DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A
REPORT A-2013-3

A Model-Driven Approach to Service Ecosystem
Engineering

Toni Ruokolainen

To be presented, with the permission of the Faculty of Science of the
University of Helsinki, for public criticism in Auditorium XIV, Univer-
sity of Helsinki Main Building, on 22 February 2013 at noon.

UNIVERSITY OF HELSINKI
FINLAND

Supervisor
Lea Kutvonen, University of Helsinki, Finland

Pre-examiners
Jodo Paulo A. Almeida, Federal University of Espirito Santo, Brazil
Antonio Vallecillo, Universidad de Mdlaga, Spain

Opponent
Marten van Sinderen, University of Twente, Netherlands

Custos
Sasu Tarkoma, University of Helsinki, Finland

Contact information

Department of Computer Science

P.O. Box 68 (Gustaf Hillstromin katu 2b)
FI-00014 University of Helsinki

Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright (©) 2013 Toni Ruokolainen

ISSN 1238-8645

ISBN 978-952-10-8620-5 (paperback)

ISBN 978-952-10-8621-2 (PDF)

Computing Reviews (1998) Classification: D.2.1, D.2.11, D.2.12, 1.6.5
Helsinki 2013

Unigrafia

A Model-Driven Approach to Service Ecosystem Engineering
Toni Ruokolainen

Department of Computer Science

P.O. Box 68, FI-00014 University of Helsinki, Finland
Toni.Ruokolainen @cs.Helsinki.FI
http://www.cs.helsinki.fi/Toni.Ruokolainen

PhD Thesis, Series of Publications A, Report A-2013-3
Helsinki, February 2013, 242 pages

ISSN 1238-8645

ISBN 978-952-10-8620-5 (paperback)

ISBN 978-952-10-8621-2 (PDF)

Abstract

The passage from monolithic, product-driven business models to networked and
service-based business has given rise to the emergence of service ecosystems. A
service ecosystem is a socio-technical complex system that enables service-based
collaborations between entities such as enterprises, institutions or individuals.
Service ecosystems may emerge spontaneously due to a common interest or de-
mand, or as a result of long-term strategic planning. Examples of service ecosys-
tems include software ecosystems, electronic business networks, cloud computing
platforms and social networking platforms. The emergence of service ecosystems
has been driven especially by technological developments and innovations. Ad-
vancement in areas such as service-oriented computing and cloud computing has
provided foundations for implementation and operation of contemporary service
ecosystems.

Contemporary service ecosystems are now challenged especially on two fronts.
On one hand, networked business and networked business models require sup-
port especially for efficient business decision making, opportunistic and flexible
business networking and service ecosystem governance. Such activities require
explicit knowledge about the capabilities and other characteristics of service eco-
systems. On the other hand, the visions of Internet of Things and Internet of Ser-
vices necessitate means for efficient, on-demand establishment of domain-specific
service ecosystems, as well as loosely coupled connectivity and interoperability
both in and between distinct service ecosystems. Due to the implicit nature of
contemporary service ecosystem architectures, and technology-driven engineer-

iii

v

ing processes the current service ecosystems are at risk to become yet new tech-
nological and conceptual silos.

The current technology-driven approaches for establishing service ecosystems are
infeasible to meet these challenges. From an engineering perspective, there is
an evident lack of a service ecosystem engineering discipline. The prevailing
technology-driven approaches stress the implementation and operation of service
ecosystem infrastructure while neglecting analysis and design of service eco-
systems as holistic systems. Consequently, service ecosystems are established
based on implicit and technology-dependent architectures and design principles.
Such ad hoc service ecosystems suffer from reduced longevity due to technology-
dependent designs, as well as interoperability problems and inflexible governance
practices due to ambiguous ecosystem architectures. There is a need for a systems
engineering discipline which provides means for analysis, design, instrumentation
and operation of service ecosystems.

From a business perspective, the current approaches for service ecosystem estab-
lishment do not provide sufficient support for ecosystem sustainability. Sustain-
ability is defined as a quality of a service ecosystem to support continued viabil-
ity. The viability of a service ecosystem can only be established if the concerns of
stakeholders, e.g. service providers and service engineers, are feasibly addressed
during the service ecosystem engineering life cycles. For example, service pro-
viders must be provided with means for service contracting and bundling while
service engineers must be provided with facilities that enable well-advised and
efficient service production. Guaranteeing continuation of ecosystem viability
necessitates e.g. preservation of member autonomy and dynamic business service
collaboration capabilities for allowing efficient utilization of core competencies
and exploitation of new business opportunities.

This thesis proposes service ecosystem engineering as a novel systems engineer-
ing discipline for enabling a transition from contemporary ad hoc service eco-
systems to sustainable ones. Such a transition is required for supporting modern
networked business practices and the “services everywhere” vision. The service
ecosystem engineering discipline is realized with a model-driven approach. The
approach facilitates establishment of sustainable service ecosystems where ser-
vice ecosystem viability is achieved by addressing the characteristic concerns of
ecosystem stakeholders.

Service ecosystem engineering is defined as a systems engineering life cycle
which comprises phases of ecosystem analysis, design, instrumentation and oper-
ation. The model-driven approach for service ecosystem engineering is based on
a holistic conceptual model of service ecosystems, which in itself supports service
ecosystem analysis. The conceptual model is formalized as a meta-model which
enables further design and utilization of explicit service ecosystem architecture
models. The conceptual model and the meta-model provide foundations for the
Service Ecosystem Architecture Framework (SEAF), which enables service eco-
system architecture analysis and design. SEAF is implemented over a commercial
UML-modelling tool. Finally, a model-driven methodology for service ecosystem
instrumentation is defined. Service ecosystem instrumentation denotes delivery of
the infrastructure necessary for enabling the operation of the ecosystem. Service
ecosystem instrumentation may involve for example implementation of infrastruc-
ture services and engineering tools, and configuration of middleware platforms.
The methodology utilizes the architecture models and model-driven engineering
practices for instrumentation of domain-specific service ecosystems. In addition,
service ecosystem architecture models can be applied for service ecosystem gov-
ernance approaches, as well as for establishing interoperability and predictability
of ecosystem operation.

The impact of this work is two-fold. First of all, the results of this work facilitate
rigorous engineering of sustainable service ecosystems. Enabling analysis and
design of service ecosystems as holistic systems decreases the risks associated for
example with technology dependency and migration. Explicit service ecosystem
architectures enable efficient analysis techniques, e.g. assessment of service eco-
system maturity with respect to local criteria, to support business decision making
when joining and operating in service ecosystems. Moreover, service ecosystem
architecture models are utilizable for model-based interoperability approaches, as
well as for supporting service ecosystem governance.

Secondly, added value and utility is provided for service ecosystem stakeholders.
Ecosystem members are delivered with means for efficient utilization of core com-
petencies, opportunistic and flexible business networking, supporting progressive
business environments, and efficient business decision making. As demonstrated
in the evaluation part of this thesis, these activities are addressed by the approach
in service ecosystem engineering life cycles.

vi

Computing Reviews (1998) Categories and Subject
Descriptors:

D.2.1 Requirements / Specifications: Methodologies

D.2.11 Software Architectures: Domain-specific Architectures
D.2.12 Interoperability

1.6.5 Model Development

General Terms:

service ecosystems, service ecosystem engineering, model-driven engineering,
service ecosystem sustainability, open service ecosystems, service-oriented
computing

Additional Key Words and Phrases:
architecture framework, meta-modelling, model-driven methodology, systems
engineering, service ecosystem meta-model, foundational ontology

Acknowledgements

This book was written within a rich and complex socio-technical ecosystem. Now
that the work is done I want to thank all the people involved in this co-creation
experience.

First of all, I would like to thank my supervisor Lea Kutvonen for being patient
and visionary enough to let me find my own path as a researcher. I especially
appreciate the discussions that have happened at the “meta-level”, providing me
guidance how to proceed both methodologically and as an expert on our field
that is a strange mixture of computer science, information systems, mathematics,
economics and sometimes even philosophy.

I would like to thank all the former and current CINCO members for all the
support and discussions. I feel especially lucky that I have had the opportunity
to have really inspiring talks with my colleague Tuomas Nurmela. His industrial
expertise and knowledge of economics and service business has certainly had an
effect on my thinking along the way. I hope that our collaboration will carry on.

I have had the pleasure of working at the best computer science department
in Finland. I am grateful for all the support I have had from the Department of
Computer Science. While I have not been the most talkative person in the coffee
room I have really enjoyed the off-topic discussions while enjoying a break from
deep thinking or sometimes even agonizing verbalization of thoughts.

I thank my pre-examiners, Jodao Paulo A. Almeida and Antonio Vallecillo, for
their valuable feedback and encouraging comments. Their expertise shows in the
book especially in enhanced comprehensibility and transparency of the contribu-
tions. I am honored to have the opportunity to defend my thesis in front of my
assigned opponent, Marten van Sinderen, whose long research career especially
in the area of specification and modelling of distributed systems shows also in this
book.

I am blessed to have an extended family whose support has enabled me to pro-
ceed on my research career. They have taken especially good care of my daughter
Aada who has taught me more that I can ever teach her back. She has taught me
especially about sincerity, presence and joy of life. I am also grateful to all the
other teachers I have had, and still have, in my life. You have shown me valuable

vii

viii

things about myself and the world around us. And of course, I am thankful to all
my friends who I have had the honour to grow up and have fun with.

Finally, I would like to express my eternal gratitude to my late mother who
brought me up to appreciate the simplicity of life.

Raasepori, 27 January 2013
Toni Ruokolainen

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
22
23

3.1
32
33
34
3.5

3.6

Emergence of service ecosystems
Engineering a home-automation service ecosystem
Identifying the challenges
Research questions
Research approach and contributions
Related researchareas
Structure of the dissertation
Research history

Sustainable service ecosystems

Elements of service ecosystems
Service ecosystem stakeholders
Defining ecosystem sustainability
2.3.1 Requirements for service ecosystem viability
2.3.2 Establishing continuation of viability

A meta-model for service ecosystems

Design principles for the meta-model
Modelling practices and conventions
Foundations for service ecosystem modelling
Service ecosystem architecture descriptions
Ecosystemmodel L.
3.5.1 Ecosystem capabilities
3.5.2 Ecosystemdomains.,
3.5.3 Ecosystemlifecycles
Domain ontology model
3.6.1 Top-levelconcepts
3.6.2 Contracting concepts oo
3.6.3 Service ecosystem entities

ix

10
14
14
20
21
22

25
26
28
30
30
36

X CONTENTS

3.6.4 Cooperation facilities
377 Intensionmodel
3.7.1 Support for ecosystem evolution and specialization
3.7.2 Service ecosystem features
3.8 Engineeringmodel
3.9 Knowledge managementmodelo

4 Tools for model-driven service ecosystem engineering
4.1 The Service Ecosystem Architecture Framework
4.1.1 Elements of the architecture framework
4.1.2 Viewpoint specifications
4.2 A model-driven methodology for service ecosystem engineering
4.2.1 Engineering activities
4.2.2 Implementationdetails

5 Validation and evaluation
5.1 BEvalvationapproach
5.2 Evaluation case: Pilarcos service ecosystem
5.2.1 Pilarcos service ecosystem
5.2.2 Modelling Pilarcos service ecosystem architecture
5.3 Evaluationresults L.
5.3.1 Validating the feasibility of the approach
5.3.2 Evaluating the applicability of the approach
5.3.3 Evaluating the support for ecosystem viability
5.3.4 Evaluating the support for continuation of viability
5.4 Comparisontorelatedwork
5.4.1 OASIS SOA Reference Model
5.4.2 Reference Model for Open Distributed Processing
5.4.3 Enterprise Architectures
544 European FP7research
545 Otherrelatedwork, ..

6 Conclusions and consequences
6.1 Summaryofresults
6.2 Analysisoftheresults.
6.2.1 Meeting the research objectives
6.2.2 Satisfying the stakeholder concerns
6.2.3 Demarcationof thethesis.
6.3 Impacts
6.4 Further prospects

References

929
100
100
102

. 134

134
139

145
145
147
147

. 149

166
166
167
168
171
175
179

. 182

188
190
194

199
199
200
201
203
208
210
212

215

Chapter 1

Introduction

The passage from monolithic, product-driven business models to networked and
service-based business has given rise to the emergence of service ecosystems.
A service ecosystem is a socio-technical complex system that enables service-
based collaborations between entities such as enterprises, institutions or individu-
als. Service ecosystems may emerge spontaneously due to a common interest or
demand, or as a result of long-term strategic planning. Examples of service eco-
systems include software ecosystems, electronic business networks, cloud com-
puting platforms and social networking platforms.

This academic dissertation provides model-driven facilities for service eco-
system engineering. The contributions of this thesis support a transition from
contemporary, technology-driven ad hoc service ecosystems to sustainable ser-
vice ecosystems. Such transition is a pre-requisite for reaching the Internet of
Services envisioned by the European Commission. A sustainable service eco-
system is a well-defined, governed system with an explicit architecture that ad-
dresses the fundamental concerns of ecosystem stakeholders, and provides means
for maintaining viability of ecosystem operation.

This Chapter introduces the context, motivation and contents of the disserta-
tion. First in Section 1.1 the notion of service ecosystems is introduced. After that,
in Section 1.2, an application scenario is introduced for clarifying the demand for
the results of this thesis. Section 1.3 identifies research research challenges which
need to be addressed. Motivation and objectives for this work are introduced in
Section 1.4 which formulates the concrete research questions for this dissertation.
The approach for reaching the objectives is described in Section 1.5. Related
research fields are identified in Section 1.6. The structure of the dissertation is
described in Section 1.7. Finally, the research history that lead to this academic
dissertation is described in Section 1.8.

2 1 INTRODUCTION

1.1 Emergence of service ecosystems

The current business landscape is characterized by commoditization and short-
ened product life spans [30]. In an effort towards increasing their revenues in
this landscape, many enterprises are moving to service-centric business models
and especially the utilization of electronic services. Also public organizations
operating in domains like health-care (and government) provide and utilize elec-
tronic services for increasing their coverage, efficiency and customer satisfaction.
Even individuals consume electronic services provided by governmental bodies,
commercial actors, and communities of interest. These services include different
forms of information sharing and social networking services.

The passage from monolithic, product-driven business models to networked
and service-based business has given rise to the emergence of service ecosystems.
A service ecosystem is a socio-technical complex system that enables service-
based collaborations between entities such as enterprises, institutions or individ-
uals. A service is here considered as an autonomous, self-descriptive software
component with a well-defined interface [151] that delivers a set of capabilities
to fulfill the business needs of a client. Service ecosystems may emerge sponta-
neously due to a common interest or demand, or as a result of long-term strategic
planning.

Examples of service ecosystems include software ecosystems, service-based
collaborative networks, and web-application platforms. Software ecosystems have
become popular as a means for producing software applications more efficiently
for heterogeneous clientele with varying requirements. A software ecosystem is
typically based on a software platform provided by an organization. The platform
is then used by internal and external developers for implementation of applica-
tions [22]. Infrastructure services are provided by the platform owner for appli-
cation provisioning and distribution. Software ecosystem strategy is utilized by
companies such as Apple! or Nokia? for establishing communities of developers
and clientele over their own corresponding platforms.

Organizations participate in service-based collaborative networks which are
established to share risks, development costs or intellectual capital, or to com-
plement each others’ skills [157, 27]. A common form of collaborative network
in a business context is a supply chain coordinated and managed by a dominant
player of the domain [157]. In other kinds of scenarios, such as formal joint
ventures, professional virtual communities, or collaborative engineering environ-
ments [101], collaborations need to be formed in a more loosely coupled and
democratic manner. Such collaborative networks can be realized as different kinds

"http://www.apple.com
*Nokia Ovi: http://www.ovi.com/

1.1 Emergence of service ecosystems 3

of virtual organizations [28], for example.

The Web 2.0 (see e.g. [105]) emphasizes provision of Web-based applications
and their mash-ups (see e.g. [176]) over the Internet. Typical Web 2.0 applications
can be classified into social networking and knowledge sharing services, tools and
platforms for end-user content creation, and on-line collaboration tools for spe-
cific tasks [146]. Especially social networking platforms have become popular,
since they typically allow light-weight and easy methods for sharing knowledge
within different communities of interest. Social networking platforms, such as
YouTube?, Facebook* or LinkedIn’, provide infrastructure services for sharing
knowledge, such as video feeds, user profiles, personal information, or competen-
cies of individuals. Additional services, such as discussion forums for users, are
typically provided by social networking platforms.

The emergence of service ecosystems has been driven especially by tech-
nological developments and innovations, such as the Web [173] and Web Ser-
vices [169], and generalization of communication technology. Advancement in
the areas of service-oriented computing and cloud computing has provided foun-
dations for implementation and operation of contemporary service ecosystems.
Service-oriented computing is a paradigm for designing and implementing com-
plex distributed systems [122, 151] that is based on the concept of services. The
service-oriented computing paradigm comprises four conceptual elements: ser-
vices, service descriptions, service composition, and service-oriented architec-
tures (SOA). Services are advertised by publishing their descriptions in service
brokers. Service descriptions are produced by service providers and they char-
acterize the properties and capabilities of corresponding services. Service con-
sumers use service discovery mechanisms provided by a service broker infrastruc-
ture to locate appropriate services. Other kinds of infrastructure services, such as
repositories for domain vocabularies, can also be available in service ecosystems.
Finally, SOA is an architectural style, i.e. a collection of design and implementa-
tion principles, for design and development of service-based systems. The design
principles of SOA seek to attain loose coupling and late binding between software
services.

Cloud computing is an approach where computing, storage and software ap-
plication resources are delivered to customers as services [166]. Cloud computing
is based on abstraction of computing infrastructure providing an elastic capacity
and illusion of infinite computing resources, self-service interfaces, and a pay-per-
use model of resource utilization [166]. The cloud computing approach includes
three service models based on the abstraction level of capabilities and services

3YouTube: http://www.youtube.com
*Facebook: http://www.facebook.com
SLinkedIn: http://www.linkedin.com

4 1 INTRODUCTION

delivered to customers. Infrastructure as a Service (IaaS) refers to a cloud com-
puting service model where the primary capabilities delivered are associated with
computing infrastructure, such as storage and networking. The capabilities are
managed and accessed through a virtual infrastructure manager [166]. The Ama-
zon EC2% is an example of an IaaS-platform. In the Platform as a Service (PaaS)
model the delivered capabilities include programming languages and frameworks,
and structured data. The PaaS services are accessed and managed through a cloud
development environment which provides a platform for service developers to im-
plement and deploy software services. Google AppEngine’ can be considered a
PaaS-platform. The Software as a Service (SaaS) model is characterized by web-
browser accessible consumer services, such as social networks, office suites, or
video processing applications [166].

Contemporary service ecosystems can be characterized as closed systems.
That is, either the set of available services is restricted to specific kinds of services
that are pre-determined before ecosystem operation, or then utilization and com-
position of services is based on manual service discovery and static, development-
time binding of service interfaces. Interoperability between services is established
manually and pre-determined before actual operation; tightly coupled technology-
level integration is used for establishing interoperable service compositions. Cur-
rent service ecosystems typically do not support evolution (i.e. introduction of
new kinds of services and collaboration forms), dynamic service discovery and
composition, or run-time collaboration establishment, all of which are considered
crucial elements in the vision of service ecosystems, service-oriented comput-
ing [122, 123] and Internet of Services [146, 92, 42].

In future, organizations and individuals collaborate within open service eco-
systems for enabling service-oriented networked business. An open service eco-
system is characterized especially by the autonomy of its entities, its evolution
with respect to available services and collaboration types, and dynamic establish-
ment of collaborations. In an open service ecosystem the service providers and
clients are not bound to a shared development platform. Instead, each ecosys-
tem member may utilize methods and technologies that suit their own needs best.
A set of global infrastructure services are then used for service publication and
discovery, as well as dynamic establishment of service-based collaboration net-
works [87]. An open service ecosystem is based on the SOA architectural style
with service brokering and dynamic binding facilities, but requires in addition
more sophisticated infrastructure services for enabling interoperable service col-
laboration.

In open service ecosystems means for sharing and maintaining interoperabil-

® Amazon EC2: http://aws.amazon.com/ec2/
"https://developers.google.com/appengine/

1.2 Engineering a home-automation service ecosystem 5

ity knowledge need to be provided. We define knowledge as explicit and formal-
ized information that is shared within a community of entities having a common
understanding of the information and its purpose. Knowledge is based on the
conceptual framework of the community and is specific for the corresponding do-
main of interest. Interoperability knowledge is utilized in open service ecosystems
for guaranteeing interoperable operation of service-based collaborations. Interop-
erability knowledge includes information about service compatibility with other
services and their applicability with respect to different models of collaboration,
for example. Interoperability knowledge is typically public or shared within a
community of ecosystem members, and it is dependable in the sense that it comes
from trusted sources and is verified with respect to some domain-specific formal
criteria.

Services, service-based systems and other artefacts instrumenting service-
based collaborations are envisioned to be produced in open service ecosystems by
globalised software engineering processes. From such a service-oriented software
engineering perspective this dissertation provides means for sharing engineering
knowledge and for instrumenting service-oriented software engineering frame-
works. Engineering knowledge is characterized by its design and development
time usage and its context dependence: a knowledge fragment can be meaningful
only within a specific phase of an engineering process. Complete, independent
knowledge artefacts are composed from such incomplete knowledge fragments
within knowledge management and software engineering processes. Engineering
knowledge, as opposed to interoperability knowledge, is not necessarily verified
all the time due to its possible incompleteness.

1.2 Engineering a home-automation service ecosystem

The demand for results produced in this thesis are clarified by a running example.
The application scenario involves home-automation for supporting so-called ac-
tive ageing. Active ageing is “is the process of optimizing opportunities for health,
participation and security in order to enhance quality of life as people age. It ap-
plies to both individuals and population groups” [177]. Home-automation is one
of the applications that especially can utilize the Internet of Things [43] for estab-
lishing connectivity between home-appliances, end-user terminals and interfaces,
and services available in the Internet.

In western countries, such as Finland, ageing of the society is nowadays a
great, multi-faceted challenge to be solved. Let us assume that a governmental
body decides that ageing should be addressed in the nation by supporting active
ageing, thus enhancing the quality of living for elderly people. The governmental
body has acknowledged the national strategy for utilizing service-orientation and

6 1 INTRODUCTION

government-supported service platform to increase efficiency and competitiveness
of national companies 8.

The governmental body decides that they should support the emergence of an
open service ecosystem for home-automation. Thus, a working group is created
for analysing the requirements for such a strategy. The working group consists of
selected experts in the domains of service-based business, health-care, and gov-
ernment. Their first task is to consider what kinds of end-user services are critical
in the context of home-automation for active ageing.

The working group creates a vision of the service ecosystem by analysing
for example the business ecosystem surrounding home-automation and the so-
cial system around aging people. The working group identifies different actors in
the service ecosystem vision, such as “Doctor”, “Relative” or “Practical nurse”
and appliances such as “Health monitor”, “Tablet computer” or “Tracking de-
vice”. After that, the working group analyses what kind of service infrastructure is
needed for supporting the delivery of such services, what kinds of actors produce
and consume those services, and are there any third-parties needed for delivering
critical capabilities to the ecosystem. Examples of different engineering activities,
contextual information and stakeholders are illustrated at the top of Figure 1.1.

For the activity of service ecosystem analysis, the working group needs a con-
sistent and complete conceptual framework. Without such conceptual framework
for service ecosystems, the domain-experts may fail to find and address critical
components of the service ecosystem. Especially, dependencies between differ-
ent service ecosystem elements, such as actors, services or life cycles, might get
unnoticed or ambiguous. This thesis defines a conceptual framework for service
ecosystems that is utilizable for service ecosystem engineering; the conceptual
framework is discussed in Chapter 2. With the activity of service ecosystem en-
gineering the service ecosystem vision is turned into a more concrete and unam-
biguous service ecosystem conceptualization by the working group, as illustrated
in Figure 1.1.

After conducting the analysis of the service ecosystem the findings of the
working group are documented as a service ecosystem conceptualization, or ini-
tial design. The working group now addresses a larger community of stakeholders
by issuing a request for comments and proposals. The extended stakeholder com-
munity includes for example additional industry members (potential service pro-
viders), and both governmental and non-governmental organizations. The stake-
holders include for example potential service ecosystem infrastructure providers,
such as telecommunication operators. Based on the feedback on requests a con-
sortium is founded for creating a more formal design of the home-automation

8Such an strategy has been suggested as of 2013 in Finland. The strategy was prepared under a
workgroup of the Ministry of Employment and Economy: http://tem. £i (in Finnish)

http://tem.fi

1.2 Engineering a home-automation service ecosystem

WaWIYSI|GDIS3 UOIIDI0GD||0D)

¥INWNSNOD 3DINY3IS A
NOILVd3dO g

d3dIA0Yd IDIAH3S

a3upuIanob wajsAso1a adalas

sjoo} SuiaauiSus uanp-|9poN

[\ 313¥9DNOD
[buliaauibua 231135
(9 491dey)) uonesado
wa1sAs002 20IAIS S4man.nseliul
LIEYVIETIERTIVELS W2)SAS023 2IAISS
(v 433deyd)

Juswdo|aAap aJn1dnJiselju]

L |
NOILVLNINNYLSNI - Jawdojanap uonpluawafdul
EM_ L__/m uzun_zd_mmw . 321A435 34N12N43S0Ifuf
(¥ 491deyd)
M}MoMaIWeI) 3IN1I3UYY
USISap Wa15As00a a0IAIag
uonuifap
uonpILfIIu3pPI 3|0y
NDIS3d H3TINOH 3 ABojojuo upwog
JUNLONYLSYHANI ubisap 31242 af17
S1¥3dX3 NIVINOQ (z 121dey))
y}Momawely [enidssuo)
SISA|eUE Wa31SAS029 201AI3S
sisAjoup Jo1oy
SISATVNY H3QINOYd wa)shs 21905

IN3LSASOD3 IDINY3S

[apow a1naNY2IY

(g193dey))

sisAjpup uipwoq

w23sAs002 ssauisng

sisA|pbup ssauisng

1007 Buliaauibuz w21sAs023 221NIBS

24njaayyaie

> uonezijendasuod
w21sAs023 921NI3G

UOISIA
w215As023 321NI3G

1Lvdlsav

Figure 1.1: Illustrating service ecosystem engineering.

8 1 INTRODUCTION

service ecosystem for active ageing.

The first task of the consortium is to refine and formalize the service ecosys-
tem conceptualization. As the service ecosystem design is now collaboratively
worked upon in a large community of stakeholders, the effectiveness of design
work and unambiguity of concepts as well as design representation become im-
portant issues. Design work should be conducted with an appropriate modelling
language that supports experts in different domains to share and develop the ser-
vice ecosystem concepts and elements. Without such a design environment, the
work of the consortium become inefficient due to lack of a shared vocabulary and
its representation, and design practices.

To address the above challenges, the consortium decides to use a well-defined
architecture framework for the design work. An architecture framework is an
engineering tool which establishes common practise for creating, interpreting,
analyzing and using architecture descriptions within a specific domain or com-
munity of stakeholders [72]. The consortium utilizes an architecture framework
for service ecosystems to describe the concepts needed in the home-automation
ecosystem (especially what kinds of service concepts are required), defining the
ecosystem life-cycles and processes, and identification of the fundamental roles
the different ecosystem actors may take (e.g. an elder may take the role of “Pa-
tient” or “Resident” in life cycles associated with hospitals or residences, corre-
spondingly).

As illustrated in Figure 1.1, the design activities take the service ecosystem
conceptualization as an input and produce a service ecosystem architecture de-
scription as an output. The architecture framework defined in Chapter 4 is uti-
lizable for supporting such service ecosystem design work. It provides the means
for the creation of service ecosystem designs, as well as utilization of shared mod-
elling practices. The service ecosystem architecture description is made explicit
in a form of an architecture model. The architecture model enables formalization
and sharing of the service ecosystem design among the stakeholders. The founda-
tions for such architecture description models are provided in form a meta-model
which is defined in Chapter 3.

After the consortium is finished with the design work, the resulting service
ecosystem architecture description is used as an engineering input for develop-
ing the infrastructure required for service ecosystem operation. The service eco-
system infrastructure especially includes infrastructure services. Infrastructure
services, such as registries maintaining the collection of offerings for home-au-
tomation services, provide ecosystem members with means for delivery of the
end-user services. The consortia decides that for establishing trust among the
end-users, the elderly people, the infrastructure services should be provided by a
government-lead organization. The governmental organization becomes thus an

1.2 Engineering a home-automation service ecosystem 9

ecosystem provider.

However, the ecosystem provider organization does not have the necessary
skills to develop the infrastructure services. Thus it contacts various service en-
gineers and provides them with the service ecosystem architecture model. The
service engineers use the architecture model to implement the required software
components for the infrastructure services. Engineering tools are utilized by ser-
vice engineers and service providers to design and implement services that con-
form with the requirements and characteristics of the home-automation service
ecosystem. Ecosystem specific engineering tools are now needed for enabling ef-
ficient production of services for the home-automation service ecosystem. The
consortium contacts potential engineering tool providers and gives them access
to the service ecosystem design (or makes the design public). Domain-specific
service engineering methods that meet the regulations and quality requirements
of the home-automation service ecosystem are part of the design; they are used by
both service engineers and engineering tool providers in their activities.

Efficient means for instrumentation of a service ecosystem is a deciding fac-
tor for the success of a service ecosystem. Service ecosystem instrumentation
denotes delivery of the infrastructure necessary for enabling the operation of the
ecosystem. Service ecosystem instrumentation may involve for example imple-
mentation of infrastructure services and engineering tools, and configuration of
middleware platforms with model-driven approaches such as [4]. A model-driven
methodology enabling efficient service ecosystem instrumentation is defined in
Chapter 4.

Finally, when the home-automation service ecosystem for active aging is in-
strumented with the necessary infrastructure, the service ecosystem can become
operational. During the service ecosystem operation different stakeholders require
knowledge about the state and characteristics of the service ecosystem. Knowl-
edge is needed for example to discover appropriate business services, coordination
of collaboration between services, and governance of the service ecosystem as a
whole. Without any means for describing and maintaining such knowledge, ser-
vice delivery in the service ecosystem becomes problematic, thus decreasing its
sustainability and value to stakeholders (especially service consumers).

The model-driven methodology for service ecosystem engineering that is im-
plemented as part of this thesis provides means for establishing a knowledge man-
agement infrastructure for service ecosystems. Moreover, the explicit service eco-
system architecture models can be utilized during service ecosystem operation for
coordinating the collaboration between services, as well as establishing interop-
erability with so-called model-driven interoperability approaches (see e.g. [19]).
Finally, the service ecosystem architecture descriptions can be used for the gover-
nance of the service ecosystem [143].

10 1 INTRODUCTION

The above example illustrates the different kinds of activities associated with
establishment of service ecosystems. In this thesis a methodology is defined
which supports all the different activities discussed above. The methodology is
model-driven: service ecosystem architecture models developed during the anal-
ysis and design activities are utilized for generation of various software engineer-
ing artefacts during service ecosystem instrumentation. Service ecosystem oper-
ation is not discussed explicitly in this thesis; however, the application of service
ecosystem models is discussed briefly in Chapter 6.

1.3 Identifying the challenges

Contemporary service ecosystems are now challenged especially on two fronts.
On one hand, networked business and networked business models require sup-
port especially for efficient business decision making, opportunistic and flexible
business networking and service ecosystem governance. Such activities require
explicit knowledge about the capabilities and other characteristics of service eco-
systems. On the other hand, the visions of Internet of Things [43] and Inter-
net of Services [42] necessitate means for efficient, on-demand establishment of
domain-specific service ecosystems, as well as loosely coupled connectivity and
interoperability both in and between distinct service ecosystems.

The current technology-driven approaches for establishing service ecosystems
are infeasible to address the preceding advancements. Due to the implicit nature of
contemporary service ecosystem architectures, and technology-driven engineer-
ing processes the current service ecosystems are at risk to becoming yet new tech-
nological and conceptual silos. The current situation calls for novel solutions for
establishing and managing service ecosystems. For creating such a solution, three
primary research challenges must be addressed. The challenges are:

1. establishment of a service ecosystem engineering discipline;
2. support for service ecosystem sustainability; and
3. knowledge management in open service ecosystems.

First, from an engineering perspective there is an evident lack of a service
ecosystem engineering discipline. The prevailing technology-driven approaches
stress the implementation and operation of service ecosystem infrastructure while
neglecting analysis and design of service ecosystems as holistic systems. Con-
sequently, service ecosystems are established based on implicit and technology-
dependent architectures and design principles. Such ad hoc service ecosystems
suffer from reduced longevity due to technology-dependent designs, as well as
interoperability problems and inflexible governance practices due to ambiguous

1.3 Identifying the challenges 11

ecosystem architectures. There is a need for a service ecosystem engineering
discipline with an appropriate systems engineering life cycle. Thus, a rigorous
service ecosystem engineering discipline must be provided which enables anal-
ysis, design, instrumentation and operation of service ecosystems. In this context
rigorous engineering discipline means that the involved stakeholders are provided
with means for formalizing architectural designs and knowledge, assessing archi-
tectural designs, as well as tracing design decisions and their implications. Such
arigour is enabled by explicit and formal service ecosystem architecture models.

Secondly, from a business perspective the current approaches for service eco-
system establishment do not provide sufficient support for ecosystem sustainabil-
ity. Sustainability is defined as a quality of a service ecosystem to support con-
tinued viability [143]. Viability of a service ecosystem can only be established if
concerns of stakeholders, e.g. service providers and service engineers, are feasibly
addressed during the service ecosystem engineering life cycles. For example, ser-
vice providers must be provided with means for service contracting and bundling
while service engineers must be provided with facilities that enable well-advised
and efficient service production. Guaranteeing continuation of ecosystem viability
necessitates e.g. preservation of member autonomy and dynamic business service
collaboration capabilities for allowing efficient utilization of core competencies
and exploitation of new business opportunities.

Thirdly, contemporary service ecosystems lack means for establishing the
knowledge management practices required for open service ecosystems. Man-
agement of service ecosystem knowledge comprises the standard activities of
1) knowledge creation, 2) knowledge integration and 3) knowledge dissemina-
tion [46]. Regarding creation of ecosystem knowledge a lot of relevant research
has been conducted. Different kinds of modelling languages have been specified
for definition of services, service compositions, and service-oriented architectures
(e.g. [126, 12, 14]). Methods for creating service engineering artefacts have been
provided in the form of design and development principles [124], reusable service
development patterns [180], and methodological frameworks [94], for example.
Tools have been created for service development purposes which utilize different
approaches, such as the semantic web services approach [78], or model-driven
engineering with UML profiling mechanisms [179].

However, none of the current solutions for creating service-related knowl-
edge consider their usage in service ecosystems but typically address only the
engineering side of service-oriented computing. This academic work provides a
unified framework which enables knowledge creation in open service ecosystems.
The framework provides a methodology and tools for specification of service eco-
system architecture models that specify the features of a service ecosystem as a
whole. The models facilitate knowledge creation and management in the eco-

12 1 INTRODUCTION

system. The service ecosystem architecture models define ecosystem knowledge
artefacts (e.g. service descriptions), infrastructure services (e.g. service discovery
agents) and life cycles. Especially, the models declare explicitly how all these ele-
ments, which are typically addressed in the current state-of-the-art only individu-
ally, are related with each other; such holistic frameworks for service ecosystems
do not exist yet.

Interpretation and utilization of knowledge artefacts is context-dependent in
service ecosystems: for example service descriptions are utilized as implementa-
tion templates during the development phase, and as conformance criteria during
operation. Especially in open service ecosystems it becomes important for knowl-
edge integration purposes to make explicit the relationships between knowledge
artefacts, ecosystem life cycles and their phases, and engineering methods utilized
by service providers. Moreover, in open service ecosystems knowledge elements
need to be mapped against varying domain-specific languages and engineering
processes used in different organizations. For enabling collaborative service en-
gineering between autonomous partners, knowledge integration activities are em-
phasized in the knowledge repository designs developed in this dissertation.

Representational formalization means putting information in a form such that
computational mechanisms can access and interpret it [46]. Formalization of con-
cepts related to service ecosystems has been addressed by research communities in
service-oriented computing, model-driven engineering and service-oriented soft-
ware engineering. However, the research efforts have typically taken a rather
unilateral view on ecosystem knowledge and emphasized either knowledge as an
engineering asset or knowledge as means for providing interoperable service de-
livery and collaboration.

On the contrary, the formalization given in this dissertation emphasizes equally
the engineering and interoperability viewpoints over knowledge management in
service ecosystems. These two roles of knowledge artefacts are unified by involv-
ing at the very core of the framework the principles of ontological and linguistic
meta-modelling, similarly to [125]. Ontological meta-modelling addresses con-
struction of ontologies whereas linguistic meta-modelling is about construction of
so-called system models.

An ontology is a descriptive model used for characterizing the existing world,
the environment and the domain of the system [5]. An ontology is inherently asso-
ciated with with an open-world assumption: anything that is not explicitly stated
remains unknown. Especially, two different systems (models) may satisfy an on-
tology if they differ in areas that are not explicitly mentioned in the ontology [5].
This is in contrast with the system models that completely specify a system within
the limits of the corresponding point of view and the abstraction level used.

System model is a prescriptive model that is used to specify and control the

1.3 Identifying the challenges 13

system under study [5]. A system model gives a specification of the system that
must be conformed to by the corresponding implementations. Model-driven soft-
ware engineering typically emphasizes the use of prescriptive models for facilitat-
ing development processes where abstract models of the system are first designed
and then refined during the process to more concrete models and development ar-
tifacts. A modelling framework for open service ecosystems must provide mech-
anisms for construction of both ontologies and system models to cater for the
dynamic knowledge landscape of open service ecosystems and the prescriptive
nature of knowledge in engineering activities associated with service ecosystems.

Knowledge dissemination includes activities for making knowledge explicitly
available for the knowledge workers to help their problem solving [46]. Knowl-
edge dissemination mechanisms in service ecosystems have to support knowledge
a) accessibility, ») conformance and ¢) coherency. For enabling accessibility of
knowledge dissemination mechanisms in service ecosystems, global repositories
that can be used by ecosystem members for knowledge publication and retrieval
should be provided.

Mechanisms utilizable for knowledge dissemination in service ecosystems
have been addressed especially in research related to semantic web services archi-
tectures [128, 165] and global model management frameworks [20, 21, 104, 24].
Knowledge repositories found in semantic web service architectures and global
model management infrastructures are however quite generic, since they are de-
signed for managing any kinds of ontologies and software models. In service
ecosystems the knowledge repositories need to be more specific to enhance ac-
cessibility, consistency and coherency of knowledge.

From the accessibility perspective especially pragmatic support for shared en-
gineering processes are missing from ontology repositories found in semantic web
services architectures. Global model management repositories, such as the Mod-
elBus infrastructure [20], support shared processes for knowledge creation and
sharing [1]. However, the model management repositories currently concentrate
on providing generic support for software development tool integration and dis-
semination of engineering knowledge between different tools [20, 60]. Conse-
quently, providing a federated service ecosystem knowledge base becomes prob-
lematic, since mechanisms for maintaining inter-repository relationships induced
by domain-specific coherency rules and support for repository interoperation in
service ecosystem life cycles are not addressed.

14 1 INTRODUCTION

1.4 Research questions

The goal for this academic dissertation is to enable a transition from contemporary
ad hoc service ecosystems to sustainable service ecosystems required by modern
business practices and the vision of open service ecosystems. A sustainable ser-
vice ecosystem is a well-defined, governed system with an explicit architecture
that addresses the fundamental concerns of ecosystem stakeholders, and provides
means for maintaining viability of ecosystem operation. For supporting this tran-
sition, a service ecosystem engineering discipline is needed. Moreover, facilities
for supporting service ecosystem sustainability are required. In addition, support
for establishing open service ecosystems must be provided.

The above goal can be elaborated to more specific research questions. The
fundamental research questions contemplated in this thesis are:

1. What are the essential concepts of service ecosystems?
2. How to facilitate rigorous service ecosystem engineering?

3. How to address the requirements stemming from sustainability and the vi-
sion of open service ecosystems in service ecosystem engineering life cy-
cles?

To answer these questions first a conceptual model for service ecosystems is
defined and formalized. Rigorous service ecosystem engineering is facilitated by a
model-driven approach. The requirements stemming from the definition of service
ecosystem sustainability and vision of open service ecosystems are addressed in
different ways in the artefacts designed and developed in this thesis. Especially,
the requirements are used as the criteria for evaluating the applicability and utility
of the artefacts.

1.5 Research approach and contributions

This thesis proposes service ecosystem engineering as a novel systems engineer-
ing discipline. The discipline is realized with a model-driven approach. There
are three main contributions in this thesis. First, the means for a rigorous service
ecosystem engineering is provided. Service ecosystem engineering is defined as a
systems engineering life cycle which comprises phases of ecosystem analysis, de-
sign, instrumentation and operation. Rigour for all these phases is provided with
creation and utilization of explicit service ecosystem architecture models. Sec-
ondly, instruments for supporting service ecosystem sustainability are delivered.
Service ecosystem sustainability is supported with a model-driven approach that

1.5 Research approach and contributions 15

DESIGN

Ecosystem y Service
models d ‘ kNALYSJ ecosystems

Service Ecosystem * Viewpoints

. * Modelkinds
Architecture Framework « Correspondence rules

CONFORMS TO /]

Service Ecosystem Metamodel « Formalization of the conceptual model <“7
* Foundational ontology for ecosystem entities

* Dynamism & variability of conceptualizations
* Enabling constructs for MDE

CONFORMS TO_)
Conceptual model for * Actors, capabilities & artefacts

. « Lifecycles & choreographies
Service Ecosystems « Service kinds & offers

Figure 1.2: Relationships between the service ecosystem conceptual model, meta-
model and the architecture framework.

addresses different stakeholder concerns in the different phases of service ecosys-
tem engineering. Thirdly, means for managing interoperability and engineering
knowledge in open service ecosystems are provided. These contributions in con-
cert enable establishment of sustainable and open service ecosystems.

The approach taken for realizing rigorous service ecosystem engineering is
model-driven. Means for analysing, designing and applying explicit service eco-
system architecture models are defined in this thesis. The approach is founded on
three components: /) a conceptual model for open service ecosystems, 2) a service
ecosystem meta-model, and 3) the Service Ecosystem Architecture Framework.
These artefacts and their mutual dependencies are illustrated in Figure 1.2.

The approach is based on a holistic conceptual model which addresses several
aspects of service ecosystems related to contracting, binding and service engineer-
ing, for example. Concepts defined in the conceptual model enable expression of
service categories, service offers, service ecosystem behaviour, and actors, ca-
pabilities and artefacts, for example. Primary elements of the conceptual model
are characterized in Chapter 2. The conceptual model is inspired by the Pilarcos
framework [87, 85] whose concepts were used as a starting point for creating a
more extensive vocabulary required for describing varying kinds of service eco-
systems and their features. The applicability and completeness of the conceptual
model is evaluated by a case study in Chapter 5.

16 1 INTRODUCTION

The conceptual model for service ecosystems is elaborated and formalized
by the service ecosystem meta-model defined in Chapter 3. The meta-model
validates the feasibility of the conceptual model by providing means for ser-
vice ecosystem architecture modelling. Also, the unified meta-model validates
the consistency (e.g. contains no dangling references or orphan concepts) of the
conceptual model that comprises various viewpoints on service ecosystems. Es-
pecially, the meta-model includes elements which enable application of model-
driven engineering principles [144] over service ecosystem architecture descrip-
tions. The meta-model also addresses ecosystem dynamism and evolution by
defining foundations for expressing dynamism of ecosystem concepts, and spec-
ification of generalization and instantiation relationships. Moreover, the meta-
model provides constructs enabling service ecosystem architecture specialization
through domain-specific variations and extensions of the meta-model. Elements
of the service ecosystem meta-model have been previously described for example
in [135, 141]. The service ecosystem meta-model defined in Chapter 3 extends
this work by providing refinements of the concepts and re-factoring of the meta-
model to better support the needs of sustainable service ecosystems.

The third artefact developed in this thesis is the Service Ecosystem Architec-
ture Framework (SEAF) which is defined in Chapter 4. SEAF is an architecture
framework in the sense of ISO 42010 [72] which is based on the identification
of service ecosystem stakeholders and their concerns. SEAF provides means for
analysis and design of service ecosystem architectures. SEAF is implemented
over a commercial UML-modelling tool. The applicability of SEAF is evaluated
by the case study described in Chapter 5.

Finally, a model-driven methodology for service ecosystem engineering is de-
fined in Chapter 4. The methodology utilizes architecture models produced with
SEAF and model-driven engineering practices for engineering of domain-specific
service ecosystems. The proof of concept methodology validates the feasibility of
the model-driven approach for service ecosystem engineering, as well as serves
as an example for efficient utilization of service ecosystem architecture models.

This academic dissertation does not explicitly address the operation phase of
service ecosystem engineering life cycles. However, the the architecture models
produced with SEAF can be utilized for model-based interoperability (see e.g. [13,
89]) and governance [143] of service ecosystem operation. The applicability of
the architecture models for management and governance of service ecosystem
operation is discussed in Chapter 5 and Chapter 6.

The research methodology utilized follows design science [62]. Design sci-
ence is a research paradigm for artificial, man-made constructs where a set of
artefacts are evaluated with respect to the utility they provide for stakeholders in a
selected domain of interest. In this academic work, a set of artefacts are designed

1.5 Research approach and contributions 17

which address the challenges of engineering sustainable service ecosystems and
the vision of open service ecosystems. The utility of the artefacts is then evalu-
ated with respect to the needs of service ecosystem stakeholders and requirements
stemming from the definition of service ecosystem sustainability. The set of proof
of concept artefacts comprise:

e a conceptual model for service ecosystems;

e a service ecosystem meta-model;

e SEAF; and

e a model-driven methodology for service ecosystem engineering.

All the preceding artefacts are assessed in Chapter 5 with respect to appropri-
ate criteria, that is, conceptual completeness, feasibility, applicability and utility.
Conceptual completeness of the conceptual model is evaluated using a case study
where the Pilarcos service ecosystem is modelled with SEAF. The feasibility of
the approach is validated by assessing the technical implementability of the in-
dividual artefacts. The applicability of the approach is validated with respect to
the practical usability of the artefacts in service ecosystem engineering life cycles.
Finally, the utility of the approach is evaluated with respect to the needs of ser-
vice ecosystem stakeholders, and requirements stemming from the definition of
service ecosystem sustainability defined in Chapter 2.

The impact of this work is two-fold. First of all, the results of this work fa-
cilitate rigorous engineering of sustainable service ecosystems. Enabling analysis
and design of service ecosystems as holistic systems decreases the risks associated
for example with technology dependency and migration. Explicit service ecosys-
tem architectures enable efficient analysis techniques, e.g. assessment of service
ecosystem maturity with respect to local criteria, to support business decision
making when joining and operating in service ecosystems. As demonstrated by
the model-driven methodology, service ecosystem architecture models are utiliz-
able for instrumenting service ecosystems with necessary infrastructure services.
Moreover, service ecosystem architecture models are utilizable for model-based
interoperability approaches, as well as for supporting service ecosystem gover-
nance.

Secondly, added value and utility is provided for service ecosystem stake-
holders. Ecosystem members are delivered the means for efficient utilization of
core competencies, opportunistic and flexible business networking, supporting
progressive business environments, and efficient business decision making. As
demonstrated in the evaluation part of this thesis, these activities are addressed by
the approach in service ecosystem engineering life cycles.

18 1 INTRODUCTION

Added value and utility are provided for the different service ecosystem stake-
holders. Initiating a service ecosystem becomes feasible when a vocabulary and
a methodology for defining such abstract environments is provided. New service
ecosystems can be initiated effectively to serve the purpose of a particular busi-
ness domain, enterprise architecture, or social network, for example. Ecosystem
designers working towards establishing new service ecosystems can utilize the
meta-models for defining conceptual models and infrastructure services for ser-
vice ecosystems.

Implementation and maintenance of the infrastructure services required for in-
strumenting a service ecosystem can be a business of its own, given an appropriate
business model. Operation of such an infrastructure service provider can be mo-
tivated by an access to service usage patterns, or other ecosystem-wide business
intelligence, that can breed new innovations or even be information of direct mon-
etary value for some enterprises. The model-driven approach for service ecosys-
tem engineering enables efficient construction of knowledge repositories for serv-
ing the purposes of the infrastructure service providers. Model transformations
can be exploited for generating the required knowledge repository implementa-
tions. This academic work enables such efficient implementation approaches for
infrastructure services.

Service ecosystem models are used by the ecosystem members for joining
the ecosystem in an interoperable manner. The corresponding knowledge base
is utilized by service consumers for finding appropriate services using the ser-
vice discovery mechanisms. Dually, service providers use infrastructure services
to feed the knowledge base with service offers that advertise the available ser-
vices. The efficiency and dependability of service discovery are one of the most
fundamental quality aspects of service ecosystems, as this function serves as an
interface between service consumers and providers, as well as facilitates collab-
oration establishment processes. From this perspective, the service ecosystem
models provide means for categorization of services; this is definitely needed in
an open service ecosystem to enable efficient service delivery.

Service developers can utilize the service ecosystem models as a unification
mechanism for integrating their development tools, domain-specific languages
and engineering processes to serve the purposes of a specific ecosystem. More-
over, for enabling collaborative software engineering activities, engineering pro-
cesses and engineering artefacts need to be integrated and shared among the par-
ticipants of the domain; the meta-models and knowledge repository designs de-
fined in this academic work are crafted for serving such purposes.

For managing interoperability knowledge in open service ecosystems this dis-
sertation defines domain ontology model for service ecosystems. The domain
ontology model defines concepts for description of service ecosystems. The do-
main ontology model can be specialized for the purposes of specific service eco-

1.5 Research approach and contributions 19

systems. Especially, the domain ontology model suggests a two-level hierarchy
of concepts divided into ontological types and instances. This division enables
dynamic extension of the ontology during the operation of the ecosystem and
moreover, declares a generic typing relationship between fundamental concepts
existing in service ecosystems.

Regarding management of engineering knowledge, this dissertation provides
a comprehensive definition of the elements, entities and features of service eco-
systems. A unifying, holistic framework enabling management of engineering
knowledge is provided. Relationships between functional and non-functional ele-
ments in service ecosystems can be made explicit in this framework, for example.
Corresponding knowledge repositories can be utilized by developers for enabling
global software engineering practices. For enabling collaborative software engi-
neering activities, engineering processes and engineering artefacts need to be in-
tegrated and shared among the participants of the domain; the conceptual frame-
work and its formalization presented in this dissertation are crafted for serving
such purposes.

This academic dissertation induces several other research tracks and questions
to be considered later. Service-oriented software engineering methodologies pro-
vide a whole other discipline which should be studied for providing a complete
service ecosystem, for example. Such work involves development of software-
engineering processes suitable for service-engineering and service-based system
engineering. From a global software engineering point of view, the engineer-
ing processes should be provided with explicit models. The software engineer-
ing processes are envisioned to be composed of modelling workflows that utilize
the knowledge repositories and different stake-holders involved in the engineer-
ing process. Consequently, the knowledge repositories must be provided with
facilities to support such engineering workflows with transaction and notification
support, for example. The meta-models used for defining service ecosystems are
designed in such a way that these future research topics can be weaved into the the
conceptual models easily. More over, the author envisions that the approach pro-
vided can be utilized for efficient production of ecosystem-specific engineering
tools and a coherent families of domain-specific languages.

In service ecosystems the same knowledge repositories and models represent-
ing services, or other relevant artefacts, are needed equally by service-oriented
software engineering tools and infrastructure facilities for service-oriented com-
puting. To fully utilize the potential of this trend, complete tool-chains with con-
sistent concepts and semantics for service-oriented software engineering are still
missing. This dissertation provides a contribution towards this objective in form
of a conceptual model and knowledge repository designs providing facilities for
both design and run-time use of service ecosystem knowledge.

20 1 INTRODUCTION

1.6 Related research areas

This academic dissertation contributes to several research areas. First of all, con-
tributions towards the area of service-oriented computing [122, 151, 123] are
given by elaborating and formalizing concepts of service ecosystems, and thus
services and service-based collaborations in general. The contributions are con-
cretized by the conceptualization and the corresponding meta-models. In addition,
the knowledge repositories developed in this work are utilizable for service dis-
covery and selection when realizing mature service-oriented architectures.

Secondly, this dissertation contributes to the research in service-oriented soft-
ware engineering (SOSE) (see e.g. [156, 160, 97, 124]) by providing means for
supporting engineering knowledge management in globalized environments and
production of ecosystem-specific service development tools. Knowledge reposito-
ries enable engineering knowledge propagation in distributed software engineer-
ing processes, while models defining service ecosystems can be utilized for gen-
erating domain-specific languages and corresponding tools semi-automatically.
SOSE is a software engineering approach which utilises constructs and concepts
conforming with the service-oriented computing paradigm for designing, mod-
elling and developing service-based systems. Corresponding methods used for
production of service-oriented solutions utilize the infrastructure services of the
ecosystem for enabling global software engineering [61] practices.

Finally, this work contributes in the research area of model-driven engineering
(MDE) [144] by providing feasible methods for linguistic and ontological meta-
modelling [8, 54] of models (ontologies) with both static and dynamically exten-
sible concepts. The modelling method is based on deliberate use of meta-model
extension [11] and partial instantiation of meta-models. Model-driven engineering
is a software engineering discipline which considers models as first-class entities
and primary objects of engineering [144]. The main challenges that the MDE
approach pursues to respond to are induced by the complexity and evolution of
computing platforms as well as complexity of system integration and configura-
tion [144]. Domain-specific languages, model transformations, and code genera-
tion are utilised to bridge the semantic gap between problem domains and tech-
nology, and to efficiently produce software artefacts and systems that are “correct-
by-construction” [144].

The approach presented in this academic dissertation shares similarities with
enterprise architectures research. An enterprise architecture can be defined as “a
coherent whole of principles, methods, and models that are used in the design
and realization of an enterprise’s organizational structure, business processes,
information systems, and infrastructure” [88]. There are several enterprise archi-
tecture frameworks developed in the industry and academia, such as The Open
Group Architecture Framework (TOGAF) [118], the US Department of Defense

1.7 Structure of the dissertation 21

Architecture Framework (DoDAF) [161], or ArchiMate [119].

Enterprise architectures are applied for managing the inherent structural com-
plexity of enterprises, enabling enterprise engineering [65] and directing enter-
prise transformations [58]. In comparison, the approach developed in this thesis
is directed towards enabling engineering and governance of sustainable service
ecosystems. Both enterprise architectures and the service ecosystem architectures
discussed in this thesis can be applied for enabling business decision making in
organizations. Enterprise architectures do not typically address collaboration be-
tween autonomous entities, but concentrate on operations within a single enter-
prise; the approach developed in this thesis is founded on the idea of enabling
such loosely coupled collaborations.

1.7 Structure of the dissertation

The remainder of this dissertation comprises five chapters. The conceptual model
for service ecosystems and implications of service ecosystem sustainability are
first elaborated in Chapter 2. The conceptual model describes the elementary
elements of service ecosystems, as well as identifies stakeholders of open ser-
vice ecosystems. Each stakeholder is associated with a set of concerns. These
stakeholder concerns give the foundations for elaborating the notion of service
ecosystem sustainability.

Chapter 3 introduces the meta-model for service ecosystems. The meta-model
elaborates and formalizes the conceptual model. First in the chapter the primary
design principles for the meta-model are identified. After that, the different con-
structs defined in the service ecosystem meta-model are discussed. The discussion
does not detail all the elements included in the meta-model, since there are over
260 classes included in it. However, this chapter provides a sufficiently com-
plete description of the meta-model elements and their characteristics such that
the work can be evaluated.

Tools for model-driven service ecosystem engineering are defined in Chap-
ter 4. The tools include an architecture framework for service ecosystems and
a model-driven methodology for service ecosystem engineering. The architec-
ture framework comprises modelling viewpoints and notations for service ecosys-
tem architecture description. First in the chapter the elements of the architecture
framework are described, and specifications of the viewpoints and corresponding
notations are given. Secondly, a model-driven methodology for service ecosys-
tem engineering is defined. The methodology utilizes model transformations that
consume service ecosystem architecture models designed with the architecture
framework. The model transformations produce refined architecture models, and
technology-specific engineering artefacts required for enabling operation of the

22 1 INTRODUCTION

service ecosystem.

Validation and evaluation methods and results are then discussed in Chapter 5.
The validation approach and evaluation criteria are first defined. After that, the
evaluation case is introduced. Evaluation results are then presented. The artefacts
developed in this thesis are assessed with respect to conceptual completeness,
feasibility, applicability and utility. The chapter is concluded with a comparison
to related work.

Finally, conclusions about the research results and further prospects are dis-
cussed in Chapter 6.

1.8 Research history

This academic dissertation is a result of research stemming from the areas of inter-
enterprise computing, interoperability management and service-oriented middle-
ware platforms. The research has been conducted as part of the CINCO (Col-
laborative and Interoperable Computing) research group [84] which works to-
wards enabling and facilitating service-based collaborative computing especially
in inter-enterprise contexts.

The author’s research was initiated for providing a so-called service typing
discipline and corresponding type management infrastructure (type repositories)
for the Pilarcos interoperability middleware [86, 85]. Interoperability challenges
imminent in dynamic business-to-business environments were discussed in [86]
which described the concepts and functionality of the Pilarcos B2B-middleware.
Service types and type repositories were identified as foundational for the working
of the federated service collaboration model described in the paper.

Service typing is used in the Pilarcos framework for achieving service in-
teroperability. The author of this academic dissertation studied several formal
methods for finding a feasible method for formalizing service interoperability.
The research in formal methods resulted in construction of the service typing dis-
cipline [139, 134] which is based on session typing [162]. Session typing is a
formal method that gives rigour to such concepts as business service behaviour,
and behavioural compatibility and substitutability.

A brief description of the type management infrastructure needed in collabora-
tive systems was given in [139] which followed the RM-ODP reference model for
open distributed computing, consisting of type repositories and name registries.
Information about service types and their properties were proposed to be prop-
agated through a service-oriented software engineering process and standardised
middleware interfaces to corresponding meta-information repositories [139].

In addition to interoperability between individual services, there are other as-
pects of interoperability that have been addressed for managing interoperability

1.8 Research history 23

in service ecosystems. Interoperability in service-based, inter-enterprise environ-
ments was represented with a layered model of interoperability management, con-
sisting of five layers of increasing abstractness from technical level to business
level [138]. The interoperability model provided can be regarded as a reflec-
tive meta-information system, i.e. changes in lower-layers of the interoperabil-
ity meta-information “stack” are propagated to upper-layers using well-defined
transformations. Moreover, the interplay between autonomy and interoperability
in service-based environments were discussed [137], in addition to more generic
characterizations of interoperability [142].

From the research efforts described above it became evident that, for achiev-
ing interoperability in service collaborations, one must provide a conceptual for-
malization of the service ecosystems as a whole. Achieving interoperability is a
multi-faceted problem. For achieving service collaborations between autonomous
partners each entity must have an unambiguous interpretation of the features af-
fecting the form and quality of the collaboration. Moreover, pragmatic support is
needed at the conceptual level for enabling production of new kinds of collabora-
tion forms and services enabling their operation.

For achieving collaborative and interoperable computing in service ecosys-
tems, the author developed a set of meta-models and ontologies describing the
foundational elements of service ecosystems [140, 135]. Management of interop-
erability and engineering knowledge in service ecosystems was now taken as the
focus of research. The conceptual model of federated service communities that
had been developed within the Pilarcos framework [87, 86, 85] provided a basis
for further research in the more generic context of service ecosystems.

The concepts of the Pilarcos framework were first generalized and additional
concepts for enabling complete ecosystem description were developed. In ad-
dition, the role of service-oriented software engineering was emphasized while
developing the service ecosystem concepts. The concepts were formalized us-
ing a set of meta-models and the practices of model-driven engineering [144]
were taken as the primary means for instrumenting knowledge repositories [135].
Especially, the resulting conceptual framework for declaring features of service
ecosystems was founded on the core principles of meta-modelling [45, 54] and on
separation between linguistic and ontological meta-modelling [5, 125].

This academic dissertation is a continuation of the research process described
above. The conceptual framework developed in the author’s Licentiate thesis [135]
has been further developed. In addition, a methodology for defining service eco-
system domain models has been developed and is described in this dissertation.
Especially, the conceptual framework for service ecosystems is now validated
within the context of this work.

24

1 INTRODUCTION

Chapter 2

Sustainable service ecosystems

The conceptual model described in this chapter enables service ecosystem anal-
ysis by domain experts. Such an analysis tool is needed for example to construct a
service ecosystem conceptualization from an ecosystem vision, as was illustrated
in Figure 1.1. The conceptual model defines the fundamental elements of service
ecosystems as well as dependencies between the elements. Thus means for unam-
biguous interpretation and communication of service ecosystem characteristics is
provided.

The conceptual model addresses especially the requirements for establishing
sustainability: it identifies the essential elements of service ecosystems, stake-
holders and their primary concerns, as well as objectives, principles and implica-
tions for continued viability. The conceptual model and the definition of service
ecosystem sustainability provide foundations and design principles for the other
artefacts developed in this thesis. Moreover, the definition of service ecosystem
sustainability and its implications declare evaluation criteria for assessing the ap-
plicability and utility of the model-driven approach for service ecosystem engi-
neering. The completeness of the conceptual model is evaluated by a case study
in Chapter 5.

The elements of service ecosystems are first elaborated in Section 2.1. Sec-
tion 2.2 then introduces service ecosystem stakeholders and their concerns. After
that, the notion of service ecosystem sustainability is defined in Section 2.3. Ser-
vice ecosystem sustainability is defined as a quality of a service ecosystem to
support continued viability; implications of this definition are discussed in the
section.

25

26 2 SUSTAINABLE SERVICE ECOSYSTEMS

« Collaboration
Ecosystem e Service delivery

capabilities e Product offering
etc.

* Enterprises
o Institutions
¢ Individuals

* Business services

¢ Infrastructure
services

e Enablers for
* Service
engineering
¢ Service delivery
* Service governance

Figure 2.1: Elements of service ecosystems.

2.1 Elements of service ecosystems

Service-centric business takes place in varying kinds of service ecosystems. A
service ecosystem is a socio-technical complex system that enables service-based
collaboration between autonomous entities such as enterprises, institutions and
individuals. The ecosystem provides an environment for creating and manag-
ing service-based collaboration networks, such as virtual organizations or service
mash-ups, from services provided by a community of autonomous entities.

For handling the inherent complexity of service ecosystems, and for enabling
analysis and description of service ecosystems, the fundamental elements and
their inter-relationships must be identified and formalized. Based on a survey
and an analysis of different service ecosystems and related frameworks [135],
four fundamental elements existing in service ecosystems are identified. The eco-
system elements are : /) ecosystem capabilities, 2) members, 3) services, and
4) infrastructure. The elements are illustrated in in Figure 2.1.

An ecosystem capability is the ability of a service ecosystem to perform ac-
tions. An ecosystem capability provides a declaration of core functionality in
the service ecosystems. A set of ecosystem capabilities describes the motive for
ecosystem existence, or the ecosystem purpose. Ecosystem capabilities include
service delivery and collaboration, for example. In product-centric service ecosys-
tems a capability of product provisioning is the primary motive for the ecosystem
operation.

2.1 Elements of service ecosystems 27

Ecosystem members are autonomous entities such as enterprises, institutions
or individuals which act in the service ecosystem in specific roles. An entity is
considered as an object of the ecosystem with an identity and that has its own dis-
tinct existence. Entities bound to a role must possess the capability of discharging
the commitments a role imposes for them.

A service is considered here as a mechanism to access one or more capabil-
ities [154]. A service is realized by an exchange of value objects between a ser-
vice consumer and a service provider. Following the definitions provided in [9]
and [76], a value object is created, traded, and consumed by ecosystem entities
and is of economic, ideological, political or social value for at least one of the
entities involved. From an economic perspective, services are considered as in-
tangible, perishable, inseparable, and variable goods, as opposed to products (see
e.g. [175]).

In the conceptual model for open service ecosystems, services are classified
into three different categories [143], each category associated with a character-
izing kinds of capabilities: /) infrastructure services delivering ecosystem capa-
bilities, 2) business services delivering business transactions, and 3) component
services delivering service protocols.

Infrastructure services are used for delivering ecosystem capabilities. For ex-
ample, in the Pilarcos open service ecosystem [87] the set of infrastructure ser-
vices include service offer repositories delivering loose coupling between service
providers and consumers, as well as the populator service for dynamic business
network establishment. Infrastructure services especially include the knowledge
repositories needed for managing the global knowledge base of the service eco-
system. Additional infrastructure services, such as trust or reputation management
systems, may be provided for facilitating collaboration establishment processes in
service ecosystems.

A business service is a service which delivers the business transactions re-
quired to fulfill commitments of a business network role. Business services are
technological representations of services (i.e. intangible goods) and are provided
as software-based components that utilize information and communication tech-
nology for service delivery. A business network is a prescribed choreography
between business roles which describes a business collaboration. A collaboration
is a process of shared creation among a group of actors that share information,
resources, responsibilities and rewards to achieve a common goal [27].

Business services are provided for clientele with service offers. A service of-
fer is a declaration for a set of business services offered as a service bundle, and
their capabilities and qualities. A service offer provides a basis for negotiating a
service-level agreement between a service provider and a service consumer. Ne-
gotiation is “a process by which a group of agents communicate with each other

28 2 SUSTAINABLE SERVICE ECOSYSTEMS

and try to come to a mutually acceptable agreement on some matter” [93]. Af-
ter a successful negotiation process, the participants are provided with a shared
service-level agreement, or SLA (see for example [96, 152, 153]), expressing the
mutual commitments and expectations about the quality properties of the business
services under contract.

Component services are utilized in business services to implement their func-
tionality. Component services represent reusable service engineering assets which
deliver functionality defined by service protocols. A service protocol provides a
definition of component service operations and behaviour. Exemplary component
services may include services for domain-specific business protocol exchanges,
e.g. banking protocols, or more technically oriented services such as key ex-
change protocols for encryption.

Ecosystem infrastructure provides means for realizing service engineering,
service delivery and service ecosystem governance activities in the service eco-
system. In addition to infrastructure services, ecosystem infrastructure includes
1) service engineering tools and methods, 2) specifications of ecosystem features
and feature bindings, and 3) cooperation facilities enabling dependable service in-
teractions and communication. Service ecosystem governance is enabled with in-
frastructure services which coordinate cooperation between ecosystem members
in accordance to ecosystem life cycles [143].

2.2 Service ecosystem stakeholders

Several stakeholders can be identified in service ecosystems. Typically at least
service consumers and service providers are identified in contemporary service
ecosystems. However, especially in open service ecosystems there are several ad-
ditional stakeholders which have their distinctive roles. The roles may or may
not overlap with service consumers and providers. The ecosystem stakeholders
include service consumers, service providers, service engineers, engineering tool
providers, infrastructure providers, and ecosystem providers, as illustrated in Fig-
ure 2.2.

Service consumers are legal entities that utilize business services available in
the ecosystem to fulfill their business needs. Service consumers are responsible
for utilizing the business services as declared in agreements made with service
providers about service utilization. Service consumers may confront challenges
related to identification and selection of suitable business services, dependability
of business services, and monitoring of business service operations.

Service providers are legal entities that offer business services for their clien-
tele. In a business landscape comprising diverse service ecosystems, service pro-
vider differentiation and revenue is created by providing added value for the cus-

2.2 Service ecosystem stakeholders 29

Service
Service engineer
provider

L Engineering
ﬂ.} tool provider
8 A% p

Service E
consumer ‘ ’
~
Infrastructure
rovider
Ecosystem P
provider

Figure 2.2: Stakeholders in service ecosystems.

tomers. Service providers act in service ecosystems for creating profit by opti-
mizing their business service usage, and supporting their business models. The
services consumed by the clientele may directly benefit the business of the ser-
vice provider. Services can also be provided for creating support and added value
for other products, or for establishing and promoting business platforms around
the offered services [30]. Business services are provided within service bundles
by publishing appropriate service offers.

Service engineers produce so-called component services by implementing
technological artefacts (e.g. web services) which are then utilized by service pro-
viders to implement their business services. The primary concern of service engi-
neers is that of well-advised service engineering. Well-advised service engineer-
ing here refers to both correspondence of service engineering with the business
models (“well-advised motivations™) and pragmatics (‘“‘well-advised practices”)
of the ecosystem. The notion of well-advised service engineering is elaborated in
Section 2.3.1.

Engineering tool providers are responsible for providing service engineers
with tools. For increasing the efficiency of service production in a service ecosys-
tem, the tools should be specialized for the specific domain of operation. Conse-
quently, the primary concern of engineering tool providers in service ecosystems
is efficient tool production and specialization.

Infrastructure providers deliver infrastructure services required by service eco-
systems. Delivering infrastructure services could be business on its own, or it
might be affordable due to supporting other aspects of infrastructure provider

30 2 SUSTAINABLE SERVICE ECOSYSTEMS

business models (e.g. bootstrapping the use of business services in the service
ecosystem). Thus, efficiency of infrastructure service production becomes a con-
cern for infrastructure providers.

Ecosystem providers represent entities such as organizations or consortia whose
business models require utilization and instrumentation of a service ecosystem.
Ecosystem providers initiate establishment of service ecosystems by first anal-
ysing and designing required ecosystem capabilities, and identifying means for
delivering those capabilities. The primary concerns associated with ecosystem
providers are analysis and design of service ecosystems, and enabling and main-
taining ecosystem viability by service ecosystem governance.

2.3 Defining ecosystem sustainability

For supporting business in future service ecosystems, a transition from ad hoc so-
lutions to sustainable service ecosystems is needed. Sustainability in essence en-
ables feasible business and longevity for service ecosystem members. Feasible
business is enabled especially by delivery of mechanisms that support efficient
utilization of core competencies and business decision making. Longevity is en-
abled with means for opportunistic and flexible business networking, as well as
by support for progressive business environments. These characteristics are elab-
orated further in Section 2.3.2.

In this academic dissertation, the definition of sustainability is based on termi-
nology used in the context of software architecture research!. The definition for
service ecosystem sustainability is given as Definition 2.1.

Definition 2.1 (Service ecosystem sustainability) Service ecosystem sustainabil-
ity is a quality of a service ecosystem to support continued viability.

The implications of the above definition are discussed in the rest of this sec-
tion. The requirements for service ecosystem viability are elaborated in Sec-
tion 2.3.1 which identifies service ecosystem stakeholder concerns. After that,
the means for establishing continuation of service ecosystem viability are defined
in Section 2.3.2.

2.3.1 Requirements for service ecosystem viability

Viability is achieved by supporting the operation of stakeholders and addressing
their primary concerns through the phases of the service ecosystem engineering
life cycle. Service ecosystem engineering life cycle is a systems engineering life

!Sustainability in the context of software architectures is defined as “An architectural property
of a program which allows continued viability” in the Open Knowledge Initiative by MIT.

2.3 Defining ecosystem sustainability 31

cycle which comprises the phases of service ecosystem /) analysis, 2) design,
3) instrumentation, and 4) operation.

Service ecosystem analysis is a systems engineering activity where a needs
assessment is performed. Needs assessment is utilized for identifying the capa-
bilities required from the service ecosystem to support the business objectives of
associated stakeholders. The capabilities are formalized during the design phase.
The service ecosystem design phase provides definitions for the necessary ecosys-
tem infrastructure, life cycles, service ecosystem features, and domain concepts
required for realizing the identified capabilities. During the service ecosystem
instrumentation phase all the necessary engineering components required for ser-
vice ecosystem operation are delivered. This includes especially implementations
of the infrastructure services, and possibly selected component and business ser-
vices to bootstrap the operation phase of the service ecosystem. During the oper-
ation phase service ecosystem stakeholders exploit the service ecosystem and its
infrastructure to support and establish service-based collaborations.

Service ecosystem stakeholders have different concerns associated with ser-
vice ecosystem engineering life cycles. The primary concerns are identified in
Table 2.1 and discussed below.

Ecosystem provider concerns

For service ecosystem providers three primary concerns are identified in Table 2.1.
In the service ecosystem analysis phase ecosystem providers need instruments
which can support the identification of required service ecosystem capabilities,
and formulation of ecosystem elements that support the delivery of those capabil-
ities. Supporting this concern, a conceptual model for service ecosystems is pro-
vided by this thesis. The conceptual model is applicable for structuring the com-
plexity of service ecosystems, identifying capabilities fulfilling business needs,
and further constructing the required ecosystem elements.

A service ecosystem architecture for supporting delivery of the required eco-
system capabilities is constructed during the design phase. The architecture de-
scriptions are utilized for communicating and further refinement of ecosystem
designs between associated stakeholders. Moreover, different architecture anal-
ysis techniques, such as ATAM [77], are applicable for enacting the design pro-
cess. To enable such architectural design activities, the architecture descriptions
must be unambiguously defined. This requires formalization of the architecture
descriptions. Formalization also provides means for validating the consistency
and completeness of the ecosystem designs, as well as enables tool support for
their further analysis. Towards these purpose, the conceptual model of service
ecosystems is formalized as a service ecosystem meta-model in this thesis; the
meta-model enables unambiguous description of service ecosystem architectures

32 2 SUSTAINABLE SERVICE ECOSYSTEMS
Stakeholder Engineering phase | Concern
Ecosystem provider Analysis Identification of required ecosystem capabilities and
elements supporting the delivery of those.
Design Formalization of service ecosystem architecture de-
scriptions.
Operation Supporting service ecosystem governance.
Infrastructure provider Design Identification and design of required infrastructure
services.
Instrumentation Efficient production of infrastructure services.
Operation Infrastructure service interoperability.
Engineering tool provider | Design Identification of engineering capabilities required for
component service production.
Instrumentation Efficient tool production and specialization.
Operation Tool and language interoperability and integration.
Service engineer Design Identification of engineering capabilities required for
component service production (shared with engineer-
ing tool providers).
Well-advised service engineering.
Operation Efficient component service production.
Service provider Operation Service bundling.
Service contracting.
Service consumer Operation Business service identification, location and selection.
Business service dependability.
Business service monitoring.

Table 2.1: Stakeholder concerns in service ecosystem engineering life cycles.

with models and modelling languages conforming with the meta-model.

During the operation phase, the primary concern of a service ecosystem pro-
vider is to enable and support service ecosystem governance. Service ecosystem
governance is defined as a collaborative activity taking place between ecosys-
tem members, which extends service governance (such as described in the Open
Group SOA Governance Framework [117], for example) of the individual mem-
bers in the ecosystem [143]. Service ecosystem governance comprises activities
and structures for directing, monitoring and managing the operations enacted in a
service ecosystem. For enabling and supporting such collaborative activities, ser-
vice ecosystem providers define ecosystem life cycles. A service ecosystem life-
cycle definition prescribes behaviour and roles expected from ecosystem members
in the corresponding life-cycle phases.

The conceptual model, the service ecosystem meta-model, and the architec-
ture framework defined in this thesis provide instruments for prescribing service

2.3 Defining ecosystem sustainability 33

ecosystem life cycles and structures. Moreover, the model-driven approach used
for designing and instrumenting service ecosystems supports governance activi-
ties by delivering a unified service ecosystem model. These service ecosystem
models can be used during the operation phase for coordinating the behaviour of
participants in ecosystem life cycles, and for realizing model-driven interoperabil-
ity (see e.g. [19]) approaches.

Infrastructure provider concerns

Infrastructure providers take part in the service ecosystem design phase especially
to analyse and design the kinds of infrastructure services required for realizing the
ecosystem capabilities. Infrastructure providers require concepts and modelling
facilities for expressing the features of infrastructure services and the requirements
they induce to other parts of the service ecosystem architecture.

For addressing infrastructure provider concerns, this thesis provides concepts
and an architecture framework for designing infrastructure services and formal-
izing their designs as part of architecture models. During the instrumentation
phase, the architecture models can be exploited for enabling efficient production
of infrastructure services. Finally, interoperability between infrastructure services
must be supported during ecosystem operation. Formal architecture models defin-
ing the features, structure and inter-dependencies between infrastructure services
can be utilized for achieving interoperability. Especially model-driven approaches
become applicable for establishing both conceptual and technological unification.

Engineering tool provider concerns

Engineering tool providers are involved during the service ecosystem design phase
by identifying and designing required engineering capabilities. Engineering ca-
pabilities comprise tools and methods needed for producing engineering artefacts
in the service ecosystem, especially for component service production. During
service ecosystem instrumentation, efficiency of engineering tool production and
specialization becomes a concern for engineering tool providers. The engineering
tools produced are utilized by service engineers during ecosystem operation for
developing component services. The efficiency of component service production
can be increased, if the tools themselves address domain-specific features and use
domain-specific concepts. Thus, efficient specialization of engineering tools be-
comes a concern for engineering tool providers. Finally, during service ecosystem
operation the interoperability between engineering tools and languages, and their
integration may become an issue for engineering tool providers.

For addressing the engineering tool provider concerns, this thesis provides
means for designing the required engineering capabilities, instrumenting efficient

34 2 SUSTAINABLE SERVICE ECOSYSTEMS

modelling tool production with model-driven methods, and integrating domain-
specific languages through the unified service ecosystem models.

Service engineer concerns

Service engineers are primarily engaged by concerns associated with service eco-
system operation phase. However, service engineers also have their role during the
design phase when identifying engineering capabilities for the ecosystem together
with engineering tool providers. During the operation phase, service engineers are
confronted with two foundational challenges: /) establishing well-advised service
engineering, and 2) increasing the efficiency of component service production.

Well-advised service engineering here refers to both correspondence of ser-
vice engineering with the business models (“well-advised motivations”) and prag-
matics (“well-advised practices”) of the ecosystem. Well-advised motivations
means that service engineering activities should align with the requirements stem-
ming from the business models and business networks applied in the service eco-
system. Alignment can be advanced with service engineering methods and tools,
which utilize domain-specific concepts for bridging the semantic gap between
business and engineering domains. Well-advised practices means that service en-
gineers should be provided with re-usable engineering artefacts that allow en-
coding and sharing of best practices and regulations associated with the service
engineering domain. Well-advised practises increase the efficiency of service pro-
duction, thus increasing the viability of service engineers.

From service engineers’ perspective, added value for customers is delivered
by crafting services to fit the requirements of the clientele and the domain of the
service ecosystem. In this setting, efficiency and flexibility of service production
becomes a critical asset for service providers. Towards this purpose, the tools
and facilities utilized by service engineers must support rapid reaction to mar-
ket changes, emergence of new service ecosystems, and adaptation and reuse of
services in different service ecosystems. This can be achieved with engineering
facilities that are targeted for specific ecosystem domains.

Service engineer concerns are addressed in this thesis by providing means for
formalizing and modelling engineering capabilities (tools and methods) as part
of ecosystem architecture descriptions. Well-advised service engineering moti-
vations are instrumented with explicit models of business network models, and
formalization of relationships between component services, business services and
business networks.

2.3 Defining ecosystem sustainability 35

Service provider concerns

Service providers are responsible for delivering the business services as declared
in corresponding service-level agreements. Moreover, the service providers are
expected to act in accordance with the rules of the service ecosystem. Service
providers may encounter several challenges related to provisioning and delivery
of services. These challenges include service bundling, contracting issues, busi-
ness network management, and service governance. In addition to the above chal-
lenges, service innovation is a fundamental challenge in service-based business
environments. Service innovation is a complex topic which may include eco-
nomical, organizational and social challenges (see e.g. [30]). However, service
innovation is not in the scope of this dissertation.

Service bundling is used by service providers for supplying a selection of
services as a single service for consumers. The services used in a bundle can
be provided by other service providers (i.e. “sub-contractors’). Reasons for ser-
vice bundling include cost reduction through utilization of common processes and
shared infrastructure, inter-dependency of bundled services (e.g. bundling a set of
financial services), product differentiation, increasing revenues, and increasing
competitiveness through creation of entry barriers [9]. In service ecosystems ser-
vice bundles are advertised through service offers. Service bundling can become
an issue if the ecosystem does not allow declaration of provider-specific bundles
(i.e. the ecosystem does not allow autonomous decisions over bundling), or if
the service offering mechanism utilized in the ecosystem does not support service
bundling (i.e. issues in expressing bundling).

Contracting is needed in service ecosystems for guaranteeing dependable ser-
vice delivery between autonomous service providers and consumers. With respect
to contracting, service providers are encountered with challenges related to con-
tract formulation and establishment. A service ecosystem should provide mecha-
nisms that can be utilized for managing these challenges.

With respect to contract formulation, a service ecosystem should provide con-
cepts that can be used by service providers to express varying kinds of service
contracting relationships. In different kinds of business ecosystems different kinds
of business models, business networks and relationships are utilized. In product-
driven business ecosystems there is typically a dominating partner, the product
owner. In a corresponding service ecosystem, the business networks could be for-
mulated in a way that in every business network established at least some of the
services must be provided by the product owner, for example. In more traditional
business ecosystems sub-contracting relationships between ecosystem members
constrain and direct the formulation of available business networks. Moreover,
different in- and out-sourcing scenarios might be dominating factors in business
networks allowable in certain service ecosystems. The conceptual framework of

36 2 SUSTAINABLE SERVICE ECOSYSTEMS

service ecosystems should enable expression of such varying kinds of service con-
tracting and business networking scenarios.

Service consumer concerns

In open service ecosystems service consumers and providers are free to leave
and join the ecosystem as they wish. Moreover, service providers decide au-
tonomously about the features and accessibility of their business services. In such
an environment, service consumers require means for identifying and locating
services they wish to use and selecting the most appropriate ones for their needs.
For this purpose, the infrastructure designed for an open service ecosystem must
provide mechanisms for efficient service discovery and selection.

Open service ecosystems must provide means for establishing a suitable level
of dependability in business service interactions and communication. Service con-
sumers and providers should have the possibility to dynamically select, agree and
realize features of business service interactions and communication, based on the
operational context and business sensitivity, for example. This requires concepts
and instruments for unambiguously describing the nature of service ecosystem
features and their effects on service channels used for enabling business service
collaboration.

Especially in open service ecosystems where service contracts are established
dynamically between autonomous ecosystem members, service monitoring is need-
ed for identifying and reacting to possible contract breaches. Service monitor-
ing includes observation of service interactions (behavioural monitoring), service
level (quality monitoring), and service compliance. For enabling behavioural mo-
nitoring, the behaviour of services associated with a service contract should be
unambiguously described. Service level monitoring requires well-defined descrip-
tions about the mutually agreed service quality values. Finally, service compliance
monitoring involves both observation of contractual and regulatory compliance.
Contractual compliance here refers to conformance of partners with the proper-
ties of the business network, such as sub-contracting relationships, or in- and out-
sourcing contracts. Regulatory compliance means conformance with legislation,
business rules and policy frameworks associated with the business ecosystem and
partners as legal entities.

2.3.2 Establishing continuation of viability

Continuation of service ecosystem viability is established by supporting activi-
ties that ensure relevance and sensibility of ecosystem operation. Towards this
purpose, service ecosystems should provide means for a) efficient utilization of
core competencies, b) opportunistic and flexible business networking, c) support-

2.3 Defining ecosystem sustainability 37

ing progressive business environments, and d) efficient business decision making.
These objectives are realized by principles for supporting continuation of viabil-
ity. The objectives, their realizing principles and implications of following the
principles are described in Table 2.2 and discussed below.

Supporting efficient utilization of core competencies

For supporting efficient utilization of core competencies a service ecosystem must
allow autonomy of its members. Autonomy manifests itself as degrees of free-
dom given to ecosystem members with respect to design and implementation of
services, and decisions concerning entities’ willingness to collaborate and local
service governance [137]. By allowing autonomy, the ecosystem members can
maintain their competitiveness and agility of their core business operations more
efficiently. For example, service engineers want to utilize production methods and
tools that best suit their engineering practices; service providers want to exploit
their business networks and added-value services for increasing the efficiency of
service provisioning and provider differentiation.

A viable service ecosystem must not restrict the facilities or business net-
works stakeholders use for their operations locally, since the well-being (com-
petitiveness, efficiency etc.) of the ecosystem members promotes the viability
of the ecosystem itself. Instead, the service ecosystem should provide facilities
for the ecosystem members for joining and operating in the ecosystem effort-
lessly. Such facilities include for example mappings between representations used
in the service ecosystems and different technological spaces (e.g. Web Services
-architecture [169] or REST-based web application frameworks), explicit specifi-
cations of engineering tools and practices utilizable for creating service artefacts
in the service ecosystem, and unambiguous definitions for ecosystem vocabulary
enabling both conceptual and technological mappings between heterogeneous do-
mains.

Autonomy of ecosystem members induces potential interoperability problems.
For example, the freedom of design and implementation of services leads to tech-
nological and semantic heterogeneity which induces interoperability problems.
Interoperability means the capability of systems (e.g. organizations, business ser-
vices, communication technology) to co-operate in such a fashion that eventually
either their mutual goals become fulfilled or their co-operation is dissolved in a
controllable manner in case of problems, such as conflict of interests or technical
failures [135].

Interoperability can be considered from technical, semantic and pragmatic
viewpoints [86]. Technical interoperability means that the technological facilities
underlying the business services are compatible, such that communication paths
can be established, for example. Semantic interoperability deals with the meaning

2 SUSTAINABLE SERVICE ECOSYSTEMS

38

Objective

Principle

Implication

Efficient utilization of core compe-
tencies

Ecosystem member autonomy

Members can follow their established practices to operate in the ecosystem.

Facilities are provided for supporting effortless integration and compatibility of local prac-
tices with ecosystem capabilities and policies.

Interoperability service utilities are provided for identifying and handling interoperability
problems between autonomously provided services, and features and policies associated
with them.

Dependability of service collabora-
tions

Ecosystem provides means for assessing, establishing and monitoring dependability of ser-
vice collaborations. In open service ecosystems this involves especially the aspects of trust,
privacy and security.

Opportunistic and flexible business
networking

Dynamic business service collabo-
rations

Ecosystem provides means for establishing business service collaborations on demand.

Mechanisms are provided for loose coupling of business services; this includes especially
late binding and late encapsulation of services.

Supporting progressive business
environments

Open model of ecosystem partici-
pation.

Autonomic entities may join and leave ecosystems as they wish. Ecosystem members may
take any role available in the service ecosystem, in accordance with ecosystem policies.

Extendability of ecosystem knowl-
edge bases.

New kinds of services, cooperation facilities and business networks can be introduced on
demand.

Efficient business decision making

Predictability of joining and operat-
ing in service ecosystems.

(Potential) ecosystem members are provided with methods for analyzing the maturity and
feasibility of service ecosystems, and their capabilities and requirements with respect to
local enterprise and service architectures.

Governability of service ecosystem
operation.

Local governability: Ecosystem members are able to govern their local service-oriented
architectures in accordance with ecosystem requirements and capabilities.

Global governability: Ecosystem members are provided with means for collaborative gov-
ernance of service ecosystem operation.

Table 2.2: Objectives, principles and implications for establishing continued viability.

2.3 Defining ecosystem sustainability 39

of exchanged information and information exchange patterns. Pragmatic interop-
erability is achieved if the intentions, business rules, and organizational policies
of collaborating parties are compatible with each other.

Autonomy allowed for service ecosystem members must be compensated with
mechanisms for guaranteeing interoperability. Three approaches can be iden-
tified for achieving interoperability, namely integration, unification and federa-
tion [86]. Integration aligns with the traditional model of software system devel-
opment where interoperability is ensured by pre-development and pre-operational
agreements about the properties of collaboration components, and basically hand-
crafting the corresponding software artefacts to fulfill the prerequisites for inter-
operability. In unification a shared model describes the functionality and respon-
sibilities of each collaboration participant and provides the knowledge needed for
attaining interoperability. In the federated approach interoperability is achieved
by utilizing shared interoperability knowledge and Interoperability Service Util-
ities (ISU, see for example [40]. Interoperability knowledge comprises different
kinds of artefacts, such as descriptions of services and their features, domain on-
tologies and communication channel descriptions, for example. Interoperability
Service Utilities denotes a category of infrastructure services which provides ca-
pabilities for identifying and overcoming interoperability problems. Operation of
interoperability service utilities is typically based on unified models representing
service ecosystem architecture and vocabulary, for example.

Supporting opportunistic and flexible business networking

Supporting opportunistic and flexible business networking required means for es-
tablishing business service collaborations on demand, and mechanisms for loose
coupling of business services. For enabling on-demand business service collab-
orations, dynamic business network establishment and negotiation processes [87,
85], as well as facilities for contract establishment and enforcement are required.

In a dynamic business network establishment process a business network model
is filled with appropriate business services. For this purpose, specialized infras-
tructure services, such as the Pilarcos populator [85], are utilized. In addition,
infrastructure services addressing trust [131] and privacy management [149] is-
sues may be needed for establishing dependability in dynamic business network
establishing processes.

Late binding, also known as dynamic or run-time binding, of service interfaces
is one of the principal tenets of service-oriented computing. In a collaboration in-
volving late binding between business services a binding process is initiated for
deciding the features, especially the identity and location of service endpoints, of
forthcoming service interactions. Essentially, the binding process establishes a
contractual context (a binding) between service interfaces to enable service inter-

40 2 SUSTAINABLE SERVICE ECOSYSTEMS

actions [69]. The binding process may comprise refinements of communication
channel models and negotiations about the features of the communication chan-
nels.

In late encapsulation the service channels constructed with binding processes
are further refined with qualitative features. Late encapsulation involves selection
and negotiation about the features such as security, privacy or non-repudiation,
for example. After a successful negotiation process, the participants are provided
with a shared service-level agreement, or SLA (see for example [96, 152, 153]),
expressing the mutual commitments and expectations about the qualitative fea-
tures of service interactions.

Facilities for contract establishment include repositories for storing contract
templates and contracts, and mechanisms for contract negotiation and validity
checking [102], for example. Contract templates provide standard contract forms
to facilitate the drafting of collaboration contracts. Repositories storing contracts
are needed for keeping signed copies of contracts as evidence for possible dispute
settlement processes.

Contract enforcement comprises infrastructure services that provide means
for monitoring the compliance between service interactions and a collaboration
contract, contract enforcement when a collaboration partner deviates from the be-
haviour prescribed by the contract, and dissolution of collaborations. The essen-
tials for enabling contract enforcement and dispute settlement in electronic collab-
orations are typically borrowed from conventional (non-electronic) environments:
compensations, insurances, fines and trusted third parties acting as notaries are
used for giving the motivation for the partners to follow the collaboration con-
tract. Contract notification, mediation and arbitration mechanism are examples of
typical contract enforcement facilities [102] used for informing the parties about
(possible) contract deviations, and settlement and resolution of actual contract
breaches.

Supporting progressive business environments

Progressive business environments require support for ecosystem evolution. Eco-
system evolution means dynamism and flexibility over the selection of actors
available in the ecosystem, and extendability of the ecosystem knowledge espe-
cially with respect to available services and collaboration types. New members
may join and members may leave the ecosystem during its operation. Moreover,
new kinds of roles for ecosystem entities can be introduced for supporting newly
emerged business opportunities. For supporting ecosystem evolution, the concep-
tual model underlying the ecosystem must be extendable such that new concepts
can be introduced dynamically and on demand. Support for ecosystem evolution
enhances the elasticity and longevity of the service ecosystem.

2.3 Defining ecosystem sustainability 41

From the knowledge management perspective, especially the ontology of ser-
vices must be dynamic and extendable in an open service ecosystem. In such a
setting new services can be introduced to the ecosystem and removed from it on
demand. Moreover, service categories, that is, the types of services that can be
offered and utilized, must be extendable to promote introduction of new kinds
of services. Extendability of the ontologies must also be enabled for other kinds
of artefacts, such as communication channel definitions or non-functional feature
models.

Supporting efficient business decision making

Supporting efficient business decision making requires predictability of joining
and operating in service ecosystems, as well as governability of service ecosys-
tem operation. Potential ecosystem members must be provided with support for
efficient business computing, and for identifying business opportunities and value
proposition in the ecosystems. Such support can be delivered for example with
service ecosystem modelling and analysis tools, which enable assessment of ca-
pabilities and maturity of service ecosystems. Moreover, tools for analysing the
compatibility between local enterprise architecture and business models with the
service ecosystem architecture and its business networks would support making
business decisions about joining and operating in service ecosystems.

Efficient business decision making requires local governance of enterprise
systems and global governance of service ecosystems. Governance can be charac-
terized as a “process of making correct and appropriate decisions on behalf of the
stakeholders of those decisions or choices” [98]. Local governance activities in a
service-oriented organization typically involve utilization of so-called enterprise
architectures describing the structure of the organization and its operation, and
service portfolios declaring the services used and provided by the organization.
Frameworks such as the Open Group SOA Governance Framework [117] can be
utilized by organizations as a basis for implementing service governance. For en-
abling efficient business decision making in organizations, the contemporary gov-
ernance frameworks should be extended with concepts and methods which enable
alignment of local enterprise governance with service ecosystem requirements,
capabilities and service ecosystem governance structures.

Service ecosystem governance means the collaborative activity of directing,
monitoring and managing service ecosystem operation [143]. Governance activi-
ties are enacted by ecosystem members in life cycles which define how, when and
by whom a certain activity should be taken. These activities are defined in service
ecosystem life cycle declarations as part of the service ecosystem architectures.

42

2 SUSTAINABLE SERVICE ECOSYSTEMS

Chapter 3

A meta-model for service ecosystems

The meta-model defined in this chapter enables construction of service ecosystem
architecture description models. The architecture description models are utilized
by different stakeholders during service ecosystem engineering, as was illustrated
in Figure 1.1. Moreover, the meta-model enables construction of the model-driven
methodology for service ecosystem engineering that will be developed in Chap-
ter 4. The meta-model supports especially service ecosystem design and instru-
mentation activities: it acts as a foundation for the engineering tools required for
the engineering activities included in the methodology.

The meta-model elaborates and formalizes the conceptual model and enables
instrumentation of service ecosystem sustainability. Especially, the meta-model
provides support for continuation of viability and enables model-based manage-
ment and governance of service ecosystem operation. Such management and gov-
ernance facilities are required especially in open service ecosystems for guaran-
teeing correctness of ecosystem operation and establishing interoperability be-
tween autonomous members. Moreover, formal ecosystem architecture models
support unification and integration of separate (enterprise) systems and even dif-
ferent service ecosystems. This decreases especially the risk of building concep-
tual and technological stove-pipe systems, since the designs of service ecosystems
are explicit and, as such, mappable to other formal system designs (other service
ecosystem designs). The applicability of the meta-model for facilitating service
ecosystem sustainability is assessed in Chapter 5.

The meta-model design is affected by the requirements and principles stem-
ming from the definition of service ecosystem sustainability and stakeholder con-
cerns. These design principles are discussed in Section 3.1. Before presentation
of the service ecosystem meta-model, the modelling practices and conventions
used for designing and illustrating the meta-model are described in Section 3.2.
The meta-model is founded on a few core concepts that are defined and formal-
ized in Section 3.3. The meta-model elements for service ecosystem architecture

43

44 3 A META-MODEL FOR SERVICE ECOSYSTEMS

descriptions are defined in Section 3.4. The architecture descriptions include spec-
ifications for service ecosystem structure, domain ontologies, intensional defini-
tions, engineering models, and knowledge management models. The correspond-
ing meta-model definitions are presented in Sections 3.5 — 3.9.

3.1 Design principles for the meta-model

There are two foundational requirements that affect the design of the service eco-
system meta-model. First of all, the conceptual model for service ecosystems must
be formalized by the meta-model for establishing consistency of service ecosys-
tem architecture descriptions, as well as for enabling rigorous service ecosystem
design and analysis. Secondly, design principles for the meta-model need to re-
flect the requirements implied by service ecosystem sustainability and the vision
of open service ecosystems.

The main elements of the conceptual model for service ecosystems were de-
scribed in Chapter 2. The conceptual model declared service ecosystems as com-
plex systems comprising capabilities, members, services and infrastructure. These
service ecosystem elements are elaborated and formalized in the meta-model as
a domain ontology model for service ecosystems. The domain ontology model
formalizes ecosystem capabilities and relates them with life cycles and infras-
tructure services. Ecosystem members are represented in the domain ontology
model by concepts of actors, roles and legal entities. The domain ontology model
formalizes also the service categorization of the conceptual model. Elements of
the service ecosystem infrastructure (e.g. infrastructure services and service en-
gineering capabilities) are provided with formal definitions in the meta-model.
Moreover, additional constructs are specified in the meta-model when needed for
establishing consistent representations and relationships between the service eco-
system concepts.

For establishing viability of service ecosystems, the meta-model must take
into account the stakeholders described in Section 2.2 and their concerns iden-
tified in Section 2.3.1. Towards this end, the service ecosystem meta-model in-
cludes constructs for /) enabling efficient engineering techniques and practices,
2) supporting diverse business and service delivery models, and 3) a rich feature
management model supporting declaration, management and evolution of abstract
service platforms.

Efficient service engineering techniques and practices are needed for address-
ing the concerns and supporting the activities of service engineers, infrastruc-
ture providers, and engineering tool providers. For enabling efficient engineering
techniques and practices in service ecosystems, the meta-model includes prin-
cipal concepts underlying model-driven engineering [144] as well as constructs

3.1 Design principles for the meta-model 45

supporting situational method engineering [103]. The principal MDE concepts
included in the meta-model formalize the notions of models and their dependen-
cies [44, 17], enable multi-level meta-modelling [7], as well as provide means
for unification of linguistic and ontological modelling practices [8, 54]. Conse-
quently, the service ecosystem meta-model subsumes a mega-model [18, 16] (i.e.
a model that represents or refers to models) for service-oriented software engi-
neering.

Linguistic meta-modelling is used for defining modelling languages and their
primitives on the meta-model level [8, 54] and so-called linguistic instantiation
is used for instantiating model elements from the types defined within a corre-
sponding meta-model. That is, linguistic instantiation crosses modelling levels
and forms the basis for linguistic meta-levels [8] (e.g. levels comprised of meta-
meta-models, meta-models and models).

Domain concepts are designed using ontological meta-modelling where so-
called ontological instantiation is used for creating domain specific artifacts using
the concepts defined at the upper-level ontology, or an ontology meta-model [8,
54]. Ontological instantiation takes place within a linguistic modelling level [8].
Ontological instantiation provides support for facilitating dynamic user extensions
to modelling concepts, modelling notation and the models created from them [8].
This is especially invaluable for facilitating dynamism of knowledge in open ser-
vice ecosystems.

The principles of linguistic and ontological meta-modelling are illustrated in
Figure 3.1. In the figure, so-called linguistic instantiation takes place between
the elements residing at linguistic modelling levels L1 and L2 that are separated
vertically: Breed is a linguistic instance of MetaClass, and Collie is a linguistic
instance of Class, for example. In Figure 3.1 the linguistic modelling level L1
includes three ontological modelling levels O2, O1 and O0. So-called linguistic
instantiation takes places between the concepts of Breed, Collie and Fido corre-
spondingly. It should be noted that ontological instantiation is not a transitive
relationships: while in the example illustrated in Figure 3.1 Fido is-a Collie is-a
Breed does hold, it does not make sense to say that Fido is-a Breed.

There is an essential difference between linguistic and ontological instantia-
tion, in addition to the fact that the former is an inter-modelling level relationships
while the latter is an intra-modelling level relationship. This difference is about
the intensional and extensional meaning [82, 54] of concepts defined in the mod-
els. While in the example case illustrated in Figure 3.1 Fido is conformant with the
characteristics of a Collie, as specified in the intensional part of the Collie concept,
it also belongs to the set of all Collies. That is, in ontological meta-modelling the
instantiation relationship happens between two concepts if and only if one con-
cept is conformant to the intensional part of the other and is an element of the

46 3 A META-MODEL FOR SERVICE ECOSYSTEMS

L1 L2

02

Linguistic
instanceOf,

Breed | ™ MetaClass

A

Ontological 3 Ontological

instanceOf
Collie

Class

: Ontological
instanceOf

—» Object

Figure 3.1: An example of ontological and linguistic instantiation relationships [8]

extension of the other concept [54].

Situational method engineering is a software engineering discipline, which
focuses on project-specific method construction [127]. In the context of service
ecosystems, situational method engineering can be utilized for sharing and re-use
of engineering knowledge, and for establishing distributed software engineering
practices. For supporting situational method engineering, the service ecosystem
meta-model includes constructs for specification of re-usable engineering knowl-
edge, where methods are composed of autonomous method chunks [103].

Support for diverse business and service delivery models is needed for ad-
dressing especially the concerns of service providers and service ecosystem pro-
viders. This support is realized in the service ecosystem meta-model by several
constructs. The meta-model includes constructs for technology agnostic and flex-
ible specification of service composition and bundling. The concept of business
services in the meta-model corresponds to composite services delivered for ful-
filling a service role. The meta-model provides means for exploiting possible
sub-contracting relationships, supply chains, or other forms of business networks
in business services. The concepts enabling such rich expression of business net-
works are based on the notion of commitment operations [150] and loose coupling
between service roles, business services and their features. The meta-model in-
cludes constructs for specification of service bundles. The constructs representing
service bundles enable expression of additional functionality and features for de-
livering added value and differentiation in service markets. Finally, constructs for
representing product models are included in the service ecosystem meta-model.

Ecosystem providers, infrastructure providers as well as service engineers

need to be able to evolve and manage the service ecosystem infrastructure to bet-
ter respond to ever-changing business and customer needs. The service ecosys-

3.1 Design principles for the meta-model 47

tem meta-model includes a rich feature management model for managing features
of service ecosystems and their infrastructures. The feature management model
comprises feature categories and binding models. The feature categorization en-
ables control over description and management of service ecosystem features and
their inter-dependencies. The binding models allow definition and control over
feature usage. The dynamism of features, and the binding targets (e.g. service
channels) and features bindable to them can be specified with the constructs pro-
vided by the meta-model. This allows for explicit declarations about such charac-
teristics as late binding or late encapsulation in service ecosystems.

The service ecosystem meta-model provides the foundations for supporting
continuation of viability during service ecosystem operation, as well as for en-
abling open service ecosystems. The foundations are delivered by addressing
a) semantic interoperability, b) dynamism required for opportunistic and flexi-
ble business networking, ¢) evolution capability supporting progressive business
environments, and d) ecosystem architecture specialization explicitly in the meta-
model definition.

Semantic interoperability is addressed in the service ecosystem meta-model
by the domain ontology model. The domain ontology model serves as a means for
enabling interoperability through unification (during service ecosystem operation)
of concepts. The meta-model enables control over service ecosystem dynamism
by demarcation of static and dynamic parts of ecosystem concepts. Ecosystem
evolution and specialization is addressed with modelling structures that support
specification of generalization and instantiation hierarchies, as well as extension
and management of variability of ecosystem concepts and features.

In general, models can be considered either as prescriptive systems models or
descriptive domain models [5]. A system model is a description or specification of
a system where a domain model describes its environment. The service ecosystem
meta-model plays both of these roles. The domain model of service ecosystems is
defined by the domain ontology model described in Section 3.6 (used for defining
domain concepts and their relationships) and the intension model (used for defin-
ing the features that are used for defining the intensions of the concepts) defined in
Section 3.7. Other parts of the meta-model define the characteristics of the service
ecosystem as a system model.

There is an important implication stemming from the distinction of the sys-
tem model and the domain model roles of the service ecosystem meta-model that
should be noted: ontological instantiation (distinction between types and their in-
stances) takes place only within the domain model part and is addressed by the
concepts residing in the domain ontology model and the intension model. For
example the model element named Event is defined at the system model part of
the ecosystem meta-model; it is thus not subject to ontological instantiation and

48 3 A META-MODEL FOR SERVICE ECOSYSTEMS

should not be considered as an ontological type or instance. On the contrary, the
model element named LegalEntityKind is defined at the domain model part of the
ecosystem (more specifically, within the domain ontology model) and plays the
role of an ontological type for legal entities. The ontological instances of legal
entities are represented with the concept of LegalEntity defined within the domain
ontology model.

3.2 Modelling practices and conventions

In the following sections the meta-model for service ecosystems is described.
There are several options for modelling of conceptual frameworks, ranging from
mind-maps ! to formal ontology definition languages, such as OWL DL 2. The
various modelling approaches differ from each other for example on the basis of
their notation, semantics and applicability.

The modelling approach selected for this thesis is based on the Meta Object
Facility (MOF) [112]. MOF is an industry-standard developed by the Object Man-
agement Group (OMG) 3. It is is especially applicable for definition, development
and management of modelling languages and models created by those languages.
In essence, the MOF provides a definition for a so-called meta-meta-model, that
is, a meta-model for declaration of meta-models. The foundational elements of
MOF include for example definitions for such concepts as “Class”, “Property” or
“Package” applicable for description of classes, their features and collections of
classes, correspondingly. MOF is utilized for example by the UML-standard [113]
for definition of the UML abstract syntax (i.e. the UML meta-model).

The meta-model for service ecosystems has been designed with a commercial
UML-modelling tool. UML class diagram notation [111] was utilized for design-
ing and illustrating the meta-model elements. The UML-model was then imported
to the Eclipse framework # for enabling development of the tools required by the
model-driven service ecosystem engineering methodology. During the import the
UML-model was converted to Ecore model, which is the meta-meta-model of
the Eclipse Modeling Framework [39]. The Ecore meta-meta-model is closely
aligned with the OMG MOF.

The service ecosystem meta-model is a single, unified model where every
model element is connected to at least one other element of the model by gener-
alization or association. The model exists both as an UML model and an Ecore
model [136]. As the meta-model comprises currently over 260 classes it is pre-

"http://en.wikipedia.org/wiki/Mind_map
“http://www.w3.org/TR/owl-guide/
3http://omg.org

“http://eclipse.org

3.2 Modelling practices and conventions 49

package systems| SystemsDiagramu

+cmodel +conformsTo
0.* 0.1
+representationOf System |+element

DigitalSystem

1

PhysicalSystem *+SYSteM A pstractSystem | *System
! 1

+extension +elementOf
+intension 0.1 | | 0.. 0.
|IntensionaISystem | | Set I
[1]
0. 0.*

+targetOf +subset +includedin

Relationship

+source |1..* +sourceOf (0..”

Figure 3.2: Modelling conventions: associations, generalizations and uniqueness
of naming.

sented piece by piece in the following sections. Not every class of the meta-model
is presented in this thesis for clarity of presentation. Especially, some generaliza-
tion hierarchies are not presented but only the most generic classes are discussed.
Some of the meta-model elements not discussed thoroughly in this thesis have
been elaborated in previous publications [135, 141, 140]. However, the presen-
tation in this thesis describes the most fundamental elements of the meta-model
such that the feasibility, applicability and utility of the model-driven approach for
service ecosystem engineering can be evaluated.

The modelling conventions followed for illustrating the service ecosystem
meta-model are exemplified in Figure 3.2 and Figure 3.3. As discussed above,
the UML class diagram notation [111] is used for illustrating the meta-model el-
ements. Figure 3.2 describes a fragment of the meta-model that defines seven
(7) elements: System and its three specializations (PhysicalSystem, DigitalSystem
and AbstractSystem), and Set, IntensionalSystem and Relationship as specializa-
tions of the AbstractSystem element.

Class named System occurs twice in Figure 3.2 while class named Abstract-
System occurs both in Figure 3.2 Figure 3.3. All occurrences of classes with the
same name in the diagrams represent the same meta-model element; correspond-

50 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package models [Eﬂ ModeIDiagramu

AbstractSystem NamedElement

+name : String [1]

1 +elements |0..*

M odelElement

{redefines conformsTo}

+conformsTo |1 |

ReferenceModeI_ TerminaIModeI‘

Figure 3.3: Modelling conventions: attributes and redefinitions.

ingly, the meta-model elements are uniquely named. When same class occurs
more than once in a class diagram the out-going associations are only described
in one place.

Naming of association ends is used in the meta-model illustrations for iden-
tifying relationships between classes instead of association names [111]. This is
due to the fact that association names are not used in MOF-based meta-modelling
but instead navigable association ends are regarded as properties of classes. All
association ends are named in the meta-model and they are considered as pub-
lic properties of their owning classes. All class properties, including association
ends, are attached with a multiplicity conforming the the UML-notation [111].

In the class diagrams illustrating the service ecosystem meta-model both one-
way and two-way associations are utilized. One-way associations are navigable
only to the direction of the arrow-head. For example, System owns the association
end named conformsTo as illustrated in Figure 3.2. The corresponding associ-
ation can be read as “System conformsTo System”. Two-way associations are
represented with lines without any arrowheads. A two-way association is defined
in Figure 3.2 between the elements named System and Set with roles names of
elementOf and element. The the two-way association in the example can be read
as: “System (is an) elementOf Set, and Set (has) element(s) (of kind) System”.
Navigable association ends are owned by the classes located at the opposite side
of the association line. In the example, System owns the conformsTo association
end, i.e. the class named System has a similarly named property which may refer
to another System.

Two kinds of associations are used in the service ecosystem meta-model: reg-
ular associations representing named references between classes and compos-
ite associations representing whole-part relationships. Composite associations

3.3 Foundations for service ecosystem modelling 51

are identified by a filled diamond shape. The diamond shape is located at the
composite-end (the owning end) of the association. In Figure 3.3 a Model is a
composite class which includes zero or more ModelElements. In the meta-class
this composition is used to denote conceptual “ownership” or inclusion of ele-
ments: a Model owns the included model elements. Each class may be included
in at most one composite. The multiplicity of the association end at the composite-
side of the association is always exactly one (i.e. a ModelElement is necessarily
included in exactly one Model).

In addition to association ends classes can include attributes. In Figure 3.3 the
class named NamedElement includes an obligatory (multiplicity is exactly one)
attribute named name which is of type String. Primitive types, such as String or
Integer, are part of the MOF industry standard and usable as such in modelling
elements.

Redefinition of properties is utilized in the meta-model for expressing spe-
cialization of inherited properties, especially association ends. Redefinition is
supported by the UML-notation with a redefines tag. In Figure 3.3 model el-
ement named Model redefines association end named conformsTo which is in-
herited from class System through a generalization hierarchy. This redefinition
means that a Model can only conformTo other Models, but not Systems which was
the original definition of the association. In addition to redefinitions, property
sub-setting (declared by subsets tag) [113] is utilized in some of the meta-model
diagrams. MOF standard [112] does not actually support property redefinition
or subsetting; these constraints described in the UML representation of the meta-
model are however encoded in the model transformations and other modelling
tools developed in this thesis.

3.3 Foundations for service ecosystem modelling

For establishing the design principles defined in Section 3.1 and to enable tech-
nology-agnostic declaration of ecosystem behaviour, the service ecosystem meta-
model is constructed over a small core of foundational concepts. Support for
efficient engineering practices in service ecosystems is provided by constructs
formalizing the foundations of model-driven engineering [44, 45, 54]. For de-
scribing behaviour in service ecosystems, the meta-model defines a classification
of events and behaviour. These constructs are described in the following.

The service ecosystem meta-model formalizes the foundations of model-driven
engineering using a systemic approach, where models are considered as systems
representing other systems. Following the literature in the theory of model-driven
engineering [44, 45, 54], systems are classified into physical, digital and abstract
systems. A system can be a representation of another system or conform to an-

52 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package systems [@ Systen’sDiagramu

+cmodel +conformsTo
0.* 0..1
+representationOf System J*+element

DigitalSystem
]
PhysicalSystem *systeml ApstractSystem | +SYystem
1 1
+extension| +elementOf

+intension 0.1 | | 0.. 0.*

IIntensionaISystem I I Set I

[I]

0.* 0.”
+subset +includedin

+targetOf

Relationship

+source |1..* +sourceOf [0..*

Figure 3.4: Hierarchy of systems.

other system. In addition, a system can be part of a set of systems, where a set
is a specific kind of an abstract system. An abstract system can have both inten-
sional and extensional part; this allows linguistic and ontological modelling of
abstract systems, as discussed in [8]. The intensional part of the abstract system
defines its characteristic features while the extensional part defines the collection
of instances of the corresponding abstract system.

A system can play the role of model with respect to another system [44]. That
is, when a system is considered as a representation of another system, we say
that the first one is a model of the second one, the system under study. A model
represents the system under study in a way that satisfies Liskov’s principle of sub-
stitutability [11]. Liskov’s principle [91] states that two entities are substitutable
with each other if and only if every property that can be proved about an entity can
also be proved about the other. The preceding classification and relationships be-
tween systems are formalized in the meta-model by constructs that are illustrated
in Figure 3.4.

Systems can be related by domain-specific relationships. For this purpose, a
concept of Relationship is provided in the meta-model as illustrated in Figure 3.4.
A Relationship is considered as a kind of abstract system which refers to other
systems known as the source and the target of the relationship. A relationship

3.3 Foundations for service ecosystem modelling 53

package models [E@j ModeIDiagramu

AbstractSystem NamedElement

+name : String [1]

1 +elements |0..*

M odelElement

{redefines conformsTo}

+conformsTo |1 |

ReferenceModel TerminaIModeI:

Figure 3.5: Models as abstract systems.

may have multiple sources and targets.

The service ecosystem meta-model introduces an explicit concept for repre-
sentation of models. As illustrated in Figure 3.5, a model is considered as an
abstract system and a named element, which includes a collection of model ele-
ments. There are two different kinds of models that are used for practising model-
driven engineering. So-called reference models [75, 158] are used for defining
modelling languages. Reference model defines the typing rules for models, that
is, the kinds of model elements and the way they can be arranged, related, and
constrained [17]. A reference model thus specifies the rules and the language for
describing corresponding kinds of models. At the instance level, models are con-
structed in conformance to a reference model. A model M is said to conform
to its reference model RM if and only if each model element in M has its cor-
responding meta-element in RM [17]. A model that does not act as a reference
model to any other model, is typically called a ferminal model. The relationships
between a model and its reference model is illustrated in Figure 3.5.

Service ecosystems involve different kinds of behaviour associated with ser-
vice life cycles, services and service endpoints, for example. Behavioural mod-
elling is founded on the concepts of Event and Behaviour as illustrated in Fig-
ure 3.6. An Event in the meta-model is considered as a specific point or duration
of time where a certain behaviour is enacted. An event is enabled and can be
enacted if and only if all its successor events have already happened. Events are
classified into phases and actions, making a distinction between events associated
with complex and simple behaviour: a Phase is associated with a process, while
an Action is a sort of event which is associated with an (atomic) activity.

A Process is considered as a behavioural unit which composes a set of actions.
For declaring alternate enactment paths in processes, the notion of Choice is used.

54

3 A META-MODEL FOR SERVICE ECOSYSTEMS

package behaviour[BehaviourDiagramy

+e0 [action ! +successor |0..*
1 1 Event [0.
+choice +choice +predecessor
0.7 07 IO..* *behaviour | gehaviour
Choice +event 0..1

0..* +stage
+choice Phase 0.*

+events . +
Action rec
+ t[0..* N
even 1. 0.1
+event| +stages|[1..*
Behaviour 0..*
{redefines pehaviour} {redefines behaviour}
+process T +behaviour +pattern (1
+behaviour |0..1 | I 0..1
- BehaviouralPattern
+process Process Activity
AN

Commitment ServiceActivity EngineeringActivity

+description : String [1]

Figure 3.6: Concepts for modelling behaviour in service ecosystems.

3.3 Foundations for service ecosystem modelling 55

A choice prescribes a mutual exclusion between two actions. A set of events de-
fined by a process, the transitive closure of the successor relationships, and a set
of choices makes a Process a behavioural description that corresponds to the no-
tion labelled prime event structures [174]. Event structures provide an elegant
and generic formalization of behaviour that is particularly well suited for express-
ing the externally observable, reactive behaviour of services, and service-oriented
business processes and choreographies in varying kinds of service ecosystems.

The basic unit of behaviour is described by the concept of Activity, which
represents “any activity that is considered as a conceptual entity at the given
level of abstraction” [163]. An Activity is considered a physical or mental act of
performing something that changes the state of the cooperative environment. In
the case of communication behaviour, the set of activities would include send and
receive activities mediating the different kinds of information entities involved
between cooperation participants, for example.

Activities are further classified into three distinct categories: /) commitments,
2) service activities, and 3) engineering activities, as illustrated in Figure 3.6.
Commitments are kinds of activities that declare interaction between named roles
defined in choreographies. Service activities are declared in interaction schemes
of service endpoint kind definitions. An interaction scheme may for example de-
clared service activities for create, read, update and delete operations in service
ecosystems that follow CRUD-like service architectures. Finally, engineering ac-
tivities are defined by engineering tool types that are part of the service ecosystem
engineering space declarations. They prescribe activities that can be taken in en-
gineering methods for delivery of engineering artefacts.

Choreographies are used in service ecosystems to describe and coordinate
multi-lateral, interactive behaviour taking place between a group of actors. The
actors take a certain role declared in the choreography specification. The ser-
vice ecosystem meta-model formalizes choreographies as structures comprising
events, conditions, roles and commitments.

As illustrated in Figure 3.7, a choreography in the service ecosystem meta-
model is considered as a kind of a Process. A Choreography is a composition of a
collection of ChoreographyRoles and a collection of ChoreographyStages. Each
choreography role is a named element that is assigned with a set of commitments.
A commitment is a kind of activity which denotes a binary, asymmetric relation-
ship between two choreography roles: one role is considered as the creditor and
the other role is considered as the debtor of the commitment. A debtor has the
obligation to fulfill the commitment towards the creditor. Typically commitments
are fulfilled in service ecosystems with communication activities originating from
the debtor and having a creditor as the destination. The real-world effects of dis-
charging the commitments, such as associated with co-creation of value during

56 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package behaviour [Choreography[)iagramu

Process igole
% +choreograph 1. [r
Choreography p grap y+roles ChoreographyRole
+creditor |1
Rule 1 |+choreography +debtor |1

+expression : String [1] +commitments | 0..*

+condition [0..1 {redefines events} Commitment [0.*
+commitment

+events |1..*

+stage _|choreographyStage |*event
1 0..* {redefines behaviour}

v

Action

+behaviour |1

Activity

Figure 3.7: Choreography diagram.

the service delivery, are not considered by the meta-model. However, such asso-
ciations with the real-world effects can be specified in domain-specific ecosystem
models as extensions of the ChoreographyStage element, for example.

The behaviour of a choreography is declared as a partial ordering between a
set of ChoreographyStages. A choreography stage is an action which is labelled
by a commitment, and is associated with an optional rule expression. The rule
expression defines a condition under which the corresponding action represented
by the choreography stage can be enacted. The set of choreography stages can
be considered as a collection of event-condition-action rules (ECA) (see for ex-
ample [100]) where ChoreographyStages correspond to events, Rules express the
condition part, and Commitments correspond to actions.

3.4 Service ecosystem architecture descriptions

A service ecosystem architecture description includes representations of several
ecosystem aspects, such as behaviour, concepts and structure. The meta-model
for architecture descriptions is illustrated in Figure 3.8. A service ecosystem
architecture description is a model which comprises five kinds of sub-models:
1) ecosystem model, 2) domain ontology model, 3) intension model, 4) engineer-
ing model, and 5) knowledge management model. These sub-models are briefly
characterized below and elaborated in subsequent sections.

3.4 Service ecosystem architecture descriptions 57

package seadescription | SEADescriptionDiagramu

SEADescription g tM°de! +elements | sEAM odel

1 0.” T

IntensionModel EcosystemModel | [|EngineeringModel

DomainOntologyModel KnowledgeManagementModel

Figure 3.8: Service ecosystem architecture description diagram.

The constructs defined in the ecosystem model facilitate especially service
ecosystem governance. The ecosystem model provides modelling constructs for
specifying capabilities, structure, behaviour, artefacts and actors of service eco-
systems. Ecosystem models are specified primarily by ecosystem providers and
infrastructure providers for defining the purpose, scope and structure of service
ecosystems.

A domain ontology provides an explicit and formal description of the corre-
sponding portion of reality using selected level of granularity and viewpoint [59].
The service ecosystem concepts are made explicit by the domain ontology model.
An ontology in this context is considered as a shared, descriptive, structural model
that represents reality by a set of concepts, their interrelations, and constraints un-
der the open-world assumption [5].

The domain ontology model provides means for establishing semantic inter-
operability by specification of service ecosystem concepts. A service ecosys-
tem architect defines a domain ontology by extending the concepts of the do-
main ontology model. The domain ontology model includes definitions for dif-
ferent service ecosystem entities (e.g. services and legal entities) and their inter-
relationships. More over, the domain ontology model includes elements that are
used for specification of domain concept hierarchies and relationships.

Interoperability knowledge in service ecosystems is specified with constructs
defined in the domain ontology model and the intension model. While domain on-
tology model specifications address hierarchies and relationships between domain
concepts, the intension model provides definitions for structural properties of the
concepts. The relationship between the domain ontology model and the intension
model makes explicit the inter-dependencies between ontological and linguistic

58 3 A META-MODEL FOR SERVICE ECOSYSTEMS

meta-modelling discussed in Section 3.1. Ontological meta-modelling facilitates
dynamic user extensions to modelling concepts, modelling notations and the mod-
els created from them, while linguistic meta-modelling is used for defining mod-
elling languages and their primitives on the meta-model level [8]. The unification
of the two meta-modelling dimensions in the service ecosystem meta-model en-
ables specification and management of extendable, domain-specific vocabularies
and modelling languages.

The engineering model constructs are used for specification of the engineering
knowledge and for enabling efficient engineering practices in service ecosystems.
Efficient service engineering is supported by prescribing reusable engineering as-
sets. Engineering assets include definitions for product models and binding mod-
els, as well as engineering methods. Product models prescribe artefacts and their
compositions appropriate to be utilized in service engineering methods. Typically
the decompositions of artefacts would follow the structure of knowledge items,
but other kinds of structuring allowing more efficient engineering efforts can also
be utilized. Binding models declare the rules for late encapsulation of services
with bindable features: binding specifications prescribe what kinds of features
can be bound to service roles, business transactions or service connections. A
situational method engineering approach is applied for specification of engineer-
ing knowledge. In this approach, methods are composed of autonomous method
chunks [103].

The knowledge management model constructs provide means for establishing
interoperability and engineering knowledge management infrastructures required
in open service ecosystems. The knowledge management model provides means
for specification of knowledge repositories, and knowledge items and relation-
ships managed in the repositories. A knowledge repository represents a coherent
knowledge base comprising a collection of artefacts which conform to a common
intensional definition. In the service ecosystem meta-model, a single domain con-
cept may have several roles in ecosystem life cycles: concepts can be declared
as representations of multiple life-cycle artefacts. Such one-to-many relationship
between concepts and life-cycle artefacts is needed for encoding different roles of
knowledge in service ecosystem life cycles. This enables formalization of con-
text and situation specific interpretations for concepts, and variable consistency
criteria for their intensions.

3.5 Ecosystem model
The service ecosystem meta-model provides constructs for defining the scope,

structure and behaviour of service ecosystems; these constructs are defined under
the ecosystem model. The scope of service ecosystems is defined with ecosystem

3.5 Ecosystem model 59

package ecosystemmodel[Ecosysteml\/lodeIDiagramy

+model _|EcosystemModel Model
1
{redefines elements} ModelElement
+elements | 0..* T

AbstractSystem L, |EcosystemElement EcosystemDomain

AN

I ' Acto
EcosystemCapability | |LifeCycle Hifecycle ctor

0.1 47

+capability | 1 +lifecycle |0..* *
47 - panity Y +product 0. NamedElement
Capability LifeCycleProduct

+name : String [1]

Figure 3.9: Ecosystem model diagram.

capabilities, structure with ecosystem domains, and behaviour with ecosystem life
cycles. The ecosystem model identifies the actors and infrastructure services in
service ecosystems. The ecosystem model addresses especially service ecosystem
governance and knowledge management issues. The ecosystem model comprises
a collection of ecosystem elements, as illustrated in Figure 3.9. The ecosystem
elements include ecosystem capabilities, domains, life cycles and life-cycle prod-
ucts, and actors; these individual elements are elaborated below.

3.5.1 Ecosystem capabilities

Ecosystem capability specifications are used for representing the purpose of the
ecosystem. An ecosystem capability denotes an ability of a service ecosystem
to perform actions and to deliver qualities to its members. Ecosystem capabil-
ities are represented in the meta-model by the concept of EcosystemCapability,
as illustrated in Figure 3.10. An ecosystem capability is a specialization of the
Capability concept. A capability can exploit one or more other capabilities for
delivering the corresponding ability.

Ecosystem capabilities are further categorized into functional and qualitative
capabilities, and knowledge bases, as illustrated in Figure 3.10. A Functional-
Capability represents a service ecosystem’s ability to deliver some function to its
members. Functional capabilities are supported by qualitative capabilities, repre-

60 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package ecosystemmodel[CapabilityDiagramﬂ

L Capability

0.*
+enables |0..*

E:osystemCapability I I?ehaviouraICapability I IEngineeringCapabiIity I
[) I]
AN ﬁlx lﬁ
FunctionalCapabiIity] |Qua|itativeCapabiIity| lServiceProtocoI| |Method] I Tool l
Il I] [|]

KnowledgeBase lBusinessTransaction] |InteractionScheme |
[) []

[

Figure 3.10: Capability diagram.

sented with the concept of QualitativeCapability in the meta-model. A qualitative
capability specifies how ecosystem functions must be delivered. An example of
functional capability is dynamic collaboration establishment, which is supported
by a qualitative capability of dependability (e.g. trusted and secure interactions).
A KnowledgeBase represents a capability of the service ecosystem to maintain a
coherent collection of artefacts utilized in life cycles; the notion of a knowledge
base will be elaborated below.

In addition to ecosystem capabilities, the service ecosystem meta-model in-
cludes categories for behavioural and engineering capabilities. A Behavioural-
Capability represents a demarcated unit of behaviour exposed by a service eco-
system component. The behavioural capabilities are further categorized into busi-
ness transactions, service protocols and interaction schemes which are exposed by
business services, component services, and service endpoints, correspondingly.
The behavioural capabilities are discussed in more detail later.

Engineering capabilities express means for enabling service engineering prac-
tices in ecosystem domains. In the meta-model, engineering capabilities are repre-
sented by the concept of EngineeringCapability illustrated in Figure 3.10. There
are two concrete engineering capabilities: methods and tool types. A method
provides a process and guidelines for production of a part of an engineering prod-
uct. A tool type provides a specification of an engineering tool for delivery of
engineering activities producing required product elements. These engineering
capabilities are further elaborated in Section 3.8.

3.5 Ecosystem model 61

package ecosystemmodel [EcosystemDorminDiagramu

EcosystemModel +provides EcosystemCapability
0.*
T +domain |0 * +requires (0..
EcosystemElement L4 | EcosystemDomain +domain
0.*
+domain |0..* +domain |0..* +domain

1

EngineeringSpace 1
+engineeringspace +ontology
1 1..* |, +choreographies

DomainOntologyModel | |ServiceChoreography

Figure 3.11: Ecosystem domain diagram.

3.5.2 Ecosystem domains

Ecosystem domains are the main construct provided by the meta-model for struc-
turing service ecosystem architectures. For example in cloud computing environ-
ments (see e.g. [37]) the notion of domains could be used for representing differ-
ent cloud computing models such as Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS) and Software-as-a-Service (SaaS). An ecosystem domain is
considered as an ecosystem model itself, as illustrated in Figure 3.11. An ecosys-
tem domain may thus include any number of ecosystem elements, including other
ecosystem domains.

An ecosystem domain may provide a number of capabilities to be utilized
by other domains. This facilitates control over managing dependencies between
ecosystem domains. In a cloud computing environment, the PaaS-domain might
provide service deployment capabilities to be utilized by a SaaS-domain, for ex-
ample. In the Pilarcos framework, which is discussed in Section 5.2, an ecosystem
domain representing a reputation system [133] provides a trust management ca-
pability to be utilized in dynamic collaboration establishment processes.

An ecosystem domain includes specifications for a collection of service chore-
ographies, represented by the element ServiceChoreography in Figure 3.11. The
notion of service choreography is defined in the domain ontology model discussed
in Section 3.6. In addition, an ecosystem domain is associated with an engineer-
ing space, and a domain ontology model; these constructs are elaborated in Sec-

62 3 A META-MODEL FOR SERVICE ECOSYSTEMS

ackage lifecycle) LifeCycleDiagram
P 9 yolel | ol 9 u EcosystemCapability
1

+capability

EcosystemElement

Cee— +lifecycle [0..

A A +lifecycle LifeC +ifecycle
yee |EcosystemElement |
—— 1 :I 0.1 EcosystemElement
— . ’—J T
75 phase +product .
1.* +phase [0..* +input 0. [0.* {redefines element}
Actor | | LifeCyclePhase I | LifeCycleProduct I;-eleL
]] [10..
+actor |1..* +participates |1..* +phase |1 0+..F:hase+output 0.* {redefines elementOf}
+liaison |1 +elementOf |0..*

ServiceLiaison |Artefact| | ArtefactSet I—{>| Set l
[] | |]

Figure 3.12: Life-cycle diagram.

tion 3.8 and Section 3.6, correspondingly.

3.5.3 Ecosystem life cycles

Within ecosystem domains capabilities are realized with service ecosystem life
cycles, infrastructure services and qualitative features. Service ecosystem life cy-
cles are ecosystem elements that compose a set of life-cycle phases and life-cycle
products. The formalization of life cycles in the service ecosystem meta-model is
illustrated in Figure 3.12. Life-cycle phases are represented by the element named
LifeCyclePhase. Each life-cycle phase can be associated with one or more life-
cycle products acting as inputs and outputs for the corresponding phase. A life-
cycle product is represented by the element named LifeCycleProduct. Artefacts
and artefact sets are considered as realizations of life-cycle products. A life-cycle
phase is associated with the set of actors that are eligible for taking roles in the
phase. The roles are declared through a service liaison (discussed in Section 3.6),
which associates a service choreography with a service life-cycle phase.

3.6 Domain ontology model

The domain ontology model supports establishment of semantic interoperability
in service ecosystems. Semantic interoperability is addressed by the domain on-
tology model by formalizing the conceptual model of service ecosystems. The
domain ontology model includes definitions for service contracting concepts, co-
operation facilities and service ecosystem entities. The domain ontology model

3.6 Domain ontology model 63

enables definition of holistic, unifying ecosystem vocabularies which are utiliz-
able for establishing semantic interoperability in service ecosystems.

The domain ontology model comprises a set of domain ontology elements,
as illustrated in Figure 3.13. Each domain ontology element is considered as an
abstract system in addition to of being a kind of model element. This allows for
specification of conformance and representation relationships between the model
elements inside domain ontology models, which is required for addressing service
ecosystem dynamism through extendability of domain ontologies.

package domainontology [DomainOntoIogyDiagramU

M odel kK—DomainOntologyModel

+model | 1 M odelElement
+elements | 1..* zr
AbstractSystem K—— DomainOntologyElement
Concept +arget Relationship
+isDynamic : Boolean [1] = true 1

+source |1 +targetOf |0..*
+system| 1 Conce ptRelationship
+intension |1 +sourceOf | 1ow erBound : Integer [1] = 0

Conceptintension 0..* |+upperBound : Integer [1] =1
0.* 0..1
+opposite +oppositeOf

Figure 3.13: Domain ontology diagram.

Domain ontology elements are further classified into concepts and concept re-
lationships. Domain concepts are represented in the meta-model by the notion of
Concept. Each concept is provided with a declaration of its intension, represented
by the element named Conceptintension. As illustrated in Figure 3.13, each con-
cept owns its intension which defines the characteristic features of the concept.
The characteristic features are specified with modelling elements specialized from
the InstantiableElement, especially Feature elements which are described in Sec-
tion 3.7. Consequently, the intension of a concept is described as a collection of
selected features.

The composite one-to-one association between concepts and their intensions

64 3 A META-MODEL FOR SERVICE ECOSYSTEMS

represents a design decision that has been made to separate the ontological ele-
ments from their intensional features, and their corresponding inter-dependencies.
This design decision enables separation of the ontological space and features
space of the domain ontology model. The separation between ontological and
feature spaces in the service ecosystem meta-model supports reuse of feature def-
initions when describing concept intensions, and especially, utilization of feature
management theories and practices, such as described in [15], for managing ser-
vice ecosystem features.

In the ontological space, concept specializations and relationships (represented
by the ConceptRelationship in Figure 3.13) between concepts are used. The inten-
sions of concepts are defined as collections of features that are defined in the fea-
ture space, more concretely, using the intensional model described in Section 3.7.
Inter-dependencies between features, such as mutual exclusion, can be declared
using the modelling construct of Featurelnteraction described in Section 3.7.

3.6.1 Top-level concepts

The foundational service ecosystem concepts defined by the service ecosystem
meta-model include service liaisons, service contracts, concept sets, service of-
fers, service channels and co-operation facilities. Each concept can provide a
representation of a life-cycle product, i.e. an artefact or artefact set used in eco-
system life cycles. The domain ontology model defined in the service ecosys-
tem meta-model is extended in service ecosystem architectures to represent the
domain-specific versions of these generic concepts. The top-level concepts of the
domain ontology model are illustrated in Figure 3.14.

The element DomainConcept is utilized for specifying domain-specific con-
cepts that are not addressed by the service ecosystem meta-model; such concepts
might include for example products associated with the ecosystem. The intension
of domain concepts comprises a set of user-definable domain features which may
have conformance relationships with each other.

The concepts of EntityKind and Entity declare conceptual typing hierarchies:
each entity conforms to a unique entity kind. These categories of entities and
entity kinds include concepts for describing services (business and component
services), service endpoints and legal entities, for example. The semantics of the
conformance relationships between the domain ontology concepts is ecosystem-
specific, and are validated with domain-specific infrastructure services and tools.
The meta-model does not address the formalization of such domain-specific se-
mantics, however, regulations and constraints describing such semantics can be
weaved as comments to the corresponding modelling elements.

An ontological concept is represented by the Concept element, which is con-
sidered as an abstract system as illustrated in Figure 3.15. Each Concept can be

3.6 Domain ontology model 65

package concepts [@ ConceptualFramew orkDiagramu

Concept +model

*

+isDynamic : Boolean [1] = true 0

AN
DomainConcept LifeCycleProduct

ServiceLiaison ConceptSet | | | EntityKind ServiceChannel

+representationOf |0..*

+liaison (1 0.*
= +model | ServiceOffer | |Entity || CooperationFacility

+contract [0..*

ServiceContract | | +representationOf
0..1

ArtefactSet

Figure 3.14: Top-level concepts of the domain ontology model.

declared as either static or dynamic. Static concepts can not be instantiated dur-
ing service ecosystem operation; they can be utilized to represent for example
immutable services in Infrastructure-as-a-Service cloud environments. Dynamic
concepts are utilizable for expressing extendable service ecosystem knowledge.
A Concept is a GenerizableElement for enabling declaration of abstraction hier-
archies between concepts.

The intensional meaning of a concept is provided by the Conceptintension el-
ement and extensional meaning by a set of concepts (ConceptSet element). The
concept intension comprises a set of InstantiableElements which in essence en-
able deep instantiation [7] hierarchies between intensional elements. Each In-
stantiableElement is associated with a potency which declares if the correspond-
ing element is an instance (potency is zero) or instantiable at a lower semantic
modelling level. The service ecosystem meta-model supports natively two-level
instantiation hierarchies, which are represented in the domain ontology with En-
tityKind - Entity -pairs, and in the intension model with Feature - Property -pairs.
Deeper instantiation hierarchies can be defined by exploiting higher potencies for
features and defining conformance relationships between EntityKinds and Fea-
tures. The concept extension comprises the set of ontological instances of the
concept. For example, the intension of a concept named “Organization” would
define the characteristic features shared by all organizations (such as having a set
of sub-organizations and employees) while its extension includes all the organi-
zations available in the service ecosystem.

66

3 A META-MODEL FOR SERVICE ECOSYSTEMS

package concepts [ConceptDiagramU

+elements |0..*

InstantiatableElement

+potency : Integer = 1

. AbstractSystem Set
{redefines conformsTo}
A
+conformsTo 01 J7
+cmodel - ;
0~ Concept *system textension ConceptSet
" - . 1) 0.1
+isDynamic : Boolean [1] = true {redefines extension}
" +elementOf
0.. .
+system 1 +element 0.
{redefines element}
GeneralizableElement +general {redefines elementOr}
{redefines intension} isAbstract : Boolean [1] = false |0..*
+intension |1 -
+intension . +element | 0..
o Conceptintension

Figure 3.15: Domain ontology concepts and concept sets.

3.6 Domain ontology model 67

package contracting|[%ServiceLiaisonDiagramu

Concept

+isDynamic : Boolean [1] = true

T

+iaison ServiceLiaison [+intension
1 0..*
+phase |1 +choreography |1
LifeCyclePhase ServiceChoreography

Figure 3.16: Service liaison diagram.

3.6.2 Contracting concepts

The service contracting concepts included in the domain ontology model include
service liaisons, service contracts, service channels and service offers.

Service liaisons declare the kinds of service-based collaborations that can be
enacted in service life-cycle phases. A service liaison serves as a specification
for service contracts in the corresponding life-cycle phase. A service liaison is
defined in the service ecosystem meta-model as an association between a service
choreography and life-cycle phase, as illustrated in Figure 3.16. The intension of
a service liaison comprises a set of feature bindings, which will be discussed in
Section 3.7.

A service choreography is defined in the meta-model as a specialization of the
choreography introduced in Section 3.3. The formalization of service choreogra-
phies is illustrated in Figure 3.17. A ServiceChoreography extends the concept
of Choreography and comprises sets of service connections, business transac-
tions, business actions, and service roles. A ServiceConnection makes explicit
the negotiable relationship between service roles and acts as a target for binding
of extra-functional features. A BusinessTransaction is a declaration for a set of
business actions that are needed for fulfilling some meaningful business goal. A
BusinessAction is a specification for an event which realizes a service commit-
ment. A ServiceCommitment denotes an exchange of a life-cycle product (i.e.
artefact or artefact set) or meaning activity between service roles over a service
connection.

Service contracts are utilized in service ecosystems for establishing depend-
ability of interactions between service providers and consumers. Service contracts
can involve two or more members. Service contracts can be subject to dynamic

68 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package choreographies [Servu:eChoreography Dlagram)

lChoreography I InstantiatableElement
+potency : Integer =1

[ChoreographyRole ‘ [Actorl
[) | |

ZIB T +actor |1
redefines roles;
+°hmhll ServiceChoreography |,= +choreography _{ } +servicerole
10 I 1 +roles | 1..* B
1 | +choreography 1 StructuralElement K ServiceRole fereditor
+choreography [1
1..% +transactions o 1 ¥ +debtor {redefines creditor}
BusinessTransaction {redefines debtor}
1.» {redefines events} {redefines commitments} + i
i redefines behaviour, commitment
#ransaction +actions |1..* { ! . ! 1.* | +commitments 0.*
) * +
+connections +actlon BusinessAction p-m)[ServiceCommitment |
1. L , +event |
ServiceConnection +commitment [0..* 0. | +commitment
Choreographysx‘age Commitment
+connection |1 0.1}, +product

StructuraIElement
1

ServuceRoIe 1 +connection ServuceConnectlon] ‘LlfeCycIeProduct
| +servicerole 1. |

Figure 3.17: Service choreography diagram.

negotiations, especially in open service ecosystems. However, static or implicit
service contracts are a feasible option in service ecosystems following a more
closed approach to service collaboration establishment.

The service contract concept is formalized with modelling elements illustrated
in Figure 3.18. Service contracts are defined in the domain ontology model as
concepts that compose a collection of service channels to realize a service liaison.
The intension of a service contract comprises a set of property bindings and a set
of so-called commitment operations. The property bindings included in service
contract intensions are mostly taken for the service offers published by partic-
ipants of the contract; they are possibly refined and negotiated during contract
establishment processes.

Service channels enable provisioning of business services through different
interaction media and with varying qualitative properties affecting the service in-
teractions. The concept of service channel defined in the meta-model enables
loose coupling between business services and late encapsulation of service fea-
tures. The ServiceChannel concept, illustrated in Figure 3.19, is not related to
any other elements at the conceptual level. Instead the intensional definition of a
ServiceChannel is used for collecting cooperation facility properties, service links
and endpoint bindings to allow specification of service interactions with necessary
features.

Facility features included in service channel intensions comprise binding ports
and channels phases. A binding port represents a logical grouping of service op-

3.6 Domain ontology model

package contracting|[|§f ServiceContractDiagramU

Concept
+isDynamic : Boolean [1] = true
AN
+contract [gq rvice Contract [Feontract

0.
Hiaison |1

+system|1
ServiceLiaison

+intension |1

ServiceChannel
{redefines intension}

0.*

+channel |0..*

+intension . . +intension
—| ServiceContractintension Ii
0.*

1

{subsets elements}

0..*|, +commitmentoperation

{subsets elements}

+propertybinding | 0..*

| CommitmentOperation I
[]

| PropertyBinding
[

Figure 3.18: Service contract diagram.

package channels [@ ServiceChanneIDiagramy

ServiceCh |
!jwce anne I—D

Concept

+isDynamic : Boolean [1] = true

+system|1

+connection |1

{redefines intension}

+intension |1

InstantiatableElement
+potency : Integer = 1

ServiceChannellntension

+intension
[

1

]

{subsets elements} *intension |1 +intension IO"*

+servicelink

+binding | EndpointBinding
o 1

{redefines bindableproperty}
+address |1
EndpointAddress

AV
BindableProperty
1

+binding
0..* *bindingpor
{redefines target}

+channelproperty {subsets elements} 1. 0
0.* {subsets elements} +endpointbinding
FacilityProperty 1.*

+servicerole |1

Figure 3.19: Service channel diagram.

69

70 3 A META-MODEL FOR SERVICE ECOSYSTEMS

erations which can be accessed from the same location (address). Each binding
port conforms to a binding port type that is declared in a binding type specifi-
cation. Binding types are used in the service ecosystem meta-model to repre-
sent different interaction mechanisms, such as document-oriented messaging or
publish-subscribe paradigm.

Channel phases represent actions that need to be taken to establish the required
form and quality of service communication. Each channel phase conforms to a
channel feature, which are defined as part of channel type declarations. Channel
types are used in the meta-model for representing especially means for realizing
qualitative communication features. A channel type realizing secure messaging
may include channel features representing payload encryption and decryption, for
example.

A service link associates a binding port with a service connection and a ser-
vice role. Consequently, a service link specifies the binding ports, and thus inter-
action mechanisms to be used in service connection endpoints. Finally, endpoint
bindings are utilized for associating service endpoint addresses with the binding
ports. Service endpoint addresses are considered as unique, resolvable identifiers
enabling point-to-point communications.

The intensional definition of service contracts comprises a set of commitment
operations. The commitment operations are used for discharging the commit-
ments set for roles in the service choreography declared by the service liaison.
The set of commitment operations in service contracts represent values mutually
agreed on by service contract participants. The set of commitment operations
must cover all the commitments declared in the service liaison associated with
the contract. The commitment operations follow the ontology for commitments
in multi-agent systems [150] and they are defined in the meta-model as illustrated
in Figure 3.20.

The concept of CommitmentOperation is further classified into five different
subclasses, as illustrated in Figure 3.20. The DischargeCommitment concept rep-
resents the basic commitment operation that is used in the end for discharging a
commitment set for an ecosystem member. A commitment is discharged when the
desired condition is obtained [150]; in service ecosystems the desired conditions
are obtained typically with message exchanges. Commitments are discharged
with the service operations provided by component services. Commitments can be
cancelled with the CancelCommitment concept. A commitment can be canceled
when a service provider cannot or will not act in accordance with their commit-
ments. Commitment cancels are subject to cancellation clauses and policies that
are in effect [150] in the given service ecosystem and service contract. ReleaseC-
ommitment represents a commitment operation which eliminates the commitment
and can be performed by the creditor of the given commitment [150]. A release

3.6 Domain ontology model 71

package ecosystemintensionmodel[E] CorrmtmentOperationDiagramu

BusinessAction +operation | commitmentOperation I——D,Event |
+businessaction 0-* | %] ‘]

. [' '
+assignment AssignCommitment‘ lReIeaseCommitment| |DischargeCommitment
1L)|l

]
+discharge |0..*

DelegateCommitment | |CanceICommitment
I

J +operation |1

ServiceOperation

Figure 3.20: Commitment operation diagram.

commitment is distinguished from both discharge and cancel operations, because
release does not mean success or failure of the given commitment [150]. The
DelegateCommitment operation shifts the role of debtor to another identified eco-
system member. Finally, AssignCommitment represents a commitment operation
which transfers a commitment to another creditor, and can be performed by the
present creditor, if authorized by the prevailing policies [150].

Service offers are used by service providers to publish and advertise their busi-
ness services in a service ecosystem. A service offer enables bundling of services.
A service offer is defined in the meta-model as a concept which associates a set
of business services with a legal entity. The service provider publishing a service
offer defines which commitment operations are offered from the bundled busi-
ness services, as illustrated in Figure 3.21. Service offer intension is defined as a
collection of binding ports, a set of property bindings, and a set of port bindings.

3.6.3 Service ecosystem entities

The notion of entities is used in the domain ontology model to represent elements
of service ecosystems that possess unique, resolvable identities and existence.
The entities of the domain ontology model follow a two-level abstraction hierar-
chy where every entity in a service ecosystem conforms to an entity kind. The
service ecosystem entity kinds are illustrated in Figure 3.22. Each entity kind is
associated with an appropriate identity type which declares the mechanism to be
used for identifying the corresponding kinds of entities. Especially, legal entity
kinds are associated with a set of service ecosystem actors. The association in
effect declares what kinds of roles the corresponding kinds of entities can take in
the service ecosystem. The intensional definitions for entity kinds are specified as
collections of features, as illustrated in Figure 3.22.

72 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package contracting [ServiceOfferDiagramu

Concept
LegalEntity +isDynamic : Boolean [1] = true BusinessService

N

T +service |1..*

toffer Service Offer +offer

0.* 0.”

+provider

+system (1 +°ffer|1 +commitmentoperation | commitmentOperation
0..*

{redefines intension}
+intension |1

+intension

ServiceOfferintension

: : {subsets elements}
1 +intension | 1

+intension +bindingport|1..*
BindingPort

{subsets propertybinding} 1
+portbinding [,1..* *bindingport
{subsets elements} PortBinding

+binding
0..* {redefines bindableproperty}

+propertybinding | 0..*
PropertyBinding

+binding | 0..*

1, ServiceOperation

+operation
{redefines target}

Figure 3.21: Service offer diagram.

3.6 Domain ontology model 73

package entitykinds [| %) EntityKindDiagramy

+im>l EntityKindintension [*intension

{redefines intension} 1 [11

+system|1
entitykind {subsets elements}

+
Concept EntityKind
P q—‘ 3% 1
+isDynamic : Boolean [1] = true \Tl +identitytype |1 +feature |0..

|IdentityType | |Fea ture
[J |
|

| P +entitykind
|EndpointKind] LegalEntityKind o Yy
[o 10.

|ServiceEntityKind |
[] :
Lﬁ. +actor | 1..*

IInformationEntityKind] +endpointkind | Actor
[] IServiceEndpointKind I.M'n n l;l

[|1
|BusinessDocumentKind| +scheme|1..*
[] "

+document |1 InteractionScheme
+activity |0..* +scheme | 1

ServiceActivity | activities
1.

Figure 3.22: Entity kind diagram.

The domain ontology model provides definitions for four distinct kinds of
entities: /) service entities, 2) information entities, 3) endpoint kinds, and 4) legal
entities. These entities illustrated in Figure 3.23 conform with the corresponding
entity kinds in Figure 3.22. Each entity is associated with an identity, which must
conform with the identity type declared for the corresponding entity kind. The
intensional definitions for entities are specified as collections of properties.

The service ecosystem meta-model defines the notion of service as an ab-
stract system that delivers one or more capabilities. This definition aligns with the
common interpretation of services, such as utilized in the OASIS SOA-RM stan-
dardization [154]. The meta-model elaborates the service definition with a further
classification of services to infrastructure services and service entities. The ser-
vice definition and categorization is formalized in the meta-model with constructs
that are illustrated in Figure 3.24.

Infrastructure services are used for delivering ecosystem capabilities. In-
frastructure services include the category of knowledge repositories needed for
managing the global knowledge base of the service ecosystem. As illustrated in
Figure 3.24, the notion of KnowledgeBase is introduced in the meta-model as a
capability for representing knowledge base management. Each knowledge base
comprises a selection of life-cycle products, that is, artefacts or artefact sets. Ad-
ditional infrastructure services, such as trust or reputation management systems,

74

3 A META-MODEL FOR SERVICE ECOSYSTEMS

package entities [@ EntityDiagramU

+intension |1

+property [0..”

EntityKind Concept Identifier
+isDynamic : Boolean [1] = true +value : String [1]
1| +conformsTo
{redefines conformsTo} T
+cmodel Entity +entity 1 Identity +cmodel
0.. T videntity 10~
+system
1 ‘F {redefines conformsTo}
{redefines intension} [I
+intension /1 |ServiceEntity | | |EndpointEntity | +conformsTo. |1
Entityintension | | I |1]

{subsets elements}

IdentityType
IlnformationEntity I LegalEntity |
[]

Property

+value : String [O..

l BusinessDocument I ISe rviceEndpoint |
[|]

1]

Figure 3.23: Entity diagram.

package ecosystemmodel[[Z) ServiceDiagram]

{subsets capability}
1..%/+ecosystemcapability

+service +capabiltty [capapisity

> AbstractSystem
1

+servic_[e InfrastructureServicel |ServiceEntityKind |
0..

*

J

I EcosystemCapability I

|

AN

-

lﬁ

IBusinessServiceKind l
[]

ﬂ‘ KnowledgeRepository | |Com ponentServiceKind
0.* | |

{subsets ecosystemcapability}
+know ledgebase

KnowledgeBase |*base
0..*

+artefactset> ArtefactSet
1.%

Figure 3.24: Service diagram.

3.6 Domain ontology model 75

ackage entities ServiceEntity Dia ram) +
packag (&) yDagram] conformsTo [s e rviceEntityKind
1 [
{redefines conformsTo}

|Commitment0peration | +cmodel 0.

!] ServiceEntity Servicelnterface

1..* [+commitmentoperation
+interfaces [1..*
* +service
0--_ BusinessServicel [ComponentService
+service| 1| 1
+cnodel |0..* +cmodel | 0. InteractionScheme
{redefines conformsTo} {redefines conformsTo}
+scheme |1
+conformsTo |1 +conformsTo |1 .
i +service
tservice BusinessServiceKindl |ComponentServiceKind|.1—
0.* |) |]
+servicekind [0..* ili

+servicerole {subsets capability}

1.* +protocol |1 +protocol |0..*
ServiceRole | {subsets capability} *protocol [g, HviceProtocol
+ransaction |1.* +conversation |1.* 0.
|BusinessTransaction ‘ |ServiceConversation |
[|l |

Figure 3.25: Service entity diagram.

may be provided for facilitating collaboration establishment processes in open
service ecosystems.

Service entities are used in the meta-model for representing identifiable eco-
system elements that are utilizable for service provisioning and engineering. Ser-
vice provisioning is enabled with the notion of business services whereas service
engineering concerns are addressed with the notion of component services. The
corresponding meta-model constructs are illustrated in Figure 3.25.

A business service denotes a software-supported service that is provisioned
by an independent entity. A business service delivers the business transactions
required to fulfill the commitments of a service choreography role. Component
services are utilized in business services to implement their functionality. Com-
ponent services represent reusable service engineering assets which deliver func-
tionality defined by service protocols. A service protocol provides a definition
of component service operations and behaviour. Exemplary component services
may include services for domain-specific business protocol exchanges, e.g. bank-
ing protocols, or more technically oriented services such as key exchange proto-
cols for encryption. A component service represents reusable service engineering
assets which are utilized for realizing the interactions required by business trans-
actions.

Interactions in service ecosystems are used for exchanging information be-

76 3 A META-MODEL FOR SERVICE ECOSYSTEMS

tween ecosystem members. Information entities in the domain ontology model
are used for representing the information contents of interactions. Information
entities are described with the concepts of InformationEntityKind and Informa-
tionEntity. These abstract concepts are further classified into concepts of Busi-
nessDocumentKind and BusinessDocument, representing business document def-
initions and their instances, correspondingly. Standardised document description
languages such as XML [172] and XML-Schema [170] can be used for definition
of the structural features of an information entity kind. Semantic features for in-
formation entities can be prescribed using vocabularies such as ebXML [80] or
RosettaNet [130], common taxonomies such as North American Industry Classi-
fication System (NAICS) [106] or generic ontology description languages, such
as the OWL [167].

Service interactions are enabled by interaction endpoints that provide the nec-
essary knowledge, such as identification and location information, for establish-
ing bindings with the corresponding services. Interaction endpoints in service
ecosystems are represented by the EndpointEntityKind and EndpointEntity con-
cepts which manifest the local facilities reserved and provided by the cooperating
parties for the purpose of delivering the required interactions. These concepts
are further classified into service endpoints represented in the meta-model by
the concepts of ServiceEndpointKind and ServiceEndpoint, as illustrated in Fig-
ure 3.22 and Figure 3.23. Service endpoint kinds provide definitions for interac-
tion schemes, which declare the kinds of activities supported by the corresponding
kinds of endpoints. The notion of InteractionScheme, illustrated in Figure 3.22,
comprises a collection of ServiceActivity elements. Each ServiceActivity defines
an activity for enabling service communication by exchange of business docu-
ments; the kind of business documents that can be exchanged is specified by an
association to a BusinessDocumentKind element.

Service ecosystem members are represented in the domain ontology model by
the concept of legal entities. Legal entities include for example organizations and
individuals. A LegalEntityKind illustrated in Figure 3.22 represents the kinds of
ecosystem members that can be obligated to deliver the required functionality and
behaviour through contracts and agreements. Each legal entity kind is associated
with a set of actors defined in the service ecosystem model (see Section 3.5). The
set of actor definitions denotes the kinds of roles the corresponding kinds of legal
entities can take in service ecosystem life cycles and service choreographies. The
intensional definition for legal entity kinds comprises a set of cooperative features.
Cooperative features include different collections of policies regarding legislation,
business rules, operational policies and reputation management; cooperative fea-
tures are discussed in Section 3.7.

3.6 Domain ontology model 77

package faciliies [CooperationFaciIityDiagramu

Concept

+isDynamic : Boolean [1] = true

lﬁ

CooperationFacility

+Hacility

*

= +delivers | 1

| | ExtraFunctionalFeature
ChannelType ||BindingType

Figure 3.26: Cooperation facility diagram.

3.6.4 Cooperation facilities

Cooperation facilities provide elements for describing the abstract platform of a
service ecosystem. These abstractions representations for interaction and com-
munication which are agnostic with respect to the actual technological platforms
(e.g. web services or other middleware platform) used. The categorization of co-
operation facilities is illustrated in Figure 3.26. As defined in the meta-model, a
cooperation facility delivers an extra-functional feature; this category of ecosys-
tem features is discussed in Section 3.7. Intensions of cooperation facilities are
defined by a set of facility features.

There are two categories of cooperation facilities: channel types and binding
types. Binding types represent interaction relationships taking place between two
or more service endpoints. A binding type provides an abstraction for declaring
interaction characteristics, such as if interaction is to be taken in a one-to-one or
one-to-many setting. Binding types provide especially an abstraction for inter-
ception mechanisms that can be utilized for adaptation (e.g. mappings in different
representation formats), exogenous coordination (e.g. notifications about specific
communication activities), or implementing enterprise integration patterns.

Channel types are used for declaring abstract communication media. A chan-
nel type intension comprises an ordered set of channel features. Each feature
represents an individual activity that must be taken for propagating the communi-
cation payload from one interaction endpoint to another, such as encryption and
decryption of the payload.

78 3 A META-MODEL FOR SERVICE ECOSYSTEMS

3.7 Intension model

The intension model provides support for continuation of viability in service eco-
systems. Support is provided with modelling constructs that enable evolution
and specialization of service ecosystem architectures. Semantic and pragmatic
interoperability aspects are addressed in the intension model. Semantic interop-
erability is especially addressed by feature declarations utilized in the intensional
definitions of ecosystem entities. Pragmatic interoperability is addressed by bind-
ing specifications and a category of bindable features. These modelling constructs
are used for declaring what kinds of features are dynamically bindable, and possi-
bly negotiable, in a service ecosystem architecture. The binding specifications let
ecosystem architects explicitly declare and control the level of dynamism during
service ecosystem design.

The constructs of the intension model for supporting ecosystem evolution and
specialization are elaborated below. After that, the feature model subsumed by
the service ecosystem intension model is described.

3.7.1 Support for ecosystem evolution and specialization

For enabling ecosystem evolution that is needed for supporting progressive busi-
ness environments, the concrete intension model elements (i.e. features, feature
interactions and user elements) are defined as specializations of two modelling
constructs. GenerizableElement and InstantiatableElement, as illustrated in Fig-
ure 3.27, enable generalization hierarchies and deep instantiation [7] of intension
model elements, correspondingly.

The service ecosystem meta-model supports natively two-level instantiation
hierarchies, which are represented in the domain ontology with EntityKind - En-
tity pairs, and in the intension model with Feature - Property pairs. Deeper in-
stantiation hierarchies can be defined by exploiting higher potencies for features
and defining conformance relationships between EntityKinds and Features. Fea-
tures and properties are elaborated in the next section where the feature model is
described.

Service ecosystem specialization is addressed in the service ecosystem meta-
model by providing means for representation of domain-specific extensions of
the meta-model. The concept intensions and ecosystem features can be extended
with domain-specific properties by exploiting the ExtendableElement-modelling
element illustrated in Figure 3.28. Each ExtendableElement may contain several
extensions represented by the element named Extension. An extension in practice
represents a property of a concept intension or an intensional element (e.g. a
feature, property or structural element as illustrated in Figure 3.27).

An extension is associated with an ExtensionDefinition which prescribes the

3.7 Intension model 79

package ecosystemintensionmodel [IntensionModeIDiagramy

[Model l<] IntensionModeIl |ExtendabIeElement |
[] [| |]

+model | 1 I ’ - ; - ; |
M odelElement IConcept ntension]],_Dll ntensional System |
[. :
+intension | 0..*
T +elements |0..* I GeneralizableElement
‘IntensionModelElement isAbstract : Boolean [1] = false
[| +elements T
0.*

lExtendableEIement ‘q— InstantiatableElement > AbstractSystem |
(—— 2 - |
+potency : Integer =1

I Feature | |rsource StructuralElement
k
[|1 A
+arget |1
i
* [
Property +sourceOf |0..
+value : String [0..1] HargetOf [FeatureInteraction l—{>|Relationship |
0.* |] | |

Figure 3.27: Intension model diagram.

multiplicity, containment kind, and type of the corresponding property. Extension
definitions are further classified into redefinitions, sub-setting operators, or undef-
initions. Redefinitions and sub-setting operators are similar to the corresponding
UML [111] concepts, providing means for example to redefine or refine relation-
ships defined in the domain ontology model. Undefinitions can be utilized for
rejecting properties higher in concept intension or intension model element hi-
erarchies. For example, a concept intension for a service kind may declare that
services are not associatable with specific features in the corresponding service
ecosystem.

3.7.2 Service ecosystem features

The intension model includes feature definitions that are used for defining the
intensions of domain ontology concepts. Feature definitions are modelled with
elements named Feature and Property, where the latter is considered as a kind
of feature that conforms with another feature. Features can interact with each
other; such feature interactions are domain-specific and they are described with
the concept of Featurelnteraction illustrated in Figure 3.27. In addition, the in-
tension model includes so-called structural elements, which allow modelling of
sub-structures of features and domain-specific extensions of concepts.

3 A META-MODEL FOR SERVICE ECOSYSTEMS

package ecosystemintensionmodel [ExtendableElementDiagramy

AbstractSystem | IntensionM odel Element
[

PrimitiveType

+element | ExtendableElement

0.* |
+element | 1
ExtensionType
+extensions |0..*)
Extension e oXtension +type |0..1
1
. +definition |1 0..* | +definition
por—— ExtendableElementSet ExtensionDefinition
J7 +valueset To..1 4 |+containment : Boolean [1] = true
+Hower : Integer [1] =0
Set +definition tupPer : Integer [1] =1
Redefinition SubsetDefinition Undefinition

+redefines : String [1] | |+subsets : String [1] | | +undefines : String [1]

Figure 3.28: Extendable element diagram.

3.7 Intension model 81

= -
package features [[5) FeatureDnagramy {redefines conformsTo}

+conformsTo,|,1 +cmodel | 0..*

Property

+value : String [0..1]

I I I |

EndpointFeature } InformationFeature l |CooperativeFeature | [EngineeringFeature |
[| |] []

: T T +eature
|Serv:ceFeature | |Fac1htyFeature | ‘QualltatlveFealure -
L] []| {0..* +provides |0..1

Qualitative Capability

Figure 3.29: Feature diagram.

The service ecosystem meta-model subsumes a feature model which provides
means for formalizing concept intensions, qualitative characteristics and engineer-
ing assets in service ecosystems. The categorization of service ecosystem features
identifies seven different categories, namely /) endpoint features, 2) service fea-
tures, 3) information features, 4) facility features, 5) cooperative features, 6) qual-
itative features, and 7) engineering features. The categorization is illustrated in
Figure 3.29. The feature model is partitioned to features and properties: a Prop-
erty represents a kind of a feature which conforms with another feature, and has a
literal value associated with it. The interpretation of the value is domain-specific
and depends on the semantics of the corresponding feature. A property which
conforms to a feature representing temporal availability may have a value range
consisting of week-days, for example.

Endpoint features are used in the intensional definitions of endpoint entities.
Endpoint features declare the characteristics for a kind of a interaction endpoint.
The service ecosystem meta-model defines endpoint address kinds as a specializa-
tion of endpoint features. An endpoint address kind provides a declaration of the
addressing scheme used with an endpoint kind, such as URI-based addressing >.

Service features include categories for expressing intensional definitions for
business and component services. The service ecosystem meta-model does not in-
clude any specializations for business service features. However, business service
features can be utilized for declaration of (business) domain-specific character-
istics of business services for example with industry taxonomies such as North
American Industry Classification System (NAICS) [106].

The service ecosystem meta-model includes a sub-category of component

SUniform Resource Identifier: http://www.ietf.org/rfc/rfc2396.txt

82 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package ecosystemmodel [ServiceConversationDiagramu

T
|BehaviouraIPattern IQ—lServiceConversation FML

L |]

| ComponentServiceFeature {redefines stages}
[]

+stages [1..*
+stage

+activity

ConversationStage

+activity [0..*

V
StructuralElement

| BusinessDocumentKind
[+document

Figure 3.30: Service conversation diagram.

service features, namely service conversations. Service conversations are be-
havioural pattern specifications which comprise a collection of conversation stages.
The ServiceConversation model constructs defined in the meta-model are illus-
trated in Figure 3.30. Each service conversation stage is associated with a service
activity, which are specified in the interaction schemes of service endpoint kinds.
The service conversation stages comprise a partially ordered set of actions.

Information features are used in intensional definitions of information entity
kinds. The service ecosystem meta-model includes an information feature special-
ization named BusinessDocumentType, which is used for representing the types of
business documents exchanged in service interactions.

Facility features define the characteristics of cooperation facilities and thus,
the abstract platform. There are two categories of facility features, namely binding
port types and channel features. Binding port types are used for specifying the
intensions of binding types. Each binding port type represents an endpoint of an
interaction relationship. A binding port type can be associated with an endpoint
entity kind (e.g. a service endpoint), or another binding port type. These different
associations of binding port types provide representations for typical interaction
and exogenous coordination patterns, correspondingly.

The intension of a channel type is declared by an ordered set of channel fea-
tures. The ordering is provided by the predecessor-association inherited from the
concept of Event. Each channel feature declared in a channel type intension is as-
sociated with a binding port type defined in a binding type. This effectively makes
the set of channel features a bipartite collection, each feature now belonging to a
set associated with one of the two binding port types.

Cooperative features represent a category of service ecosystem features that
regulate the activities of legal entities. Cooperative features essentially declare

3.7 Intension model 83

constraints that are bindable to service roles. Cooperative features are further cat-
egorized into rule bases and reputation kinds. Rule bases declare different kinds
of rule collections, namely business models, policy frameworks and legislation.

Business models are collections of business rules, which are declarative state-
ments defining or constraining some aspect of a business. Policy frameworks
comprise operational policies, or practices, that are characteristic for a certain
kind of organization or individual. Operational policies regulate the use of busi-
ness functionality and knowledge provided by a legal entity, such as an enterprise.
For example rules addressing accessibility, authorization, trust and privacy with
respect to the provided business services and information are typical examples of
organizational policies. Legislation comprises legal acts that must be obeyed by
the corresponding kind of legal entities.

Reputation kinds are utilized for describing means for evaluating the trust-
worthiness of legal entities acting in service roles. Different kinds of reputation
models or criteria, such as recommendations or ratings, can be categorized under
the concept of reputation kinds.

Cooperative features are utilized in the decision-making phase of collabora-
tion establishment processes for evaluating the feasibility of a potential service
provider. During the operation of a business network community the rules de-
clared by cooperative features are monitored dynamically. Finally at the dissolu-
tion phase of a community the reputation of community members can be updated
corresponding to the quality of their performance [85].

Cooperative features address the pragmatic interoperability issues, that is,
policies and methods of decision-making on collaborations, such as risk, busi-
ness value, trust and reputation. Again, there is need to define policies that are
commonly understandable but dependent on all business domains involved. Co-
operative properties are subject to business service owners’ autonomic intentions.
For cooperative properties to be truly usable within an open business service eco-
system, facilities for identity, trust and reputation management should also exist,
since assertions of cooperative features can not usually be validated in advance.

The category of qualitative service ecosystem features includes contractual
and extra-functional features. Contractual features represent qualitative character-
istics of business service transactions. Contractual features comprise availability
constraints and different charging styles, in addition to different models for set-
tling about the service usage. In addition, contractual features include a category
for coordination of business transactions. Contractual features are instantiated to
contractual properties. A contractual property is a declaration of a concrete value
or value constraint over some contractual feature. For example, response time
can be considered as a temporal availability feature with values declared in mil-
liseconds; now the corresponding property can be for example a declaration of the

84 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package contractualfeatures [CoordinationStructureKindDiagramu

+coordinationtransaction | g,siness Transaction |
1 []

IContractuaIFeature ! +coordinatedtransaction |1
+coordinationkind
0.*
CoordinationStructureKind |0.*

[ﬁ +coordinationkind

I |

CompensationKind | |TransactionCoordinationKind
[)

]

Figure 3.31: Coordination structure kind diagram.

constraint “response time must be less than 200 ms” .

Coordination structure kind is a category of contractual features which pro-
vides means for specification of business transaction coordination. A coordination
structure kind associates a coordination transaction with a coordinated transac-
tion, as illustrated in Figure 3.31. The coordination transaction includes additional
business actions that are related temporally with the business actions of the coor-
dination transaction. The service ecosystem meta-model defines two categories
of coordination transaction kinds: /) compensation kinds, and 2) transaction co-
ordination kinds. Compensation kinds represent coordination structures with no
interleaving allowed between activities in coordination and coordinated transac-
tions. Typically an external trigger (rule) is provided in the coordination trans-
action to initiate the compensation transaction. Transaction coordination kinds
represent coordination structures where the actions in coordination and coordi-
nated transactions may interleave. Transaction coordination kinds can be utilized
for example to introduce a notary protocol over a business transactions defined in
a service choreography.

Extra-functional features represent qualitative characteristics of cooperation
facilities. We identify two categories of extra-functional features: interaction
features and communication features. Interaction features defines intensions of
binding types and they represent interaction characteristics, such as functionality
related to messaging and encoding. Communication features define intensions of
channel types and represent functionality such as encryption, decryption or moni-
toring of behaviour. Communication features must be introduced in a certain order
to be feasible, that is, they can have mutual ordering dependencies: information
monitoring must be executed before encryption, for example.

3.7 Intension model 85

Extra-functional features address semantic and technical interoperability is-
sues relevant for managing the dependability of the underlying communication
platform. These features are controllable by the service realisation provider by
using the computational platform. Modifying these features requires technical ad-
ministrative authority over the local communication platform, and they are closely
intertwined with the computational services administered within administrative
domains. Extra-functional features manifest static aspects of interaction and com-
munication that are selectable during service binding and collaboration contract
establishment.

Contractual features address especially the semantic interoperability concerns
related to the qualitative characteristics of business services and operations. Con-
tractual features are agreed upon during the negotiation phases of collaboration
establishment life cycles. The features and property values that have been agreed
upon negotiations are used during the operational phase of the community as mo-
nitoring criteria. If the agreed qualities are not met, compensations or other mech-
anisms for recovering from the contract breach can be used. Contractual features
are controllable by the business service provider and modifying these features re-
quires business administrative authority over the service. Moreover, for enabling
loosely coupled and dynamic business collaborations, contractual features should
be dynamically configurable in the local systems.

Finally, the service ecosystem meta-model includes a notion of engineer-
ing features utilizable for expressing the characteristics of engineering domains.
There are two kinds of engineering features available: /) method chunks, and
2) tool types. Method chunks are autonomous and coherent parts of methods [103].
Tool types are utilized for representing the kinds of engineering tools that are re-
quired for delivery of product parts in engineering domains. Method chunks and
tool types are elaborated in Section 3.8.

The feature model for service ecosystems is summarized in Table 3.1 and Ta-
ble 3.2. The tables include all the features defined in the service ecosystem meta-
model in an alphabetical order. Names of abstract features (i.e. not instantiable in
service ecosystem architecture models) are written in emphasis. The categoriza-
tion of features is represented by division of the tables. Direct generalizations of
features are defined in the second column of the table. Finally, for each feature the
corresponding property is specified in the third column of the table. The property
conforms to the corresponding feature given in the first column.

As an example, a BusinessModel is a specialization of RuleBase in the feature
category of cooperative features; the property corresponding to a business model
is represented by a conformance point. It should be noted that there are no prop-
erty level elements defined for engineering or extra-functional features. Both of
these preceding feature categories are strictly type-level concepts with no feasible

86

3 A META-MODEL FOR SERVICE ECOSYSTEMS

Feature name

Generalization

Instantiation

CooperativeFeature
RuleBase
BusinessModel
PolicyFramework
Legislation

ReputationKind

Feature
CooperativeFeature
RuleBase

RuleBase

RuleBase

CooperativeFeature

CooperativeProperty
ConformancePoint
ConformancePoint
ConformancePoint
ConformancePoint

EntityReputation

EndpointFeature

Feature

EndpointProperty

EndpointAddressKind EndpointFeature EndpointAddress
EngineeringFeature Feature N/A
ToolType EngineeringFeature | N/A
MethodChunk EngineeringFeature | N/A
Method MethodChunk N/A
FacilityFeature Feature FacilityProperty

BindingPortType

ChannelFeature

FacilityFeature

FacilityFeature

BindingPort
ChannelPhase

InformationFeature

BusinessDocumentType

Feature

InformationFeature

InformationProperty

BusinessDocumentElement

Table 3.1: Hierarchy of service ecosystem features and properties.

conformance relationships defined in the meta-model.

3.8 Engineering model

The engineering model included in the service ecosystem meta-model defines
modelling constructs addressing especially the concerns associated with service
engineering. The modelling constructs formalize assets required for supporting
well-advised service engineering practices. Well-advised practices are supported
by providing means for specification of methods and tools required for domain-
specific service engineering, and by associating the these engineering capabilities
with business- and engineering-driven product models. The engineering model
constructs are used for specification of service ecosystem engineering knowledge.

Engineering models are formalized in the service ecosystem meta-model with
constructs illustrated in Figure 3.32. An engineering model comprises engineering
model elements, which are further categorized into engineering spaces, engineer-
ing elements and product models, product parts and product elements.

The notion of engineering space defined by the service ecosystem meta-model

3.8 Engineering model

87

CompensationKind

TransactionCoordinationKind

CoordinationStructureKind

CoordinationStructureKind

Feature name Generalization Instantiation
QualitativeFeature Feature N/A
ContractualFeature QualitativeFeature ContractualProperty
AvailabilityKind ContractualFeature Availability
Spatial AvailabilityKind AvailabilityKind Spatial Availability
Temporal AvailabilityKind AvailabilityKind Temporal Availability
CoordinationStructureKind ContractualFeature CoordinationStructure

Compensation

TransactionCoordination

BusinessServiceFeature
ComponentServiceFeature

ServiceConversation

ServiceFeature
ServiceFeature

ComponentServiceFeature

SettlementModelKind ContractualFeature SettlementModel
ChargingStyle ContractualFeature Charging
ExtraFunctionalFeature QualitativeFeature N/A
InteractionFeature ExtraFunctionalFeature N/A
CommunicationFeature ExtraFunctionalFeature N/A
ServiceFeature Feature ServiceProperty

BusinessServiceProperty
ComponentServiceProperty

MessageExchange

Table 3.2: Hierarchy of service ecosystem features and properties (continued:
qualitative and service features).

88 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package engineeringmodel[5 EngineeringModeIDiagramy

+model
1

M odel EngineeringModel

{redefines elements}

+elements | 0..*

M odelElement EngineeringM odel Element
EngineeringElement ProductModel ProductElement
0..*| +element +productmodel
{redefines element} 1 ProductPart
1 [+engineeringspace
0. EngineeringSpace

+elementOf

{redefines elementOf}

Figure 3.32: Engineering model diagram.

aligns with the concept of technical space. A technical space is “a working con-
text with a set of associated concepts, body of knowledge, tools, required skills and
possibilities” [83]. All engineering domains are associated with a corresponding
technical space comprising domain-specific best practices and tools that are ap-
plied for the engineering activities. Correspondingly, each service ecosystem do-
main is associated with an engineering space. An engineering space is formalized
in the meta-model by the modelling construct of EngineeringSpace, as illustrated
in Figure 3.32. It comprises a collection of engineering elements and is associated
with a product model.

Specializations of engineering elements include modelling constructs for spec-
ification of identifiers and tool types, methods and their parts, and binding models.
The corresponding class hierarchy is illustrated in Figure 3.33. Identifiers are used
in service ecosystem domains for resolution of service ecosystem elements, such
as entities and their features. An IdentifierType can be utilized for specification
types of identifiers, such as URI:s or subsets of thereof. An Identifier is consid-
ered as a simple string-valued element, which conforms to an identifier type. The
conformance rules with respect to syntax and semantics of identifiers and their
types are domain-dependent.

3.8 Engineering model 89

package engineeringspace | @ EngineeringEIen‘entDiagramu

AbstractSystem |, EngineeringElement I
|
v [‘ﬁ]
Identifier N .I ! l
lldentlflerType I IMethod | |BindingSpecification |
+value : String [1] [] [||l J

L +conformsTo |1
¥identifer | 1 +crodel | ToolType | | [MmethodChunk | [BindableErement |
i | | |

[

+element | 1 {redefines conformsTo}

IdentifiedElement I ICapability lq_lEngineeringCapabiIity I
[] [)| |]

Figure 3.33: Engineering element diagram.

Engineering capabilities are used in the conceptual model for service ecosys-
tem to denote engineering abilities available for ecosystem domains. They are
formalized in the service ecosystem meta-model as abstract systems and special-
ization of the capability element, as illustrated in Figure 3.34. There are two kinds
of engineering capabilities: tool types and methods. A tool type represents a ca-
pability to enact and take part in a coherent set of engineering activities. ToolType
is formalized as a collection of EngineeringActivity-elements (see Figure 3.34)
where each engineering activity is defined as a kind of activity that produces a
product element based on an optional set of product elements consumed as input.

Engineering methods are prescribed using a situational method engineering
framework based on the notion of method chunks [103]. A method chunk is
a reusable engineering asset utilizable for constructing engineering methods. A
method chunk is an autonomous and coherent part of a method supporting real-
ization of engineering activities [103]. As illustrated in Figure 3.34, a Method is
composed of one or more MethodChunk elements.

The service ecosystem meta-model formalizes engineering methods and meth-
od chunks with model elements illustrated in Figure 3.35. The constructs are
based on the situational method engineering approach introduced in [103]. How-
ever, some alternations of the original concepts have been made. Especially, in the
service ecosystem meta-model the guidelines are classified to simple and produc-
tion guidelines. The class of production guidelines includes tactical guidelines of
the original work [103], and a new class of engineering guidelines. Engineering
guidelines are associated with engineering activities, as illustrated in Figure 3.35.

A MethodChunk represents a reusable, coherent part of an engineering method.
Each method chunk comprises a single guideline and is associated with a product

90 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package engineeringcapability [EngineeringCapabiIityDiagramy

AbstractSystem K——— EngineeringCapability

T

+tooltype ToolType | |Method +method
1 0.*
Activity
+activities +chunk|,1..*
‘f‘ 1.7 L /MethodChunk
+activity | EngineeringActivity
0.* |*description : String [1] EngineeringFeature
+activity | 0..*
+input [0..*
+output ProductPart
1

Figure 3.34: Engineering capability diagram.

package engineeringcapability [E;‘ MethodChunkDiagramy

+chunk
1 . #guide 1
*guideline Guideline
[+body : String [1]

IF

“productpart ProductionGuideline
ProductPart I v
[| SimpleGuideline
+input | 0..* +target |1 +composition | 0..*

lSequenceGuideIine] IOrGuideIinel IEngineeringGuideIinel ITacticaIGuideline]
+intention [0..*!] |] | I)

Intention [AndGuideIine] *guideline | 0..*
+situation |0..* +verb : String [1] +activity | 1
Situation +manner : String [1] EngineeringActivityKind [choiceGuideline |
+descriptor : String [1]| *intention |1 +description : String [1] | I
+situation | 1 +guideline |1 CompositionGuideline
+guideline ideli.

1 +body : String [1] ProductElement

Figure 3.35: Method chunk diagram.

3.8 Engineering model 91

part. The associated product part represents the outcome of a successful enact-
ment of the method chunk.

A Guideline represents a specification of a method fragment. There are two
kinds of guidelines defined in the service ecosystem meta-model: strategic and
tactical guidelines. A StrategicGuideline provides a strategic view of the engi-
neering process by telling which intention can be achieved following which strat-
egy [103]. Strategic guidelines are further classified into sequences and alterna-
tives (AndGuideline and OrGuidelinne). Production guidelines are classified to
tactical guidelines and engineering guidelines. A tactical guideline comprises a
complex, tree-structured set of production guidelines [103]. Tactical guidelines
are classified into choices and compositions (sequences). An EngineeringGuide-
line provides means for specification engineering instructions associated with a
kind of an engineering activity. Finally, a SimpleGuideline represents a simple
declaration of methodological advice, which can be utilized in strategic guide-
lines.

Each guideline is associated with specifications for a reuse situation and an
intention. The reuse situation is formalized by the element named Situation, as
illustrated in Figure 3.35. A reuse situation specification provides a description
when the corresponding guideline is applicable, and identifies the reuse context
as an association to the appropriate product part. The intention of a guideline is
represented by the element named Intention. The intention defines what has to be
done (verb) and how it should be enacted (manner).

Product models are utilized in situational method engineering approaches [103]
for representation of the engineering artefacts. The service ecosystem meta-model
formalizes product models with modelling constructs that are illustrated in Fig-
ure 3.36. A ProductModel is considered as a set consisting of product parts. Each
ProductPart represents a coherent set of product elements which is applicable
for utilization in engineering methods. Product elements are presented with the
modelling construct named ProductElement; product elements include features,
structural elements, and feature interactions. Typically an intensional definition
of an ecosystem concept would constitute a single product part.

The service ecosystem meta-model supports control over the dynamism of
service ecosystems, and specification of abstract service platforms with so-called
binding models. The notion of abstract service platform is similar to the more
generic notion of abstract platforms described in [2]. An abstract platform defines
an ideal platform from an application developers’ point of view and declares the
platform’s characteristics [2]. Similarly, the abstract service platform defines the
characteristics of the service ecosystem platform especially from the viewpoint
of stakeholders associated with service delivery (i.e. service providers, service
consumers, and service engineers). Binding models declare the rules for encapsu-

92 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package engineeringspace [ProducthdeIDiagramﬂ

{redefines elementOf}
+elementOf
0.* {redefines element}

& +part [0..*
Set lp | ProductPart

ProductModel

+part {redefines elementOf}

0..* {redefines element}
+productelement |0..*
AbstractSystem <+—— ProductElement

ﬁ&
|

Feature Featurelnteraction

StructuralElement

Figure 3.36: Product model diagram.

lation of services interactions with bindable features: binding specifications pre-
scribe what kinds of features can be bound to service roles, business transactions
or service connections, for example.

The binding models are specified as part of the engineering models discussed
previously. Binding models comprise bindable elements and binding specifica-
tions, both of which are specializations of EngineeringElements illustrated in
Figure 3.33. Binding elements are classified into bindable features and bindable
properties. The category of bindable features includes cooperative and qualitative
features that were discussed in Section 3.7. Correspondingly, bindable properties
include cooperative and contractual properties.

Binding specifications are formalized in the service ecosystem meta-model
with constructs that are illustrated in Figure 3.37. Binding specifications are fur-
ther classified into feature bindings and property bindings. A FeatureBinding is
formalized as a modelling construct which associates a feature binding target with
a set of bindable features. Correspondingly, a PropertyBinding associates a prop-
erty binding target with a set of bindable properties.

Feature and property binding specifications are elaborated in Table 3.3. The
first column of the table specifies the names for the binding specifications, the
second column denotes the binding targets, and third column the category of bind-
able features or properties. The tables are divisioned with respect to the binding

3.9 Knowledge management model 93

package bindings | BindingSpecificationDiagramy
BindingSpecification BindableProperty
T +bindableproperty |1..*
o +binding |0..*
FeatureBinding *binding PropertyBinding
0.*
+binding |0..* 4pindablefeature | 1..* +binding | 0..*
BindableFeature
+target |1 +target, 1
FeatureBindingTarget PropertyBindingTarget

Figure 3.37: Binding specification diagram.

specification constructs. Emphasized terms denote abstract classes in the service
ecosystem meta-model. Indentation is utilized in the binding target columns for
expressing generalization hierarchies; e.g. BusinessServiceKind is a specializa-
tion of the ContractualFeatureTarget class in the meta-model. The first three
rows in Table 3.3 describe binding specifications that are specializations of the
FeatureBinding class illustrated in Figure 3.37. The latter three rows correspond
to specializations of the PropertyBinding class.

3.9 Knowledge management model

Especially in open service ecosystems, a coherent knowledge management infras-
tructure is required for enabling interoperation of dynamically formed, loosely
coupled service collaborations. Consequently, the service ecosystem meta-model
defines constructs for instrumentation of service ecosystems with domain-specific
knowledge management infrastructure. The constructs are defined in the knowl-
edge management model whose main elements are illustrated in Figure 3.38. The
knowledge management model comprises a collection of knowledge management
elements. Knowledge management elements are further classified into knowledge
repositories, knowledge item types and knowledge relationship types.

94

3 A META-MODEL FOR SERVICE ECOSYSTEMS

Binding name

ContractualFeatureBinding

Binding target Bindable feature

ContractualFeatureTarget ContractualFeature
BusinessServiceKind ContractualFeature
BusinessTransaction ContractualFeature

CooperativeFeatureBinding

CooperativeFeatureTarget

CooperativeFeature

ServiceRole

CooperativeFeature

ExtraFunctionalFeatureBinding

ExtraFunctionalFeatureTarget

ExtraFunctionalFeature

ServiceConnection

ExtraFunctionalFeature

ContractualPropertyBinding

ContractualPropertyTarget

ContractualProperty

BusinessService

ContractualProperty

CooperativePropertyBinding

CooperativePropertyTarget

CooperativeProperty

LegalEntity

CooperativeProperty

Table 3.3: Binding specifications in service ecosystem meta-model.

package know ledgemanagementmodel [Know Iedgel\/lanagen‘enthdeIDiagramy

Know ledgeManagementModel .—> Model

IdentifiedElement

lr +elements | 0..*

+model |1

{redefines elements}

KnowledgeM anagementElement ——> M odelElement

AN

KnowledgeRepository

KnowledgeRelationshipType

KnowledgeltemType

Figure 3.38: Knowledge management model diagram.

3.9 Knowledge management model 95

package repositories [IVIodeIRepositoryDiagramu

Digital System

T

+repository [odelRepository +repository
1 1
+container | 1 +modeltype |1
ModelContainer ReferenceModel

+container (1 +models

O..*

M odel

Figure 3.39: Model repository diagram.

A knowledge repository is considered in the service ecosystem meta-model
as a kind of a model repository. A model repository is defined as a digital system
which comprises a model container and is associated with a reference model, as
illustrated in Figure 3.39. A ModelContainer is simply a collection of Models.
Each model included in a container of a model repository must conform to the
reference model associated with the repository. That is, the model repository,
when implemented, is responsible for validation of the conformance relationship
between the models in the container and the associated reference model.

Knowledge repositories provide the backbone for facilitating sustainable ser-
vice ecosystems. Knowledge repositories are considered as infrastructure ser-
vices that maintain the semantics of ecosystem knowledge bases. The service
ecosystem meta-model formalizes the notion of knowledge repositories with the
modelling constructs that are illustrated in Figure 3.40. Knowledge repository is
associated with a knowledge item type which is a representation of a product part.
In a typical service ecosystem each intensional definition of a concept is provided
with a product part, as well as the bindable features and properties are included in
appropriate product parts. Consequently, management of these service ecosystem
features shall be handled by corresponding knowledge repositories.

In addition to providing means for sharing knowledge about product parts,
the knowledge repositories are responsible for maintaining relationships associ-
ated with the respective product parts. These relationships are formalized in the
knowledge management model with the notion of KnowledgeRelationshipType.

96 3 A META-MODEL FOR SERVICE ECOSYSTEMS

package repositories [Know IedgeRepositoryDiagramu
ModelRepository +engineeringspace EngineeringSpace
1 1
= 1
+container | 0. ReferenceModel
+repository KnowledgeRepository +repository T
ModelContainer 1 1
1
T +repository |1 *repository |1 +modeltype 1
+container | 1 | KnowledgeltemType |
!KnowledgeltemContainerl +itemsets 0. +source | 1 +target| +model
KnowledgeltemSet 1 0.”
+container |1 +container |1
+relationship J0..* 0..*| +sourceOf
+conformsTo o A *
+models +relationships] Know ledgeRelationshipType [0..
0.% 0.% +cmodel |0..* ' l +targetof
[knowle dgeltem |[KnowledgeRelationshi o +model 0.
| owledgeltem i owledgeRelations |pI | ModeIRelations hip +representationOf |1
1
o 0. ProductPart
v, .
+crmde| +know ledgeitem +representationOf | 1
] +su|i<:r Relationship
+conformsTo e
1
Knowledgeltem Type

Figure 3.40: Knowledge repository diagram.

3.9 Knowledge management model 97

A knowledge relationship type is considered as a binary model relationship be-
tween knowledge item types. A knowledge relationship type is a representation
of some other relationship. There are in essence two kinds of relationships that
should be formalized with knowledge relationship types: concept relationships
defined in domain ontologies and feature interactions defined in intensional mod-
els. A knowledge repository should provide means for maintaining these kinds
of relationships that are associated with the corresponding intensional definitions
and feature definitions.

A KnowledgeltemContainer maintains a set of knowledge items and knowl-
edge relationships. Knowledge items must conform to the knowledge item type,
which is considered as a reference model, of the knowledge repository. The sup-
pliers of knowledge items are identified with a reference to their identity. A
KnowledgeRelationship is a binary model relationship between knowledge items
which conforms to a knowledge relationship type maintained by the correspond-
ing knowledge repository.

While all knowledge items are included in the knowledge item container, an
additional grouping mechanism over the knowledge items is defined as a col-
lection of knowledge item sets. A KnowledgeltemSet is defined as a set which
includes knowledge items. Each knowledge item set is a representation of another
set. Especially, for each artefact set defined in the service ecosystem model a
knowledge item set must be provided. The knowledge item sets are utilized for
maintaining the different roles of knowledge items in different phases of service
ecosystem life cycles.

The semantics of service ecosystem artefacts are enforced in the knowledge
item sets of the knowledge repositories. For example, the Pilarcos service offer
repository [85] is a knowledge repository which maintains knowledge items con-
forming with the intensional definition of service offers. Correspondingly, the
Pilarcos service offer repository includes knowledge item sets representing arte-
fact sets for available services and interoperable services [143].

98

3 A META-MODEL FOR SERVICE ECOSYSTEMS

Chapter 4

Tools for model-driven service
ecosystem engineering

This chapter defines tools that enable rigorous analysis and design of service eco-
systems, and efficient service ecosystem instrumentation. The tools provide im-
plementations for an architecture framework and a model-driven methodology for
service ecosystem engineering. The architeture framework can be utilized by do-
main experts for the analysis and design of service ecosystems, as was illustrated
in Figure 1.1. The model-driven methodology for service ecosystem engineer-
ing can especially be used for infrastructure development, as was discussed in the
home-automation service ecosystem example.

The Service Ecosystem Architecture Framework (SEAF) defined in this chap-
ter facilitates rigorous service ecosystem engineering by providing means for ser-
vice ecosystem analysis and design based on explicit and formal architecture mod-
els. Explicit service ecosystem architecture models are needed for enabling effi-
cient architecture analysis and design practices, assessment of architectural prop-
erties with respect to design principles, and traceability of design decisions, for
example. The applicability of the architecture framework is evaluated with a case
study in Chapter 5.

Sustainability of service ecosystems requires efficient means for instrumen-
tation of domain-specific service ecosystems. Such means are provided by the
model-driven methodology for service ecosystem engineering developed in this
chapter. The methodology is realized with a series of model transformations that
refine and convert service ecosystem architecture models to more detailed and
technology-specific models. The methodology is implemented over the Eclipse
development platform [38]; however, the model-driven approach of the method-
ology is technology agnostic.

SEAF is defined in Section 4.1. First an overview of the architecture frame-
work is given. The overview is followed with specification of the viewpoints in-

99

100 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

cluded in the architecture framework. The model-driven methodology for service
ecosystem engineering is described in Section 4.2.

4.1 The Service Ecosystem Architecture Framework

Architectural analysis and design of complex systems can be facilitated with use
of architecture frameworks. An architecture framework “establishes a common
practice for creating, interpreting, analyzing and using architecture descriptions
within a particular domain of application or stakeholder community” [72]. The
domain of application in this context is that of service ecosystems with the stake-
holder community as identified in Chapter 2.

An architecture framework consists essentially of architecture viewpoints and
correspondence rules between the viewpoints, as well as instructions, best prac-
tices and guidelines for architecture work [72]. More specifically, an architecture
framework must provide: /) identification of one or more concerns with respect to
the system of interest, 2) identification of one or more stakeholders having those
concerns, 3) one or more architecture viewpoints that frame those concerns, and
4) any correspondence rules needed for ensuring the consistency of architectural
descriptions [72].

In this section the Service Ecosystem Architecture Framework is defined.
First an overview of the architecture framework is given in Section 4.1.1. The
overview briefly characterizes architecture viewpoints and correspondences be-
tween them. The architecture framework for service ecosystems comprises sev-
eral viewpoint specifications that are defined in Section 4.1.2. The viewpoint
specifications prescribe the kinds of models, tools and practices required for de-
scribing service ecosystem architectures. The models and tools are based on the
conceptual model and the service ecosystem meta-model defined in the previous
chapters. The UML modelling language and its extension mechanism, that is,
UML profiles, are utilized for implementing the modelling notations required by
the viewpoints.

4.1.1 Elements of the architecture framework

SEAF provides means for creating service ecosystem architecture descriptions,
and for utilizing the descriptions for instrumentation of sustainable service ecosys-
tems. The architecture framework defines seven viewpoints for specifying service
ecosystems: /) ecosystem capability viewpoint, 2) service choreography view-
point, 3) life-cycle viewpoint, 4) domain-ontology viewpoint, 5) concept intension
viewpoint, 6) engineering viewpoint, and 7) knowledge management viewpoint.
The ecosystem capability viewpoint frames the concerns of service ecosys-
tem purpose, scope and structure. The primary concepts used in this viewpoint

4.1 The Service Ecosystem Architecture Framework 101

are ecosystem capabilities, ecosystem domains, life cycles and infrastructure ser-
vices. Ecosystem capabilities define the purpose of a service ecosystem. Eco-
system domains provide means for structuring service ecosystems with different
scopes of authorization, visibility or social relationships (e.g. trust), for example.
Service ecosystem capabilities are realized with ecosystem life cycles, infrastruc-
ture services and qualitative features, as discussed in Section 2.1.

The service choreography viewpoint frames the concern of ecosystem be-
haviour. The primary concepts used in the service choreography viewpoint in-
clude service choreographies and business transactions. Service choreographies
specify service roles, their connections and business actions exchanged between
participants acting in the roles. A business transaction defines a coherent set of
business actions which achieves some business objective in the corresponding do-
main of interest.

The life-cycle viewpoint frames the concerns of ecosystem responsibilities,
knowledge propagation, and behaviour. The life-cycle viewpoint addresses es-
pecially pragmatic interoperability [6] concerns during ecosystem operation by
prescribing the behaviour expected from ecosystem members. Service ecosys-
tem responsibilities are declared by specifying domain-specific actors and their
participation in ecosystem life cycles. Knowledge propagation between life cy-
cles, their separate phases, and actors are declared by specification of artefacts and
their inter-dependencies with the previous elements. Finally, ecosystem behaviour
is declared by defining temporal dependencies between life-cycle phases.

The domain-ontology viewpoint frames the concern of establishing an ex-
plicit, domain-specific, shared conceptualization. The shared conceptualization
addresses especially semantic interoperability concerns, and sharing of interoper-
ability knowledge during ecosystem operation. The shared conceptualization is
specified by declaring concepts, concept sets and their inter-relationships. The
conceptual framework and the corresponding formalization as a domain ontology
model provides means for the definition of these domain ontologies: they define
top-level concepts such as entities, features and choreographies, which can be
extended in domain-specific ontologies (e.g. an ontology for home automation
service ecosystems).

The concept intension viewpoint frames the concerns of sharing engineering
knowledge, enabling domain-specific modelling practices, and tool interoperabil-
ity. While the domain-ontology viewpoint is utilized for prescribing concepts and
their mutual relationships, the intensional viewpoint defines the meaning of the
concepts by declaring their structural properties. For example, the intensional
definition for a service endpoint may declare that the corresponding endpoints
support REST-like [56] activities.

The engineering viewpoint frames the concern of enabling well-advised and

102 4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

efficient service engineering in service ecosystems. Well-advised and efficient
service engineering is supported by prescribing reusable engineering assets and
following a situational method engineering [103] approach. Engineering assets
include definitions for product models and binding models. Product models pre-
scribe artefacts and their compositions appropriate to be utilized in service en-
gineering methods. Typically the decompositions of artefacts would follow the
structure of knowledge items, but other kinds of structuring allowing more effi-
cient engineering efforts can also be utilized. Methods are composed of method
chunks which are autonomous and coherent parts of methods [103]. Binding mod-
els declare the rules for late encapsulation of services with bindable features: bind-
ing specifications prescribe what kinds of features can be bound to service roles,
business transactions or service connections, for example.

The knowledge management viewpoint frames the concerns of enabling eco-
system knowledge management and establishing coherent service ecosystem knowl-
edge bases. Service ecosystem knowledge management is enabled by specifying
knowledge repositories responsible for maintaining sets of concepts. The pri-
mary concepts addressed in the knowledge management viewpoint are knowledge
bases, knowledge repositories, knowledge items, and knowledge item relation-
ships.

4.1.2 Viewpoint specifications

In the following, the previously described viewpoints used are formally specified.
The specifications follow the conventions laid in the ISO 42010 standard [72].
Following the conventions, an architecture viewpoint shall specify

1. one or more concerns framed by the viewpoint,
2. typical stakeholders for concerns framed by the viewpoint,
3. one or more model kinds used in the viewpoint, and

4. for each model kind, the languages, notations, conventions, modelling tech-
niques, analytical methods and/or other operations to be used for models of
this kind [72].

SEAF is implemented over a UML modelling tool. Correspondingly, the
model kinds (i.e. different modelling notations used in viewpoints) are imple-
mented using the profiling mechanism of the UML standard [113]. The UML
stereotypes providing modelling notations for the model kinds are described as
part of the viewpoint specifications.

4.1 The Service Ecosystem Architecture Framework 103

Ecosystem capability viewpoint

The ecosystem capability viewpoint enables description of service ecosystem pur-
pose, scope. The elements of the conceptual framework referred to in this view-
point are ecosystem capabilities, ecosystem domains, life cycles and infrastructure
services.

Typical stakeholders for this viewpoint include ecosystem providers and in-
frastructure providers. Ecosystem providers utilize the capability viewpoint for
design and analysis of service ecosystems. Infrastructure providers utilize the ca-
pability viewpoint for identifying functional and non-functional requirements of
infrastructure services by analysis of the expected ecosystem capabilities and life
cycles. The ecosystem capability viewpoint is summarized in Table 4.1.

Framed concerns Ecosystem purpose, scope and structure

Typical stakeholders | Ecosystem provider; Infrastructure provider

Concepts Ecosystem capabilities, domains, life cycles and in-
frastructure services.

Model kinds Ecosystem capability specification

Table 4.1: Ecosystem capability viewpoint.

The ecosystem capability viewpoint is implemented using a model kind named
Ecosystem Capability specification. The Ecosystem Capability specification model
kind is implemented over UML Structure Diagram notation [111]. The stereo-
type definitions, their correspondences with the service ecosystem meta-model
elements, and associated constraints are defined in Table 4.2.

Service choreography viewpoint

The service choreography viewpoint addresses the concern of service ecosystem
behaviour. This viewpoint is utilized for defining the kinds of service roles, busi-
ness actions and business transactions available in the service ecosystem.

Typical stakeholders associated with the service choreography viewpoint in-
clude ecosystem providers, service providers and service engineers. Ecosystem
providers use the viewpoint to declare the kinds of business transactions supported
in the ecosystem. Service providers and service engineers utilize the service
choreography viewpoint for directing business service design to conform with the
business transactions accepted by a service ecosystem. The service choreography
viewpoint is summarized in Table 4.3.

The service choreography viewpoint is implemented using four different model

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

104

Meta-model element name | Stereotype name Parent stereotype UML metaclass Constraints

Capability s_capability Element

EcosystemCapability s_ecosystemcapability s_capability Interface Owner is an ecosystem
model or domain.

EcosystemDomain s_ecosystemdomain Package Owner is an ecosystem
model or domain.

EcosystemModel s_ecosystemmodel Package

FunctionalCapability s_functionalcapability s_ecosystemcapability Interface

InfrastructureServiceKind s_infrastructureservicekind Actor

LifeCycle s_lifecycle Component

QualitativeCapability s_qualitativecapability s_ecosystemcapability Interface

N/A capability_uses_capability Dependency Source and target must be
similar kinds of capabilities
(i.e. functional or qualita-
tive).

N/A ecosystem_domain_provides Dependency From domain to capability.

N/A ecosystem_domain_requires Dependency From domain to capability.

N/A infrastructureservicekind- Association From infrastructure service

_realizes_capability to capability.
N/A s_lifecycle_realizes_capability| InterfaceRealization | From lifecycle to capability.

Table 4.2: Stereotypes for Ecosystem Capability specification (UML notation: Structure (Component) Diagram)

4.1 The Service Ecosystem Architecture Framework 105

Framed concerns Ecosystem behaviour

Typical stakeholders | Ecosystem provider; Service provider; Service engi-
neer

Concepts Service choreographies, roles and service connec-
tions; Business actions and business transactions.

Model kinds Service Choreography Structure specification; Static
/ Dynamic Choreography Behaviour specification;
Business Transaction specification.

Table 4.3: Service choreography viewpoint.

kinds: /) Service Choreography Structure specification, 2) Static Choreography
Behaviour Specification, 3) Dynamic Choreography Behaviour Specification, and
4) Business Transaction Specification.

Service Choreography Structure specification is implemented using the UML
Composite Structure Diagram notation extended with the stereotypes defined in
Table 4.4.

The Static Choreography Behaviour specification is implemented with UML
Sequence Diagram notation which is extended with the stereotypes defined in
Table 4.5.

The Dynamic Service Choreography Behaviour specification is implemented
with UML Class Diagram notation which is extended with the stereotypes defined
in Table 4.6.

The Business Transaction specification is utilized for defining the kinds of
business transactions acceptable in a service ecosystem. This model kind is im-
plemented over UML Class Diagram notation with the stereotypes characterized
in Table 4.7. Each business transaction is modelled as a UML Interface extended
with the s_businesstransaction_interface; the action tagged value defines the set
of business actions included in the corresponding business transaction.

Service interactions define acceptable message exchanges for component ser-
vices. Static service interactions are modelled using two model kinds: /) Ser-
vice Interaction specification, and 2) Service Conversation specification. The first
model kind is used for modelling interaction schemes and service protocols uti-
lizing the schemes. The second model kind is used for modelling service conver-
sations of the service protocols.

The Service Interaction specification is implemented with UML Class Dia-
gram notation with the stereotypes described in Table 4.8.

Service conversation specifications are used for modelling service conversa-

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

106

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints
ServiceChoreography s_servicechoreography Element
s_servicechoreography s_servicechoreography Class
_class
ServiceConnection s_serviceconnection Element Owner must be of kind
s_servicechoreography.
S_serviceconnection S_serviceconnection Connector Owner must be of kind
_connector s_servicechoreography
_class.
ServiceRole s_servicerole Element
s_servicerole_property s_servicerole Property UML::Property::type must

refer to a model element of

kind s_actor.

Table 4.4: Stereotypes for Service Choreography Structure specification (UML notation: Composite Structure Diagram)

107

4.1 The Service Ecosystem Architecture Framework

(wreider(q 9ouanbag :uoneloU TIAN) UoneOYIdads Inotaeyag Aydersoaroy)) oneis 10 sad£109191S Gy 9[qR],

‘K1adoad 21012010425~
puny Jo JUSW[
[Ppow B 0] I9JaI Jsnuwu

QuIyI

sjuasaddad: :aunjafry: TN QuIRII] O[OJAOIAIIS™S O[OJIOIAIIS ™S
Juowalq 2]042010.4125™ S J[OYQIIAIS
‘Kydpa1302.410y02214425™
pury Jo JUOWI@ [opour uornorIIUI
B 9Q Isnw JOUMO U], uonorINU] Ayde130210U0a01AIS ™S
Jonpoudajofoafif”s
pury JOo JUSWIJ[D [opouwr
ue 0} 19jo1 jsnw Kjodoxd
Juawndav::a3vssapy 1euondo
YL woyouds 10 Jp)
-oufsp JYID SI 110§23DSSIUL 93essoN uorjoBSSauIsng”— s J3essow uonoessauIsng~ s
Juowaq UONODSSIUISNG S uonoyssauisng
SjuIeIISuO)) | SSeE_W TIA() 3d£)02133s Juaaeq Jureu 9d£)02.19)g JUIBU JUIWII[I [9POWI-BIIIAI

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

108

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints
BusinessAction s_businessaction Element
s_businessaction_class s_businessaction Class Tagged value commitment must
refer to a model element of kind
s_servicecommitment. Tagged
value transaction must refer
to a model element of kind
s_businesstransaction.
ServiceChoreography s_servicechoreography Element
s_servicechoreography s_servicechoreography Class The element must own at least
_class one model element of kind
s_businessaction_class and
s_businesstransaction.
ServiceCommitment s_servicecommitment Element
s_servicecommitment s_servicecommitment Class Tagged value connection must re-

_class

fer to a model element of kind
s_serviceconnection. Tagged val-
ues creditor and debtor must re-
fer to a model element of kind
s_servicerole. Tagged value prod-
uct must refer to a model element
of kind s_lifecycleproduct.

Table 4.6: Stereotypes for Dynamic Service Choreography specification (UML notation: Class Diagram)

109

4.1 The Service Ecosystem Architecture Framework

(wreaSer(g sse[) :uoneiou TIAN) Uoneoyroads uonoesuel], ssauisng I0J sad£109191S @/ 4 9[qeL

‘suonoesuen
ssouisng Ayl Ul papnjour
suomnoe ssaursng ay) uruyop
uoyovsSsauIsng—s pury Jo
SIUQWIAO [9pOW AIOW IO U0
0] SI9JAI Uo1IV anfea pasde],

Ky dpi1302.40122214425~S
M padA10019)s JuowIdf

[opow B 9q ISNW JOUMQ ERlREIN | UONOBSUBIISSOUISI] S [90RJIQ)UI UOTJOBSUBISSIUISN] S
JuWR UONOBSUBISSAUISNG ™S uonoBsuLI[ssouIsng
SJUIBIISUO)) | SSB[EIdIW TN ad£)0a193)s Juaaeq Jureu 3d£)031g JWIBU JUIWIR[D [PPOW-BIRIA

4 TOOLS FOR MODEL-DRIVEN SERVICE ECOSYSTEM ENGINEERING

110

Meta-model element name Stereotype name Parent stereotype UML metaclass | Constraints
InteractionScheme s_interactionscheme Element Owner must be a
model element of kind
s_serviceendpointkind.
s_interactionscheme s_interactionscheme Class Tagged value activities must
_class refer to a model element of
kind s_serviceactivity.
ServiceActivity s_serviceactivity Element The owner must be a
model element of kind
s_interactionscheme.
s_serviceactivity s_serviceactivity Class Tagged value docu-
_class ment must refer to a
model element of kind
s_businessdocumentkind.
ServiceProtocol s_serviceprotocol Element The owner must be a
model element of kind
s_componentservicekind.
s_serviceprotocol s_serviceprotocol Class Tagged value scheme must

_class

refer to a model element of
kind s_interactionscheme.
Tagged value conversation
must refer to one or more
model elements of kind
s_serviceconversation.

Table 4.8: Stereotypes for Service Interaction specification (UML notation: Class Diagram)

4.1 The Service Ecosys