Information flow based event distribution middleware.
In W. Sun, S.T. Chanson, D. Tygar, and P. Dasgupta, editors,
ICDCS Workshop on Electronic Commerce and Web-based Applica-
tions/Middleware, pages 114–121, 1999. 2.3.10

[Blo70] B. Bloom. Space/time trade-offs in hash coding with allowable
errors. In Communications of the ACM, 13(7):422–426, July 1970.
4.4.1

[BMH+00] J. Bacon, K. Moody, R. Hayton, et al. Generic support for dis-
tributed applications. IEEE Computer, March 2000. (document),
2.1, 2.2.5, 2.3.7, 2.12

[BNFT00] G. Bricconi, E. Di Nitto, A. Fuggetta, and E. Tracanella. Analyz-
ing the behavior of event dispatching systems through simula-
tion. In In the Proceedings of the 7th International Conference on High
Performance Computing IEEE, 2000. 2.3.10

[BNT00] G. Bricconi, E. Di Nitto, and E. Tracanella. Issues in analyzing
the behavior of event dispatching systems. In In the Proceedings of
the 10th International Workshop on Software Specification and Design
(IWSSD-10), 2000. 2.3.10

103

http://tdm.berlios.de
http://www2.parc.com/csl/projects/bayou/
http://www2.parc.com/csl/projects/bayou/
http://www.coda.cs.cmu.edu/doc/html/coda-howto.html
http://www.coda.cs.cmu.edu/doc/html/coda-howto.html

BIBLIOGRAPHY BIBLIOGRAPHY

[Bra98] P. Braam. The coda distributed file system. Linux Journal, (50),
June 1998. 4.2

[Bra01] P. Braam. Removing bottlenecks in distributed filesystems:
Coda and intermezzo as examples, July 2001. http://www.
inter-mezzo.org/docs/bottlenecks.pdf. 4.3, 4.3.3

[Bra02] P. Braam. Intermezzo: File synchronization with intersync,
ver 0.9.3, March 2002. http://www.inter-mezzo.org/docs/
intersync.pdf. (document), 4.3, 4.2, 4.3.1, ∗, 4.3.3

[CDW01] Antonio Carzaniga, Jing Deng, and Alexander L. Wolf. Fast for-
warding for content-based networking. Technical Report CU-CS-
922-01, Department of Computer Science, University of Colorado,
November 2001. 2.3.8

[CN01] G. Cugola and E. Nitto. Using a publish/subscribe middleware to
support mobile computing, September 2001. 2.1, 2.3.10, 2.3.10

[CNF01] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based
infrastructure and its application to the development of the OPSS
WFMS. IEEE Transactions on Software Engineering, pages 827–850,
September 2001. Vol 27, No 9. 2.3.10, 2.3.10

[CNP00] G. Cugola, E. D. Nitto, and G. P. Picco. Content-based dispatching
in a mobile environment. In In Workshop su Sistemi Distribuiti:
Algorithmi, Architectture e Linguaggi (WSDAAL), 2000. 2.3.10

[Cod] Coda web site. http://www.coda.cs.cmu.edu. 4.2

[Cor99] Microsoft Corporation. Microsoft Windows 2000 Server, Introduction
to IntelliMirror Management Technologies. White paper, 1999. 4.7.1

[CRW99] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Interfaces and algorithms for a wide-area event notification ser-
vice. Technical Report CU-CS-888-99, Department of Computer
Science, University of Colorado, October 1999. revised May 2000.
2.3.8, 2.3.8

[CW01] Antonio Carzaniga and Alexander L. Wolf. Content-based net-
working: A new communication infrastructure. In NSF Workshop
on an Infrastructure for Mobile and Wireless Systems, Scottsdale, AZ,
October 2001. 2.2.4

[D+94] A. Demers et al. Session guarantees for weakly-consistent repli-
cated data. In Proceedings of the 3rd International Conference on Par-
allel and Distributed Information Systems, pages 140–149, September
1994. 4.5, 15

104

http://www.inter-mezzo.org/docs/bottlenecks.pdf
http://www.inter-mezzo.org/docs/bottlenecks.pdf
http://www.inter-mezzo.org/docs/intersync.pdf
http://www.inter-mezzo.org/docs/intersync.pdf
http://www.coda.cs.cmu.edu

BIBLIOGRAPHY BIBLIOGRAPHY

[E+97] W. K. Edwards et al. Designing and implementing asynchronous
collaborative applications with bayou. In Proceedings of 10th ACM
Symposium on User Interface Software and Technology, October 1997.
(document), 4.5, 4.7, 15

[EBS01] G. Eisenhauer, F. Bustamante, and K. Schwan. A middleware
toolkit for client-initiated service specialization. In ACM SIGOPS,
volume 35, pages 7–20. College of Computing, Georgia Institute
of Technology, April 2001. 2.3.10

[Ere00] J. R. Erenkrantz. Handling hierarchical events in an internet-
scale event service, March 2000. http://www.ucf.ics.uci.edu/
~jerenk/siena-xml/SienaPaper.html. 2.3.8

[GCSO01] Pradeep Gore, Ron Cytron, Douglas Schmidt, and Carlos
O’Ryan. Designing and optimizing a scalable CORBA notification
service. 36(8):196–204, August 2001. (document), 2.2.2, 2.9

[GS00] Marc Girardot and Neel Sundaresan. Millau: an encoding format
for efficient representation and exchange of XML over the Web.
In Ninth International World Wide Web Conference, May 2000. http:
//www9.org/w9cdrom/154/154.html. 3.4.4

[Hei01] Dennis Heimbigner. Adapting publish/subscribe middleware to
achieve gnutella-like functionality. In Coordination Models, Lan-
guages and Applications, Special Track at 2001 ACM Symposium on
Applied Computing (SAC 2001), 2001. 2.3.8

[HKZ02] A. S. Helal, A. Khushraj, and J. Zhang. Incremental hoarding and
reintegration in mobile environments. In Proceedings of the 2002
Symposium on Applications and the Internet (SAINT), 2002. 4.7.1,
4.8

[HP94] J.S. Heidemann and G.J. Popek. File-system development with
stackable layers. ACM Transactions on Computer Systems, 12(1):58–
89, February 1994. 4.3.1

[IBM02a] IBM. Gryphon: Publish/subscribe over public networks., December
2002. [whitepaper] http://www.research.ibm.com/gryphon/
Gryphon/Gryphon-Overview.pdf. 2.2.3

[IBM02b] IBM. MQSeries Everyplace for Multiplatforms Version 1, Release
2, 2002. [whitepaper] http://www-3.ibm.com/software/ts/
mqseries/everyplace/v12/whitepaper.html. 2.3.10

[IET02] IETF. Pragmatic General Multicast (PGM) protocol, 2002.
[Internet Draft] http://www.ietf.org/internet-drafts/
draft-speakman-pgm-spec-06.txt. 2.3.10

105

http://www.ucf.ics.uci.edu/~jerenk/siena-xml/SienaPaper.html
http://www.ucf.ics.uci.edu/~jerenk/siena-xml/SienaPaper.html
http://www9.org/w9cdrom/154/154.html
http://www9.org/w9cdrom/154/154.html
http://www.research.ibm.com/gryphon/Gryphon/Gryphon-Overview.pdf
http://www.research.ibm.com/gryphon/Gryphon/Gryphon-Overview.pdf
http://www-3.ibm.com/software/ts/mqseries/everyplace/v12/whitepaper.html
http://www-3.ibm.com/software/ts/mqseries/everyplace/v12/whitepaper.html
http://www.ietf.org/internet-drafts/draft-speakman-pgm-spec-06.txt
http://www.ietf.org/internet-drafts/draft-speakman-pgm-spec-06.txt

BIBLIOGRAPHY BIBLIOGRAPHY

[IMW] Intermezzo web site. http://www.inter-mezzo.org. 4.3

[K+00] J. Kubiatowicz et al. Oceanstore: An architecture for global-scale
persistent storage. In Proceedings of ACM Asplos, 2000. (docu-
ment), 4.4, ‡, §, 4.3, 4.4.1, 4.4.2, 4.4.3

[Kis01] Roman Kiss. Using the COM+ Event System in .Net Ap-
plications, 2001. http://www.codeproject.com/useritems/
solutionlcenotification.asp. 2.3.10

[Lin01] T. Lindholm. A 3-way merging algorithm for synchronizing or-
dered trees — the 3dm merging and differencing tool for xml.
Master’s thesis, Helsinki University of Technology, Dept. of Com-
puter Science, September 2001. http://www.cs.hut.fi/~ctl/
3dm/thesis.pdf. 20, ∗

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals
problem. ACM TOPLAS, 4(3):382–401, 1982. 12

[Mei00] R. Meier. State of the art review of distributed event models. IEEE
Computer, 2000. http://citeseer.nj.nec.com/437791.html.
2.2.4, 2.3.1

[MES95] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting weak
connectivity for mobile file access. In Proceedings of the Fifteenth
ACM Symposium on Operating System Principles, December 1995.
4.2, 4.7.1

[Mic99] Microsoft. Message queuing on Windows CE. Microsoft Systems
Journal, June 1999. Windows CE Developers Conference, http:
//www.microsoft.com/msmq/downloads/devcon99.ppt. 2.3.10,
2.3.10

[Mic02] Microsoft. Message Queuing in Windows XP: New Features,
2002. [whitepaper] http://www.microsoft.com/msmq/MSMQ3.0_
whitepaper_draft.doc. 2.3.10, 2.3.10, 2.3.10, 2.3.10

[Mob01] Mobiliti inc. Overview of Intelligent Delta Selection Pro-
cess (iDESP), August 2001. http://www.mobiliti.com/PDF/
iDESPOverview30.pdf. 4.7.1

[MS91] H. Mashburn and M. Satyanarayanan. RVM: Recoverable Virtual
Memory User Manual, April 1991. 4.2.1

[OMG01a] Object Management Group. CORBA Event Service Specification
v.1.1., March 2001. 2.3.4, 2.3.4

[OMG01b] Object Management Group. CORBA Notification Service Specifi-
cation v.1.0., March 2001. 2.3.5

106

http://www.inter-mezzo.org
http://www.codeproject.com/useritems/solutionlcenotification.asp
http://www.codeproject.com/useritems/solutionlcenotification.asp
http://www.cs.hut.fi/~ctl/3dm/thesis.pdf
http://www.cs.hut.fi/~ctl/3dm/thesis.pdf
http://citeseer.nj.nec.com/437791.html
http://www.microsoft.com/msmq/downloads/devcon99.ppt
http://www.microsoft.com/msmq/downloads/devcon99.ppt
http://www.microsoft.com/msmq/MSMQ3.0_whitepaper_draft.doc
http://www.microsoft.com/msmq/MSMQ3.0_whitepaper_draft.doc
http://www.mobiliti.com/PDF/iDESPOverview30.pdf
http://www.mobiliti.com/PDF/iDESPOverview30.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[OMG02a] Object Management Group. Joint Initial Submission regarding the
JMS Notification Service RFP, 2002. telecom/02-01-02. 2.3.3

[OMG02b] Object Management Group. Management of Event Domains Spec-
ification, August 2002. Final Adopted Specification. 2.3.6

[OR02] Eamon O’Tuathail and Marshall T. Rose. Using SOAP in
BEEP, January 2002. [Internet-Draft] http://www.ietf.org/
internet-drafts/draft-etal-beep-soap-06.txt. 3.4.3

[OSW] Oceanstore web site. http://oceanstore.cs.berkeley.edu. 4.4,
4.4.4

[P+83] D.S. Parker et al. Detection of mutual inconsistency in distributed
systems. IEEE Transactions on Software Engineering, 9(3), May 1983.
†

[Pab02] C. Pabla. SyncML intensive — A beginner’s look at the
SyncML protocol and procedures. IBM developerWorks, April
2002. http://www-106.ibm.com/developerworks/wireless/
library/i-syncml2/. 4.6

[Pla99] David Platt. The COM+ event service eases the pain of publish-
ing and subscribing to data. Microsoft Systems Journal, Septem-
ber 1999. http://www.microsoft.com/msj/defaultframe.asp?
page=/msj/0999/com+event/com+event.htm. 2.3.10, 2.3.10

[Pri01] Prism Technologies. Notification Service whitepaper, May 2001.
http://www.prismtechnologies.com/English/Products/
CORBA/whitepapers/html/1notification/Notification_
final_may_01.html. (document), 2.3.3, 2.4

[PRR97] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In Pro-
ceedings of ACM SPAA, June 1997. 4.4.1

[PST+97] K. Peterson, M. Spreitzer, D. Terry, M. Theimer, and A. J. Demers.
Flexible update propagation in weakly consistent replication. In
Proceedings of the ACM Symposium on Operating Systems Principles,
pages 288–301, September 1997. (document), 4.5, 4.6, 4.5.2

[R+01a] Bill Ray et al. Professional Java Mobile Programming. Wrox Press,
2001. 2.3.3

[R+01b] S. Rhea et al. Maintenance-free global data storage. IEEE Internet
Computing, 5(5):40–49, September 2001. 4.4, ‡, 4.4.1, 4.4.3, 4.4.4

107

http://www.ietf.org/internet-drafts/draft-etal-beep-soap-06.txt
http://www.ietf.org/internet-drafts/draft-etal-beep-soap-06.txt
http://oceanstore.cs.berkeley.edu
http://www-106.ibm.com/developerworks/wireless/library/i-syncml2/
http://www-106.ibm.com/developerworks/wireless/library/i-syncml2/
http://www.microsoft.com/msj/defaultframe.asp?page=/msj/0999/com+event/com+event.htm
http://www.microsoft.com/msj/defaultframe.asp?page=/msj/0999/com+event/com+event.htm
http://www.prismtechnologies.com/English/Products/CORBA/whitepapers/html/1noti fication/Notification_final_may_01.html
http://www.prismtechnologies.com/English/Products/CORBA/whitepapers/html/1noti fication/Notification_final_may_01.html
http://www.prismtechnologies.com/English/Products/CORBA/whitepapers/html/1noti fication/Notification_final_may_01.html

BIBLIOGRAPHY BIBLIOGRAPHY

[Ros01a] Marshall T. Rose. RFC 3080: The Blocks Extensible Exchange Proto-
col Core, March 2001. http://www.ietf.org/rfc/rfc3080.txt.
3.4.3

[Ros01b] D. Rosenblum. A tour of Siena, an interoperability infrastruc-
ture for internet-scale distributed architectures. In Ground Sys-
tem Architectures Workshop (GSAW2001), February 2001. http:
//sunset.usc.edu/GSAW/gsaw2001/SESSION3/Siena.pdf. 2.3.8

[S+90] M. Satyanaraynan et al. Coda: A highly available file system
for a distributed workstation environment. IEEE Transactions on
Computers, 39(4):447–459, 1990. 4.2

[S+97] M. J. Spreitzer et al. Dealing with server corruption in weakly
consistent, replicated data systems. In Proceedings of the Third
Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom ’97), pages 234–240, September 1997.
4.5.2

[SAS01] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting discon-
nectedness — transparent information delivery for mobile and
invisible computing. In CCGrid 2001 IEEE International Sympo-
sium on Cluster Computing and the Grid, 15-18 May 2001, Brisbane,
Australia. IEEE, May 2001. 2.1, 2.3.9

[Sat96] M. Satyanarayanan. Mobile information access. IEEE Personal
Communications, 3(1):26–33, 1996. 4.2

[Sie99] J. Siegel. An overview of CORBA 3. In Proceedings of the Second
International Working Conference on Distributed Applications and In-
teroperable Systems (DAIS), July 1999. 2.3.4

[SK92] M. Satyanarayanan and J. Kistler. Disconnected operation in the
coda file system. ACM Transactions on Computer Systems, 10(1):3–
25, February 1992. 4.2, 4.7.1

[Sri01] Paddy Srinivas. Introduction to COM+ events, 2001.
http://www.idevresource.com/com/library/articles/
com+eventsintro.asp. 2.3.10

[Ste01] S. Stemberger. Syncing data — an introduction to SyncML.
IBM developerWorks, October 2001. http://www-106.ibm.com/
developerworks/wireless/library/wi-syncml/. 4.6.1

[Sun01] Sun Microsystems. Java Message Service Documentation, June 2001.
telecom/02-01-02. 2.1, 2.3.3

108

http://www.ietf.org/rfc/rfc3080.txt
http://sunset.usc.edu/GSAW/gsaw2001/SESSION3/Siena.pdf
http://sunset.usc.edu/GSAW/gsaw2001/SESSION3/Siena.pdf
http://www.idevresource.com/com/library/articles/com+eventsintro.asp
http://www.idevresource.com/com/library/articles/com+eventsintro.asp
http://www-106.ibm.com/developerworks/wireless/library/wi-syncml/
http://www-106.ibm.com/developerworks/wireless/library/wi-syncml/

BIBLIOGRAPHY BIBLIOGRAPHY

[Syn00] SyncML Initiative ltd. Building an industry-wide mobile data syn-
chronization protocol: SyncML white paper, June 2000. http:
//www.syncml.org/download/whitepaper.pdf. 4.1

[Syn02a] SyncML Initiative ltd. SyncML Representation Protocol, v1.1, Febru-
ary 2002. http://www.syncml.org/docs/syncml_represent_
v11_20020215.pdf. 4.6

[Syn02b] SyncML Initiative ltd. SyncML Sync Protocol, v1.1, February
2002. http://www.syncml.org/docs/syncml_sync_protocol_
v11_20020215.pdf. 4.6, 4.6.1

[SyW] Syncml web site. http://www.syncml.org. 4.6

[Tri99] A. Tridgell. Efficient Algorithms for Sorting and Synchronization.
PhD thesis, Australian National University, 1999. 4.8, 22

[W3C99] World Wide Web Consortium (W3C). WAP Binary XML Content
Format, June 1999. [Note] http://www.w3.org/TR/wbxml/. 3.4.4

[W3C00a] World Wide Web Consortium (W3C). Extensible Markup Language
(XML) 1.0, 2nd edition, October 2000. [Recommendation] http:
//www.w3.org/TR/2000/REC-xml-20001006/. 3.1

[W3C00b] World Wide Web Consortium (W3C). Simple Object Access Proto-
col (SOAP) 1.1, May 2000. [Note] http://www.w3.org/TR/SOAP/.
3.3.1

[W3C01a] World Wide Web Consortium (W3C). XML Protocol Usage Sce-
narios, December 2001. [Working Draft] http://www.w3.org/TR/
2001/WD-xmlp-scenarios-20011217/. 3.3.2

[W3C01b] World Wide Web Consortium (W3C). XML Schema Part 1: Struc-
tures, May 2001. [Recommendation] http://www.w3.org/TR/
xmlschema-1/. 3.1

[W3C01c] World Wide Web Consortium (W3C). XML Schema Part 2:
Datatypes, May 2001. [Recommendation] http://www.w3.org/
TR/xmlschema-2/. 3.1

[W3C01d] World Wide Web Consortium (W3C). SOAP Security Extensions:
Digital Signature, February 2001. [Note] http://www.w3.org/TR/
SOAP-dsig/. 3.3.2

[W3C01e] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1:
Messaging Framework, December 2001. [Working Draft] http:
//www.w3.org/TR/2001/WD-soap12-part1-20011217/. 3.3

109

http://www.syncml.org/download/whitepaper.pdf
http://www.syncml.org/download/whitepaper.pdf
http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf
http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf
http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
http://www.syncml.org
http://www.w3.org/TR/wbxml/
http://www.w3.org/TR/2000/REC-xml-20001006/
http://www.w3.org/TR/2000/REC-xml-20001006/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/2001/WD-xmlp-scenarios-20011217/
http://www.w3.org/TR/2001/WD-xmlp-scenarios-20011217/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/2001/WD-soap12-part1-20011217/
http://www.w3.org/TR/2001/WD-soap12-part1-20011217/

BIBLIOGRAPHY BIBLIOGRAPHY

[W3C01f] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 2:
Adjuncts, December 2001. [Working Draft] http://www.w3.org/
TR/2001/WD-soap12-part2-20011217/. 3.3

[W3C01g] World Wide Web Consortium (W3C). Web Services Description
Language (WSDL) 1.1, March 2001. [Note] http://www.w3.org/
TR/wsdl. 3.2

[Win99] Dave Winer. XML-RPC Specification, October 1999. http://www.
xmlrpc.com/spec. 3.3.1

[Woo] D. Woodhouse, Red Hat Inc. Jffs: The journaling flash file sys-
tem. Presented at the Ottawa Linux Symposium 2001. http:
//sources.redhat.com/jffs2/jffs2.pdf. 4.3.2

[ZKJ01] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Techni-
cal Report UCB/CSD-01-1141, Computer Science Division, U. C.
Berkeley, April 2001. 4.4.1

110

http://www.w3.org/TR/2001/WD-soap12-part2-20011217/
http://www.w3.org/TR/2001/WD-soap12-part2-20011217/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://sources.redhat.com/jffs2/jffs2.pdf
http://sources.redhat.com/jffs2/jffs2.pdf

	Introduction
	Event-Based Systems
	Introduction
	Event Models
	Events
	Event Model
	Routing
	Content-based Routing
	Requirements for Mobile Computing

	Event Systems
	Java Delegation Event Model
	Java Distributed Event Model
	Java Message Service (JMS)
	The CORBA Event Service
	CORBA Notification Service
	CORBA Management of Event Domains
	The Cambridge Event Architecture
	Scalable Internet Event Notification Architecture
	Elvin
	Other Event Architectures
	Discussion

	Conclusions

	XML Protocols
	XML
	Web Services
	Protocols
	History
	Features
	Current State
	Implementations

	XML over Wireless
	Problem Areas
	Different XML Protocols
	Transfer Protocols
	Compression

	Summary

	Synchronization
	Introduction
	Coda
	Storage and Update Model
	Coda as a MDIB
	Practical Issues

	InterMezzo
	Storage and Update Model
	InterMezzo as a MDIB
	Practical Issues

	OceanStore
	Routing to Data
	Update Model
	Mobility and OceanStore
	Practical Issues

	Bayou
	Storage and Update Model
	Mobility Issues
	Deployment Issues

	SyncML
	Deployment Issues

	Adding Intelligence
	Synchronization Policies
	Synchronizing Similar Data

	Delta Transfers
	Conclusions

