
An Aspect-Oriented Approach to Manage QoS
Dependability Dimensions in Model Driven Development

Carsten Köllmann1, Lea Kutvonen2, Peter Linington3, and Arnor Solberg4

1 University of Duisburg-Essen, Germany.
Carsten.Koellmann@s3.uni-due.de

2 University of Helsinki, Finland.

Lea.Kutvonen@cs.helsinki.fi

3 University of Kent, Canterbury, UK.
P.F.Linington@kent.ac.uk

4 SINTEF, Forskningsveien 1, 0314 Oslo, Norway.

Arnor.Solberg@sintef.no

Abstract. Model-driven development approaches commonly use an abstraction
of platform specific features for improving reusability and verifiability of the
core functionality models. However, the core functionality may still be tangled
with features that address important dependability concerns across a design
model – for example features such as security, trust and performance. These
features can commonly be called Quality of Service (QoS) features. This paper
presents an approach for managing several dependability dimensions. We use
aspect oriented and model driven development techniques to separate and
construct QoS independent models, and graph-based transformation techniques
to derive the corresponding QoS specific models.

Keywords: Quality of service, Model driven development, Aspect-oriented
modelling, separation of concern, integration

1 Introduction

Model driven development (MDD) shifts software development from a code-centric
activity to a model-centric activity. Accomplishing this shift entails support for
modelling concepts at different levels of abstraction and transforming abstract models
to more concrete descriptions of software. Model driven development approaches
have emphasized abstraction of platform specific features. For example, the Model
Driven Architecture (MDA™) [1] specifies three abstraction levels: A Computation
Independent Model (CIM) describes the environment and specifies system
requirements; a Platform Independent Model (PIM) describes the parts of a solution
that do not change from one platform to another; and a Platform Specific Model
(PSM) includes descriptions of the parts that are platform dependent.

mailto:Carsten.Koellmann@s3.uni-due.de
mailto:Lea.Kutvonen@cs.helsinki.fi

However, construction of distributed software systems typically involves the
treatment of other dependability dimensions than just the platform dimension. The
Quality of Service aspects of system design such as security, trust, performance and
availability incorporate decisions about organizational policy that then need to be
applied to many different business processes within an enterprise. They frequently
form separate areas of concern in the design process, and techniques are needed to
support this separation and ensure that unnecessary dependencies between the
different sorts of design activities are avoided. Thus activities relating to extending or
updating business processes should not depend in detail on the activities that ensure
that enterprise-wide security or other such aspects are effectively and consistently
managed. Furthermore, Quality of Service aspects of software systems are
dependability concerns that tend to be tangled and cross cut the primary functionality
of the system. Thus, the QoS dependability dimensions add to the complexity of
software system development.

This paper describes an approach for extracting QoS concerns from the initial
design process to provide QoS transparent software specifications and then
introducing QoS support via suitable transformations applied to these to form QoS
specific models. We use aspect oriented techniques for separating the QoS
dependability dimensions. Transformation and model checking are then based on
graph transformation theory.

The principal technologies, concepts and techniques of the approach are described
in Section 2. First the usage of aspect oriented techniques to separate QoS
dependability dimensions is described, and then the pattern matching and replacement
using graphs is presented. Section 3 describes an application of these ideas to an on
line shopping system to illustrate the approach. Section 4 discusses the approach and
related work. Conclusions and further work are discussed in Section 5.

2 Model Driven Engineering with QoS Aspects

Model Driven Engineering (MDE) has increasingly been recognised as a key
technology in providing flexibility and reducing the cost of system maintenance. It is
based on the use of transformations. These transformations can be implemented
within a development tool chain so that it processes design models to derive further
designs that are more suited for some target design or deployment environment.

Most of the early applications of the MDE ideas were based on the need to control
steps in a refinement hierarchy. The basic idea was that a transformation applied to an
abstract model would generate a more specific model, based on constraints that were
embodied within the transformation. The transformation is generally required to be
reversible, so that round trip processes can be applied to re-incorporate changes to the
more specific design into the original abstract model. This style of transformation can
be applied to various steps in the refinement chain, although the most emphasis to
date has been placed on the step from Platform Independent Models to Platform
Specific Models, which are defined with regard to whatever concepts of
computational model and platform are selected by the designers of the particular
system.

As we wish to enhance this architecture by separation of QoS dependability
dimensions, we need to incorporate lessons learned from known aspect technologies.
Aspect-Oriented Software Development (AOSD) approaches [2][3][4] provide
mechanisms for encapsulating cross-cutting features.

In particular we base the approach on the aspect oriented modelling framework
(AOMDF) [5], where cross-cutting features are modelled separately as aspects and
composed with the primary design model, to form integrated models. In AOMDF a
design is expressed in terms of the following artefacts: i) a primary model that
describes the business logic of the application, ii) a set of generic aspect models,
where each model is a generic description of a crosscutting feature, iii) a set of
bindings that determine where in the primary model the aspect models are to be
composed, and iv) a set of composition directives that influence how aspect models
are composed with the primary model.

Based on this framework we introduce an architecture that provides transparency
of QoS dimensions. In this architecture the primary model is the specification of the
QoS independent model of the system, while separate aspect transformations are used
to provide a transparent method to refine the model and so introduce the selected set
of QoS aspects. Each QoS aspect is modelled as a separate aspect model, while the
primary model describes the QoS transparent model and describes the business logic
of the system. In Fig. 1a the QoS independent model (QoSIM) is a system
specification where the QoS aspects are transparent. The QoS specific model
(QoSSM) is derived through a chain of transformations composing a selected set of
QoS aspects. The approach supports transparencies with respect to a set of
dependability dimensions such as security, availability, trust and performance.

QoS-aspect 1

QoS aspect 2

…

QoSIM

QoSSM

+
+

…
QoS aspect n

+
a) b)

Security aspect 1 SIM

SSM

+ Security aspect 2

+

Security aspect 1 SIM

SSM

+ Security aspect 2

+

Fig. 1. a) conceptual architecture, b) transforming a security independent model to a security

specific model.

A QoS dependability dimension can include several aspect models Fig. 1b shows
an example where a security specific model (SSM) is derived from a security
independent model (SIM) by composing it with two security related aspects.

One of the key elements in the design is the way of declaring the necessary
bindings between elements in the aspect model and elements in the base application
model. The elements matched may be any appropriate modelling elements, such as
classifiers or relationships, and may be constrained by assertions about their required
properties. Other elements in the aspect model that do not correspond directly to
elements in the base model are abstracted out when forming the matching pattern. The
transformation that results from this binding process will match the appropriate bound
elements in the base model and use the rest of the template information either to

replace them with a refined structure or to add additional properties or supporting
elements to them. The resulting model is therefore consistent with both the base
application model and the aspect model being applied.

For the matching step, we utilize pattern matching and replacement using graphs
for which graph transformation [7] provides a suitable formal approach. Its
descriptive formalization and visual way of defining transformations supports graph
modifications in an intuitive way.

Graph transformation is based on a graph grammar that includes an initial graph
and transformation rules. These rules have a left hand side defining the structure that
is to be modified, called a match, and a right hand side defining the target structure.
The application of a rule can be guarded by preconditions, avoiding the
transformation for defined contexts. Furthermore, dependencies between
transformation rules can be analysed by using critical pair analysis [8] or consistency
checks.

Adapting graph transformation to MDA the initial graph can be instantiated as a
UML diagram and the transformation step can be interpreted as the weaving of an
aspect. The application of graph transformation to different parts of UML is currently
ongoing work [9], covering different issues like coherent change introduction in
different diagram types, or verification of state diagrams.

Graph rules are used for the execution of the actual transformations. The syntax of
the QoSIM and of the QoS aspect describing the objects and connectors of the base
model are used to bind the common graph structure and rules to concrete elements.

The components that realize the chosen QoS aspect are defined at the right hand
side of the rule while the join points where these are inserted are described at the left
hand side.

LHS

C1

C2

RHS

{secure}
C1

C2

SA

C3

{non secure}

C3

Fig. 2. Rule introducing a security component

To govern the pattern matching, tags and the categorization of model elements can
be used. Fig. 2 presents a graph rule that inserts a security aspect between two
components representing the join points of a given base model. The security aspect is
inserted between C1 and C2, since the edge between them is categorized as a secure
connection. The connector between C1 and C2 has been deleted and replaced by the
new connections to the aspect.

If several rules are to be applied in sequence, care needs to be taken that there are
no unintended interactions between them. Various kinds of analysis can be applied to
do this. For example, critical pair analysis can be used to detect cross-links between
rules and show which elements are affected, and to assess the significance of the
impact. Deletion of an element by a rule when that element is referenced by a
subsequent rule is likely to have serious consequences, since application of the later
rule is likely to fail. Rules that exchange, or otherwise modify, elements used later on

may not cause an immediate failure, but may change the properties of the system in
such a way as to undermine its intended behaviour. For example, if a performance-
related aspect validates delay bounds for part of a system, and a security aspect
subsequently introduces some costly encryption step within it, the performance
guarantees derived earlier may be invalidated in a way that is not immediately
detected. In general, guidance will be needed from the system architect to determine
the priority, and hence the sequence of application, to be applied to any conflicting
aspects, or conflicting features within an aspect.

3 Illustrative case study

The following case study illustrates our approach in more detail. The example system
used is an online shop that includes a billing system and delivery chain, as shown in
Fig. 3. A customer orders items from the online shop and pays by credit card, and the
credit-worthiness is confirmed by a credit check service. The order is then processed
by the shop and a corresponding order is sent to the warehouse. The Transport Service
organizes and schedules the shipment to the customer.

Fig. 3. Shopping application, QoS independent

The development process starts with the development of the QoS independent
shopping application (Fig. 3). The primary composite structure model describes the
main components, their composites and their interaction connectors. The connectors
between the main components are associated with security constraints identifying the
required security category needed for the actual interaction (for example
{secCat=financial}). During transformation these constraints are used to identify the
points where security aspects should be applied and also, which security aspect to
employ.

Two security aspect models are then acquired. Aspect models will typically be
specified once for a particular domain and reused across applications. Thus, aspect
models will in general be acquired from an aspect model library. The authorization
and encryption aspect models are shown in Fig. 4. The aspect models consist of
template forms of composite structure diagrams, expressed using a template variant of
the Role Based Meta-Modelling Language (RBML) [6].The aspect templates are
instantiated by binding template parameters to values. In RBML, parameters are
introduced by the symbol “|”. When the role binding is specified the security

independent model is composed with the aspect models according to specified
composition rules and algorithms.

Fig. 4. Security aspects: Authorization and encryption

In our example, security categories are associated with the connectors between the
main components, giving a business-oriented statement of the nature and sensitivity
of the actual interactions at these points. These categories are used during the
transformation to identify which security aspects need to be applied at each point. The
categories are: i) financial: carries interactions that relate to financial status and
commitment: they need to be private and non-reputable, ii) business: carries
commitments for supply and payment; they need to be private, but carry their own
credentials, so can be taken at face value, iii) delegation: links business partners
where non-repudiation is still important, but the interactions are within the virtual
organization, so that privacy is already guaranteed, and iv) information: the
interactions carried are in the public domain.

The following composition rules are applied:
if (secCat = delegation or secCat = financial)
 composeAuthorizationAspect()
if (secCat = business or secCat = financial)
 composeEncryptionAspect()
The actual matching of components and the transformation are done by graph

rules. To map the components into graph rule components, each bi-directional arrow
has to be replaced by a pair of arrows, with one pointing in each direction. The types
of the connectors and component and their attributes have to be mapped to node and
edge types and their attributes. The graph transformation rules are derived from the
aspect models. Fig. 5 shows the graph transformation rule for the encryption and
authorization aspects.

Rules can be derived from a given aspect model in the following way (taking the
authorization aspect as an example). First, components that have to be included in a
match are identified. The primary correspondence here is with any edge having a
securityCategory attribute, since this is what is referenced in the composition rules,
but there are also consequential correspondences with nodes linked by such edges
(giving placeholders C1 and C2). Next, the right hand side of the transformation rule
is constructed. This starts by identifying those elements of the match that are to be
preserved (C1 and C2 again) and then adds the necessary pattern functionality to them
(here by introducing interceptor objects |AuthorizationClient and
|AuthorizationServer, between C1 and C2). In general, it may also involve merging
functions and attributes from the elements matched and the pattern elements, and
renaming the resulting elements to reflect their new broader role. This can often result
in optimizations that combine closely coupled objects (as with the replacement of C1
and AuthorizationClient by a combination called C1_name_secured). Finally, new

components are created (such as AuthRepository) and linked to the appropriate points
in the structure. This optimization rule can be expressed as shown in Fig. 6.

LHS
System 1

C1

System 2

C2

RHS
System 1

C1

System 2

C2
{secCat}

Encryption Decryption
{secCat}

LHS
System 1

C1

System 2

C2

RHS

System1

C1

System2

C2{secCat} AuthClient AuthServer{secCat}

AuthRep

Fig. 5. Graph rules for encryption and authorization insertion

LHS RHS

C2_Secured

AuthRep

C2AuthServer

AuthRep

Fig. 6 Optimization rule

Executing this rule the arbitrary components C1 and C2 are preserved, while the
connecting edge is deleted. To introduce the authorization aspect a client and a server
component are inserted and connected to each other and the existing components. The
security category of the old connection is preserved and attached to the new external
connections. Applying this rule to all the matches found, the authorization mechanism
is introduced for every connection between two systems. It is assumed that the
transformation engine applying the rules in Fig. 5 will not do so when the structure is
already equal to the structure of the right hand side, so the aspect is introduced just
once for every external connection.

Fig. 7. Composing security specific aspects

In general nodes are merged in a graph transformation rule by deleting the old
nodes while preserving the information included in their attributes. Thereafter a new
node is created including this preserved information. Of course not all information has
to be preserved, only that which is needed. The edges connected with the old nodes

are also deleted while the information is preserved. New edges can be generated from
this information, if necessary.
In Fig. 7, the optimized security specific model resulting from the transformations
described above is given. This is a view of the implementation level, where the new
edge between C1 and the authorization client represents a proxy call, and is therefore
implicit. The resulting modified components include both their original functionality
and the added operations given by the aspect model. E.g., OrderManager_secured
combines the functionality of OrderManager and AuthorizationServer.

4 Discussion and related work

One of the problems in managing a complex set of QoS dimensions is that there may
be unintended interdependencies between the transformations applied. We identified
earlier that this implies a need to check for conflicts and select a sequence for the
transformation steps that minimizes the problems. There may be a need for the system
architect to be involved in determining the safest sequence of transformations, but this
intervention is itself a possible source of errors.
What is needed if the system is to be well behaved is for the later transformations in
the chain to honour obligations on them not to change properties guaranteed by earlier
transformation steps. This implies a piece of record keeping too complex to be
performed reliably by a human user, and so some automated support is needed. There
are two alternatives; either the later transformations must be analysed to prove that
they do not change the properties of interest, or the model generated must include
internal checks that the property achieved does remain true.
The first of these two options is hard to achieve, and, in all but the simplest cases, is
likely to be undecidable. The second option seems more attractive. It requires the
target of each aspect model to include not just the desired structure, but also some
assertion to be generated that remains true as long as the desired properties are
achieved. This is still not trivial, but is a simpler task than proving properties of the
transformation steps.

There are several approaches focusing on separation of dependability concerns at
the implementation level [2][11][3][10]. Even if some of the implementation level
mechanisms and principles can be utilized at the model level (for example the notion
of a primary model is similar to the base hierarchy in AspectJ), there are differences.
Compared to AOP approaches our models are independent of any programming
language and the aspects models can be implemented using a non-AOP language.
Furthermore, through usage of graph transformation our approach in principal allows
composition of two aspect models or even two primary models. This generality is
similar to Hyperspaces [3]. Hyperspaces is an extension of subject oriented
programming [10], used to achieve multi-dimensional separation of concerns at the
implementation level. This is a generic separation of concern approach where any
slice can be defined and composed with any other. The hyperslices are composed to
obtain the overall system. In our approach the composition procedure depends on the
model element properties specified rather than just the names of model elements,

primarily to govern the composition at a finer grained level and because not all UML
model elements are named elements.
Krishna et al. [12] presents and approach for pruning unnecessary actions to better
meet the QoS requirements. The pruning is based on the expected context of different
products in a product line. Our approach facilitate similar pruning at the model level
when deriving the QoS specific model level through fine tuning of composition. Fine
tuned composition directives can be applied through the graph based pattern matching
and categorization of model elements (e.g., the secCat categorization of connectors).
Categorization can be defined based on context to avoid unnecessary actions, for
example by differentiating what actions are necessary for different parts of the system
for particular contexts

Gray et al. [14][15] use aspects in domain-specific models that specifically target
embedded systems. Requirements, architecture and the environment of a system are
captured in the form of formal high-level models that allow representation of
concerns. Their research is part of Model-Integrated Computing (MIC) and extends
the scope and usage of models such that they form the backbone of a development
process for building embedded software systems. The work in our research can
complement theirs by providing UML based approach for representing aspects.

In [16], Burt et al. explore how QoS requirements can impact decisions related to
the transformation from platform-independent models in UML to platform-specific
models in IDL. It complements our work but does not address how QoS requirements
can be integrated in a UML specification and how they should be resolved or refined
in model transformations.

5 Conclusions

Separation of concerns is recognized as a key principle to cope with complexity in
software development. In this paper we have presented how to use model driven and
aspect oriented techniques for the separation of QoS dependability dimensions. The
approach presented provides a more flexible view than the single platform view
traditionally provided in MDE frameworks like the MDA.

The introduction of QoSIM and QoSSM enables user defined QoS transparencies
and supports separation of different sorts of QoS design activities from the design of
the primary functionality. A chain of transformations is performed to introduce the set
of dependency dimensions. This approach includes a conceptual model providing
transparency of the QoS dependability dimensions. The transparencies are provided
through abstractions similar to the platform abstraction. Transformations are used to
carry out a refinement embodying a set of design choices related to the management
of QoS aspects such as security, availability and performance.

In further research we will continue investigating how to handle conflicts when
composing interrelated aspects and also the challenge of ensuring the preservation of
properties discussed in the previous section. This challenge is related to the feature
interaction problem, and we will base our research on results published in this area.
We will also work further on ensuring consistency between behavioural and structural
model views and how to achieve this using graph transformations.

Acknowledgments. The work presented in this paper has been carried out as part of
the InterOP project, FP6-508011 and MODELPLEX project IST 34081. We would
like to express our gratitude towards the InterOP and MODELPLEX consortium and
the Commission for their valuable support.

References

1. OMG, MDA™ Guide v1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf
2. Kiczales. G., Lamping, J. Mendhekar, A., Maeda, C., Lopes, C., Loingier, J., Irwin, J.:

Aspect-Oriented Programming. Proc. of the European Conference on Object-Oriented
Programming, Lecture Notes in Computer Science, Vol. 1241 (1997).

3. Ossher, H., Tarr, P.: Using Multidimensional Separation of Concerns to (Re)shape
evolving Software, Communications of the ACM, Vol. 44, No. 10 (2001), 43-50

4. Ray, I., France, R., Li, N., Georg, G.: An Aspect-Based Approach to Modeling Access
Control Concerns, Journal of Information and Software Technology, Vol. 46, No. 9
(2004), 575-587

5. Solberg Arnor, Simmonds Devon, Reddy Raghu, France Robert, Ghosh Sudipto,
Aagedal.Jan Øyvind Developing Service Oriented Systems Using an Aspect Oriented
Model Driven Framework In the International Journal of Cooperative Information
Systems (IJCIS), Volume 15, No 4, December 2006, pp. 535-564, © World Scientific
Publishing Company

6. R. B. France, D. Kim, S. Ghosh, and E. Song, A UML-Based Pattern Specification
Technique. IEEE Trans. on Software Eng., Vol. 30, No. 3 (2004), 193–206.

7. Hartmut Ehrig, Gegor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph Transformation, Vol.2:
Applications, Languages and Tools. World Scientific, Signapore, 1999

8. P. Bottoni, A. Schurr, G. Taenzer, Efficient Parsing of Visual Languages based on Critical
Pair Analysis and Contextual Layered Graph Transformation. Tech. Report si-2000-06,
University of Rome, 2000

9. Paul Ziemann, An Integrated Operational Semantics for a UML Core Based on Graph
Transformation, Logos, Berlin, 2006

10. H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal, “Specifying subject-oriented
composition,” Theory and Practice of Object Systems, Wiley and Sons, vol. 2, no. 3, 1996.

11. Batory, D. and O’Malley, S. The design and implementation hierarchical software systems
with reusable components. ACM Software Engineering and Methodology (Oct. 1992).

12. Krishna, A. S, Gokhale A. S., Scmidt D. C.. Context-Specific Middleware Specialization
Techniques for Optimizing Software Product-line Architectures, Eurosys’06 April 18-21.
ACM 1-59593-322-0/06/0004, 2006.

13. I. Jacobson. Case for Aspects - Part I. Software Development Magazine, pages 32-37,
October 2003.

14. J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale and B. Natarajan, "An Approach
for Supporting Aspect-Oriented Domain Modeling," in Proceedings of the 2nd Intl.
Conference on Generative Programming and Component Engineering (GPCE'03), Erfurt,
Germany, Sept. 2003

15. J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling crosscutting constraints in domain-
specific modeling. Communications of the ACM, 44(10):87-93, October 2000.

16. Burt et. al, “Quality of Service Issues Related to Transforming Platform Independent
Models to Platform Specific Models”, Proceedings of EDOC 2002, Lausanne, Switzerland

