
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Explaining a Weighted DAG with Few Paths
for Solving Genome-Guided Multi-assembly

Alexandru I. Tomescu, Travis Gagie, Alexandru Popa, Romeo Rizzi, Anna Kuosmanen, Veli Mäkinen

Abstract—RNA-Seq technology offers new high-throughput ways for transcript identification and quantification based on short
reads, and has recently attracted great interest. This is achieved by constructing a weighted DAG whose vertices stand for exons,
and whose arcs stand for split alignments of the RNA-Seq reads to the exons. The task consists in finding a number of paths,
together with their expression levels, which optimally explain the weights of the graph under various fitting functions, such as
least sum of squared residuals. In (Tomescu et al. BMC Bioinformatics, 2013) we studied this genome-guided multi-assembly
problem when the number of allowed solution paths was linear in the number of arcs.
In this paper we further refine this problem by asking for a bounded number k of solution paths, which is the setting of most
practical interest. We formulate this problem in very broad terms, and show that for many choices of the fitting function it becomes
NP-hard. Nevertheless, we identify a natural graph parameter of a DAG G, which we call arc-width and denote ⟨G⟩, and give
a dynamic programming algorithm running in time O(Wk⟨G⟩k(⟨G⟩ + k)n), where n is the number of vertices and W is the
maximum weight of G. This implies that the problem is fixed-parameter tractable (FPT) in the parameters W , ⟨G⟩ and k. We also
show that the arc-width of DAGs constructed from simulated and real RNA-Seq reads is small in practice. Finally, we study the
approximability of this problem, and, in particular, give a fully polynomial-time approximation scheme (FPTAS) for the case when
the fitting function penalizes the maximum ratio between the weights of the arcs and their predicted coverage.

Index Terms—RNA-sequencing, transcript prediction, splicing graph, NP-hardness, dynamic programming, fixed-parameter
tractability, digraph-width measure, approximation algorithm.

✦

1 INTRODUCTION
1.1 Background

IN this paper we tackle a biological multi-assembly
problem [2] motivated by the recent RNA-Seq tech-

nology [3], [4], [5]: reconstruct as accurately as pos-
sible the RNA transcripts of a gene, given only a
set of short RNA reads sequenced from them. The
transcripts are concatenations of exons, the difficulty
of the problem arising from the fact that they can have
some identical exons.

Even though some de novo tools try to assemble the
transcripts only from the RNA-Seq reads [6], most
tools use reference information. This second setting
consists of two non-trivial steps. The first is the spliced
alignment of the RNA-Seq reads to the reference
genome, as solved by [7], [8]. The second problem,
which is the one we tackle in this paper, is separating
the coverage obtained in the first step into individual
transcripts.

This paper is an extended version of [1].

• A.I. Tomescu, T. Gagie, A. Kuosmanen and V. Mäkinen are with the
Helsinki Institute for Information Technology HIIT, Department of
Computer Science, University of Helsinki, Finland.
E-mails: {tomescu,gagie,aekuosma,vmakinen,}@cs.helsinki.fi

• A. Popa is with the School of Science and Technology, Nazarbayev
University, Astana, Kazakhstan.
Email: alexandru.popa@nu.edu.kz

• R. Rizzi is with the Department of Computer Science, University of
Verona, Italy.
E-mail: romeo.rizzi@univr.it

This genome-guided multi-assembly problem has at-
tracted great interest from the community, resulting in
tools such as Cufflinks [9], IsoInfer/IsoLasso [10], [11],
SLIDE [12], CLIIQ [13], Scripture [14], iReckon [15],
TRIP [16], NSMAP [17], Montebello [18], FlipFlop [19].
These methods rely on a graph model, the most
common one being a splicing graph [20]. Its vertices
represent contiguous stretches of DNA uninterrupted
by spliced reads (called pseudo-exons), while its arcs
are derived from overlaps, or from spliced read align-
ments. Since it arises from alignments to a reference
genome, the splicing graph is directed and acyclic
(a DAG); the orientation of the arcs is according to
the starting positions of the pseudo-exons inside the
genome. Every vertex v has an associated observed
average coverage, computed as the total length of the
read fragments aligned to the pseudo-exon v, divided
by the pseudo-exon length. Similarly, every arc (u, v)
has an associated coverage, which is the total num-
ber of reads splice-aligned to the junction between
pseudo-exons u and v. Throughout this paper we
denote by n and m the number of vertices and arcs,
respectively, of the input DAG.

The biological multi-assembly and quantification
problem translates to covering the graph with paths
under different cost models, such as least sum of
squared residuals (IsoInfer/IsoLasso, SLIDE), or least
sum of absolute values of the residuals (CLIIQ). Many
of the above mentioned tools work by exhaustively
enumerating all possible (combinations of) paths, un-

To appear in IEEE/ACM Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

a
8

b
6

e

3

c
5

f

3

d
8

5

3

3
4

5
5

3
4

(a)

a
5+3

b
5

e

3

c
5

f

3

d
5+3

5

3

5
5

3
3

(b)

a
5+3

b
5+3

e

3

c
5

f

3

d
5+3

5

3

3
3

5
5

3

(c)

Fig. 1. An example for k = 2, and fitting function f(x) = x2. In Fig. 1(a), a splicing directed acyclic graph;
its vertices and arcs are labeled with their observed average coverage. In Fig. 1(b), the optimal two paths for
Problem 2-UTEO, with expression levels 5 and 3, respectively; vertices and arcs are labeled with their predicted
coverage from these two paths. The cost of this solution is 1+1, from vertex b, and from arc (f, d), respectively. In
the case of Problem 2-UTEC, we have to add 32+42 to the cost of this non-optimal solution, from uncovered arcs
(e, b), (b, f). In Fig. 1(c), the optimal 2 paths for Problem 2-UTEC, with expression levels 5 and 3, respectively;
vertices and arcs are labeled with their predicted coverage from these two paths. The cost of this solution is
22 + 1 + 1 + 32, from vertex b, and arcs (b, f), (f, d), (e, f), respectively.

der some restrictions, and then estimating their fitting
with an Integer Linear Program, Quadratic Program,
or a QP + LASSO regression. Cufflinks computes a
minimum weight minimum path cover, and only in
a second step estimates the expression levels of the
paths.

1.2 Previous work

In [21] we introduced a general framework, encom-
passing many of the previous cost models; according
to the survey [22], it can be classified as de novo
genome-guided, since it does not use gene annotation
information. Let f be a fitting function penalizing the
absolute difference between the observed coverage of
a vertex or an arc, and the sum of the expression
levels of the paths using that vertex or arc (we call this
sum the predicted coverage of that vertex or arc). The
genome-guided multi-assembly problem can be sim-
ply stated as finding (an unlimited number of) paths
with associated expression levels which minimize the
sum of the penalties of all residuals for each vertex
and arc. Formally, we have the following problem:1

Problem UTEC (Unannotated transcript expression—
cover). Given a DAG G = (V,E), a weight function
w : V ∪ E → R+, and a fitting function f : R+ → R+,
find a tuple P of paths from the sources of G to the sinks
of G, with an estimated expression level e(P) for each path
P ∈ P , which minimize

∑

v∈V

f
(∣∣∣w(v)−

∑

P∈P s.t. v∈P

e(P)
∣∣∣
)
+

∑

(u,v)∈E

f
(∣∣∣w(u, v)−

∑

P∈P s.t. (u,v)∈P

e(P)
∣∣∣
)
.

1. To be precise, Problem UTEC was stated as receiving in input a
different fitting function for every vertex and arc; this is important
in practice, since the fitting function can depend, for example, also
on the exon length, or on the variance of its coverage. Nevertheless,
for simplicity we state here all the problems with a unique fitting
function. All results and algorithms apply to this more general case
as well.

For example, if f(x) = x2, then we have a least
sum of squared residuals model similar to the ones
in IsoInfer/IsoLasso and SLIDE, and if f(x) = x we
have a model as in CLIIQ (see Fig. 1 for an example).
For any convex fitting function, Problem UTEC can
be solved in polynomial-time by a reduction to a
minimum-cost flow problem with convex costs [21].
The reduction works by finding the optimal flow, and
then splitting this flow into at most |E| paths.

However, in practice we are interested in parsimo-
niously explaining the given DAG with few paths,
since a small fraction of the graph may be erroneous.
This can be due to various biological events such as
template switching, self-priming, intron retention, or
due to technical errors related to reading or align-
ment [23], [5], [24], [25]. Notice that splitting any flow
into the minimum number of paths is an NP-hard
problem [26]. For this reason, in [21] we employed
a heuristic from [26] for splitting the flow by repeat-
edly choosing and removing the path carrying the
maximum amount of flow (i.e., the path of maximum
bottleneck).

One possible workaround for reporting few solu-
tion paths appeared for example in IsoLasso [11] and
in FlipFlop [19]. These methods add a regularization
term λ

∑
P∈P e(P) to an objective function similar

to the one in Problem UTEC, for some opportune
λ. The experiments in [11] and [19] show that the
optimal solution according to this objective function
also prefers few solution paths. To be more precise,
the method in [19] is also based on a reduction
to a minimum-cost flow problem, by appropriately
adding this regularization term as cost in the flow
network. The resulting flow is split into paths by the
same heuristic from [26], [21]. The number of paths
produced in this manner is low, but it is not proven
that the resulting flow is in fact decomposed into the
minimum number of paths (recall that the problem of
minimally splitting a flow is in general NP-hard [26]).

Another workaround was proposed in [1], where
we generalized Problem UTEC to ask for a given

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

number k of paths:

Problem k-UTEC (k-Unannotated transcript expres-
sion—cover). Given a DAG G = (V,E), a weight
function w : V ∪E → R+, a fitting function f : R+ → R+,
and an integer k, find a tuple P of k paths from the sources
of G to the sinks of G, with an estimated expression level
e(P) for each path P ∈ P , which minimize

∑

v∈V

f
(
w(v)−

∑

P∈P s.t. v∈P

e(P)
)
+

∑

(u,v)∈E

f
(
w(u, v)−

∑

P∈P s.t. (u,v)∈P

e(P)
)
.

In [1] we also introduced the following variant, in
which the paths should explain only the weights of
the vertices and arcs appearing on them, as opposed
to the entire graph; thus, the vertices and arcs not
appearing on a predicted path are seen as outliers.

Problem k-UTEO (k-Unannotated transcript expres-
sion–outlier). Given a DAG G = (V,E), a weight
function w : V ∪E → R+, a fitting function f : R+ → R+,
and an integer k, find a tuple P of k paths from the sources
of G to the sinks of G, with an estimated expression level
e(P) for each path P ∈ P , which minimize

∑

P∈P

∑

v∈P

f
(
w(v)−

∑

Q∈P s.t. v∈Q

e(Q)
)
+

∑

P∈P

∑

(u,v)∈P

f
(
w(u, v)−

∑

Q∈P s.t. (u,v)∈Q

e(Q)
)
.

The main result from [1] is that both the k-UTEC
and k-UTEO problems are NP-hard. However, if the
possible expression levels of the solution paths are
assumed to belong to a known set of positive inte-
gers {1, 2, . . . ,W}, then they are solvable by dynamic
programming in time O(W knk(n2 + ∆k)) and space
O(nk), where ∆ is the maximum in-degree. The idea
of this algorithm is, for every k-tuple of possible
expression levels, to compute the optimal k-tuple of
paths having the given expression levels, and ending
in every k-tuple of vertices.

Observe that applying k-UTEC for all possible
values of k solves Problem UTEC. In particular, if
Problem UTEC has an optimal solution with small k,
one could be able to find it fast using an algorithm
for Problem k-UTEC, yet one could not give a proof
of the optimality. For practical purposes, iterating the
algorithm for small values of k may still be a good
way to select a proper value of k.

Moreover, the solution we will present in this paper
for a more general multi-assembly problem immedi-
ately allows k to be chosen as in [11] and [19], by
adding the regularization term λ

∑
P∈P e(P) to the ob-

jective functions. Another common way to select the
“best” parameter k in analogous problems is to use
the minimum description length (MDL) principle [27].

1.3 Contribution
In this paper we investigate the limits of a dynamic
programming-like approach as in [1]. Accordingly, we
generalize Problems k-UTEC and k-UTEO by allow-
ing:

• the fitting function to take as parameters both the
observed coverage and the predicted coverage,
not only their absolute difference;

• the objective function to be any p-norm ∥ · ∥p of
the vector of penalties, for any p ∈ R+.

On the one hand, we show that for any fitting
function from two superclasses of positive definite
functions, and for any p-norm, we can still solve the
corresponding problem by dynamic programming,
and give a faster algorithm than in [1]. On the other
hand, we show that for any such fitting function,
the corresponding problem remains NP-hard. We also
give some approximation results, and in particu-
lar, present a fully polynomial-time approximation
scheme (FPTAS) for the fitting function penalizing the
ratio between observed and predicted coverage.

Formally, we propose the following problem.2

Problem (f, k, p)-GGMA (Genome-guided multi-
assembly). Given a DAG G = (V,E = {a1, . . . , am}),
a weight function w : E → R+, a fitting function
f : R+ × R+ → R+, and an integer k, find a tuple P
of k paths from the sources of G to the sinks of G, with
an estimated expression level e(P) for each path P ∈ P ,
which minimize

∥err∥p,

where err denotes the m-dimensional vector having
f
(
w(ai),

∑
P∈P s.t. ai∈P e(P)

)
as i-th component (for i ∈

{1, . . . ,m}), and ∥err∥p notes its p-norm.

Observe that given a fitting function f : R+ → R+

for Problem k-UTEC or k-UTEO, Problem k-UTEC is
the same as Problem (fc, k, 1)-GGMA, where

fc(x, y) = f(|x− y|),

and Problem k-UTEO is the same as Problem (fo, k, 1)-
GGMA, for

fo(x, y) =

{
0, if y = 0,
f(x− y), otherwise.

Problem GGMA also leads to other natural problem
variants. For example, if we take

fe,δ(x, y) =

{
0, if |x− y| ! δ

1, otherwise,

2. For the sake of clarity, we make the simplifying assumption
that the input DAG is only arc-weighted. This is no restriction, since
a weighted vertex v can be replaced by two new vertices v1 and
v2, connected by an arc of weight w(v), such that the in-neighbors
of v1 are the same as the in-neighbors of v, and the out-neighbors
of v2 are the same as the in-neighbors of v. The resulting DAG still
has O(n) vertices and O(n+m) arcs.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

for a δ " 0 given in input, then Problem (fe,δ, k, 1)-
GGMA asks for the k paths and their expression levels
which maximize the number of arcs whose predicted
coverage is within δ to their observed coverage.

If we take

fr(x, y) = max

{
x

y
,
y

x

}
,

then Problem (fr, k,∞)-GGMA asks for the k paths
and their expression levels such that the maximum,
over all arcs, of the worst ratio between the observed
coverage and the predicted coverage is minimized
(we interpret a division by 0 as +∞, so that we need
to cover all arcs of the DAG).

Our first result concerning Problem GGMA, pre-
sented in Sec. 2, is to show that it remains NP-
hard for any p-norm, and for any fitting function
from two superclasses of positive definite functions,
generalizing fc, fo defined above.

Moreover, in Sec. 3 we extend our dynamic pro-
gramming approach from [1] for the entire family of
problems (f, k, p)-GGMA. We do this by identifying a
natural graph parameter of a DAG G, which we call
the arc-width of G, denoted ⟨G⟩; it is defined as the
minimum number of paths needed to cover all the
arcs of G.

We give a dynamic programming-based algorithm
working in time O(W k⟨G⟩k(⟨G⟩ + k)n). In particu-
lar, this improves our algorithm in [1], since ⟨G⟩ !
|E(G)| ! n∆. However, observe that arc-width should
be much smaller in practice, since the splicing DAGs
arise from a few RNA transcripts, plus some erro-
neous arcs. These are due for example to reading or
alignment errors, or intron retention. In fact, in Sec. 4
we compute the arc-width for graphs constructed
from simulated and real reads from genes of human
chromosome 2, and show it is generally much lower
than the number of vertices, thus making this algo-
rithm significantly faster than our previous solution
in [1].

Recall that a fixed-parameter tractable (FPT) algo-
rithm in a parameter t is an algorithm running in time
O(h(t)p(n)), where p(n) is a polynomial in the input
size n, and h(t) is an arbitrary function of t, but not
depending on n. Given a fixed k-tuple of expression
levels for the solution paths, our algorithm runs in
time O(⟨G⟩k(⟨G⟩ + k)n), thus we can say that this
algorithm is FPT in ⟨G⟩+k (by taking, e.g., h(t) = tt.)

Finally, in Sec. 3.3 we study the approximability
of Problem GGMA. Our strategy is to discretize the
weights in {1, . . . ,W} according to an arithmetic or
geometric progression. We give some approximation
results for Problems (fc, k,∞)-GGMA and (fo, k,∞)-
GGMA (where we use an arithmetic progression of
ratio εW), while for Problem (fr, k, p)-GGMA (where
we use a geometric progression of ratio 1 + ε) we
obtain an FPTAS, that is, an algorithm which is given
an ε > 0, and returns in time polynomial in both the

input size and in 1/ε a solution of cost within factor
(1 + ε)±1 to the optimal one.

2 NP-HARDNESS OF PROBLEM GGMA
We first consider a family of fitting functions for
which Problem GGMA is NP-hard even in the strong
sense. This family is made up of the functions f :
R+ × R+ → R+ satisfying the following property:

Property 1. For any x, y ∈ R+ it holds that
• f(x, y) " 0,
• f(x, x) = f(y, y), and
• f(x, x) ! f(x, y), with equality if and only if y = x.

Observe that functions f(x, y) = (x − y)2, fe,0, fr
discussed in the previous section satisfy Property 1.
More generally, Property 1 holds for any positive
definite function (a function satisfying the separation
and the coincidence axioms of a metric).

Theorem 1. Problem (f, k, p)-GGMA is NP-hard in the
strong sense for any function f satisfying Property 1, and
any p ∈ R+.

Proof: We follow the proof of [26, Proposition 2]
for splitting a flow into a given number of paths, un-
derlining the differences in what follows. We reduce
from 3-PARTITION. In this problem, we are given a
set A = {a1, . . . , a3q} with 3q positive integers, such
that:

• B/4 < ai < B/2, for all i ∈ {1, . . . , 3q}, and
•

∑3q
i=1 ai = qB.

We are asked whether there exists a partition of A
into q disjoint sets, such that the sum of the integers
in each of these sets is B.

Given an instance (A,B) to 3-PARTITION, we con-
struct (see also Fig. 2) the DAG GA,B having:

• V (GA,B) = {x1, . . . , x3q, y1, y2, z1, . . . , zq},
• for every i ∈ {1, . . . , 3q}, an arc (xi, y1) with

coverage ai,
• an arc (y1, y2) with coverage w(y1, y2) = qB,
• for every i ∈ {1, . . . , q}, an arc (y2, zi) with

coverage w(y2, zi) = B.
We prove that there exists a partition of A into q

sets of size B if and only if Problem GGMA admits
on GA,B a solution made up of 3q paths of cost
∥null err∥p, where null err is the vector correspond-
ing to the case where for each arc, its predicted
coverage equals its observed coverage, that is,

null err = (f(a1, a1), . . . , f(a3q, a3q), f(qB, qB),

f(B,B), . . . , f(B,B)).

For the forward implication, let A1, . . . , Aq be a par-
tition of A into q sets of size B. To obtain a solution to
Problem GGMA with cost ∥null err∥p, for every Ai =
{ai1 , ai2 , ai3} we add to the solution the three paths
(xi1 , y1, y2, zi), (xi2 , y1, y2, zi), (xi3 , y1, y2, zi), with ex-
pression levels ai1 , ai2 , ai3 , respectively. These three

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

paths completely cover the arcs (xi1 , y1), (xi2 , y1), and
(xi3 , y1), respectively, and they are the only paths
to do so, since A1, . . . , Aq is a partition of A. This
results in the costs f(ai1 , ai1), f(ai2 , ai2), f(ai3 , ai3),
respectively, in the vector null err. Moreover, since
ai1 + ai2 + ai3 = B, then these three paths together
completely cover the arc (y2, zi). This corresponds to
a component equal to f(B,B) in the vector null err
corresponding to the arc (y2, zi). Since

∑3q
i=1 ai = qB,

we have that also the arc (y1, y2) is completely cov-
ered, which gives the component f(qB, qB) of the
vector null err. Thus the error vector of this solution
equals null err.

For the backward implication, consider a solu-
tion with 3q paths for Problem GGMA of total cost
∥null err∥p. From the fact that ∥ · ∥p is a p-norm, and
function f satisfies Property 1, in any solution with 3q
paths with cost ∥null err∥p, the predicted coverage of
each arc must equal its observed coverage.

Moreover, observe that each vertex xi is contained
in exactly one path. Indeed, by the above observation,
the predicted coverage of the arc (y1, y2) is precisely
qB. This implies that the sum of the expression levels
of all 3q paths is qB; consequently, each of the 3q arcs
from the vertices x1, . . . , x3q to y1 must be covered by
at most one and thus exactly one of the 3q paths.

For every i ∈ {1, . . . , q}, let Qi denote the set of
paths in this optimal solution covering vertex zi. From
the above observations, the sum of their expression
levels is B, and their expression levels belong to A.
Since B/4 < a < B/2, for all a ∈ A, then each Qi

contains exactly three paths. This implies that for any
1 ! i < j ! q, Qi ∩Qj = ∅. Thus, by associating with
each i ∈ {1, . . . , q} the subset of A that corresponds
to the first arc of the three paths of Qi, we obtain a
partition of A into q sets, each of size B.

In RNA-seq experiments, the expression levels of
the observed coverages can be orders of magnitude
apart. The above reduction can be easily modified
to construct such an instance of the splicing graph,
as follows. For an input (A,B) to the 3-PARTITION
problem, we can introduce in GA,B from the above
proof two other vertices x0 and z0 and the arc (x0, z0),
with observed coverage a0, where a0 is orders of
magnitude higher than the elements of A. Then by
following the proof verbatim, it holds that there exists
a partition of A into q sets of size B if and only if
Problem GGMA admits on GA,B a solution made up
of 3q + 1 paths of cost ∥null err∥p, where null err is
the vector corresponding to the case where for each
arc, its predicted coverage equals its observed cover-
age. Indeed, in the forward implication, we also need
to add to the solution the path (x0, z0) with expression
level a0, and the proof of the reverse implication does
not depend on the new vertices x0 and z0. Various
other such transformations can be made to GA,B so
that it resembles as much as possible real splicing
graphs.

y1 y2

x1

x2

x3q

a1

a2

a3q

...

qB

z1

z2

zq

B

B

B

...

Fig. 2. A reduction of 3-PARTITION to Problem GGMA.

y1 y2

x1

x2

xn

a1

a2

an

...

B

Fig. 3. A reduction of SUBSET SUM to Prob-
lem GGMA.

Corollary 1. Problem k-UTEC with fitting functions
f(x) = |x|, or f(x) = x2, is NP-hard in the strong sense.

Proof: Function fc defined starting from f , as in
Sec. 1.3, satisfies Property 1.

Corollary 2. Problem (fe,δ, k, 1)-GGMA, where δ " 0
is a parameter received in input, and Problem (fr, k,∞)-
GGMA are NP-hard in the strong sense.

Proof: If we set δ = 0, then function fe,0 satisfies
Property 1. Likewise, also function fr satisfies Prop-
erty 1.

Our next property captures fitting functions for
Problem k-UTEO, in the sense that arcs without pre-
dicted coverage should not count in the objective
function.

Property 2. For any x, y ∈ R+ it holds that
• f(x, y) " 0, with equality if and only if y ∈ {x, 0}.

We cannot prove NP-hardness in the strong sense
anymore for fitting functions satisfying Property 2,
as our reduction is now from the problem SUBSET
SUM, which is NP-hard only in the weak sense [28].

Theorem 2. Problem (f, k, p)-GGMA is NP-hard in the
weak sense, for any function f satisfying Property 2, and
any p ∈ R+.

Proof: In the SUBSET SUM problem we are given
a set A = {a1, a2, . . . , an} of positive integers, together
with positive integers B and k, and we are asked
whether there exists a subset A′ ⊆ A such that |A′| ! k
and

∑
a∈A′ a = B.

For an instance (A,B, k) of the SUBSET SUM
problem, we construct, very similarly to the proof of
Thm. 1 and as depicted in Fig. 3, the directed acyclic
graph GA,B having:

• V (GA,B) = {x1, . . . , xn, y1, y2},

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

• for every i ∈ {1, . . . , n}, we add an arc (xi, y1) to
GA,B , with observed coverage ai,

• we add an arc (y1, y2) with observed coverage
w(y1, y2) = B to GA,B .

We show that the SUBSET SUM problem admits a
solution to an input (A,B, k) if and only if Prob-
lem GGMA admits on GA,B a solution made up of
at most ℓ ! k paths of cost 0.

For the forward implication, assume that B =
{ai1 , . . . , aiℓ}, ℓ ! k, is a solution to the SUBSET SUM
problem on (A,B, k), thus that ai1 + · · ·+aiℓ = B. It is
immediately seen that the tuple of ℓ paths (xij , y1, y2),
each being assigned expression level aij , for all j ∈
{1, . . . , ℓ} is a solution with cost 0.

For the backward implication, let P = (P1, . . . , Pℓ)
be a tuple of ℓ paths from sources to the unique
sink y2, ℓ ! k, of cost 0. Let {xi1 , . . . , xiℓ′ }, ℓ′ ! ℓ,
be the subset of {x1, . . . , xn} whose elements are
contained in some path in P . It readily follows that
B =

∑
1!j!ℓ′ aij , since these paths use the arc (y1, y2)

and the observed coverage of this arc is B. This leads
to the desired subset of A of size B.

Corollary 3. Problem k-UTEO with fitting functions
f(x) = |x|, or f(x) = x2, is NP-hard.

Proof: Problem k-UTEO with fitting function
f(x) = |x| is the same as Problem (fo, k, 1)-GGMA,
where

fo(x, y) =

{
0, if y = 0,
|x− y|, otherwise.

The claim follows since this function fo(·, ·) satisfies
Property 2. Analogously for f(x) = x2.

3 ALGORITHMS

3.1 The arc-width of a DAG

We start by introducing the graph parameter which
will guide the dynamic programming algorithm.

Definition 1. Given a DAG G, the arc-width of G,
denoted ⟨G⟩, is the minimum number of directed paths
that cover all arcs of G.

For an example, see Fig. 4(a). By Dilworth’s theo-
rem [29], ⟨G⟩ also equals the size of the maximum set
of arcs such that there is no directed path between
any two of them. Moreover, by the constructive proof
of [30], it can be computed in time O(n5/2) by an
application of a maximum matching algorithm [31].

We next introduce the notion of rank of a vertex in
a DAG G, with the purpose of transforming G into
an equivalent DAG G̃ such that all arcs are between
vertices of consecutive ranks. From this it will follow
that we can base our DP algorithm by considering
only k-tuples of vertices of the same rank. Moreover,
it will hold that at most ⟨G⟩ vertices have the same
rank in G̃.

Definition 2. The rank of a vertex x in a DAG G, denoted
rank(x), is the length of a longest directed path from x to
a sink of G.

See Fig. 4 for an example. The rank of every vertex
of a DAG can be computed in time O(m), by doing
a topological sort of the vertices of G, and then
assigning rank 0 to the sinks, and

rank(x) = 1 + max
y∈N+(x)

rank(y),

to all other vertices x processed in inverse topological
order, where N+(x) denotes the out-neighborhood of
x.

Given a DAG G, let G̃ denote the DAG obtained
from G as follows. For every arc (u, v) such that
rank(u) > rank(v) + 1, subdivide (u, v) into as many
arcs as there are ranks between rank(u) and rank(v),
see Fig. 4(b). Stated formally, remove arc (u, v), and
add new vertices z1, . . . , zrank(u)−rank(v)−1, and arcs
(u, z1), (z1, z2), . . . , (zrank(u)−rank(v)−1, v). Observe
that the endpoints of every arc of G̃ now have
consecutive ranks.

The following lemma places a bound on the number
of vertices of each rank in G̃ in terms of ⟨G⟩.

Lemma 1. Let sr " 0 be the number of sources of rank
smaller than r in a DAG G. If G does not have isolated
vertices, then for every r " 0 there are at most ⟨G⟩ − sr
vertices of rank r in G̃.

Proof: First observe that there can be no directed
path between two vertices of the same rank, by the
definition of rank.

Assume, for a contradiction, that there exists a set
X of vertices of G̃ having the same rank r, with |X| "
⟨G⟩ − sr + 1. Note that each of the sr sources of rank
strictly smaller than r has to be covered by a distinct
path not passing through X . By the definition of arc-
width, it follows that the vertices of X can be covered
by at most ⟨G⟩ − sr paths.

Since G has no isolated vertices, then G̃ has no
isolated vertices, and thus every vertex x in X has
at least one in-coming or out-going arc ax. The arc
ax can be covered only by a directed path passing
through x. Moreover, there can be no directed path
passing through two vertices in X ; therefore, we have
that each of the at least ⟨G⟩− sr +1 vertices of X has
to be covered by a distinct path, a contradiction.

Observe that the set of values that the rank function
takes on G̃ equals the set of values that the rank
function takes on G. Moreover, the cardinality of this
set of values is at most n, the number of vertices of
G.

3.2 The dynamic programming algorithm
We will consider fitting functions satisfying Proper-
ties 1 or 2; accordingly, since we consider the p-norm,
the maximum expression level of a path in an optimal

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

rank 01234

x1 x2 x3 x4 x5

x6 x7 x8

5 4 4 5

2 2

3 3

1
(a)

01234

x1 x2 x3 x4 x5

x6 x7 x8

z1

z2

z3

(b)

01234

x1 x2 x3 x4 x5

x6 x7 x8

z1

z2

z3

z4 z5

5

4 4 5

2 2

3

3

1

(c)

Fig. 4. In Fig. 4(a), an arc-weighted DAG G of arc-width ⟨G⟩ = 4; the vertices of G are drawn from right to left, in
increasing order on their ranks, indicated in the top of the figures. In Fig. 4(b), the transformed DAG G̃ (we omit
the arc weights from this figure). In Fig. 4(c), the DAG obtained by further transforming G̃ as explained in the
proof of Thm. 3; the arcs without weights belong to the set Y of arcs not contributing to the objective function.

solution is at most the maximum weight of an arc;
denote this maximum value by W . Supposing that the
expression levels are integers, then we can enumerate
all k-tuples of expression levels in {1, . . . , ⌈W ⌉}, and
for each such tuple, find by dynamic programming
the optimal k paths having these expression levels.

In practical terms, having these two steps separate
means that we can employ any local search heuristic
for finding the optimal expression levels. This search
will be guided by the cost of the objective function
returned by the dynamic programming; the search can
be done at any chosen granularity of the expression
levels, possibly including a priori information about
the true expression levels. For example, in [1] we used
a genetic algorithm.

In Sec. 3.3 we will show that we can discretize
the weights in {1, . . . , ⌈W ⌉} and obtain an FPTAS for
Problem (fr, k, p)-GGMA

Theorem 3. Given a DAG G and a k-tuple (w1, . . . , wk)
of expression levels, we can find in time O(⟨G⟩k(⟨G⟩+k)n)
the optimal paths for Problem (f, k, p)-GGMA having these
expression levels.

Proof: We further generalize the problem by con-
sidering also a set Z of arcs which are excluded
from the evaluation of the objective function, i.e., their
predicted coverage can take any value, independently
of their observed coverage; this is done in order to
accommodate the transformations we will apply to
the graph. Throughout this proof we assume p < ∞;
otherwise, it suffices to replace the summation oper-
ation with the one of taking the maximum.

Given an input DAG G, we construct the graph G̃.
The weights of G̃ are the same as the weights of G,
with the exception that if an arc (u, v) was subdivided
into arcs (u, z1), (z1, z2), . . . , (zrank(u)−rank(v)−1, v),
then w(u, z1) = w(u, v), and all other arcs
(z1, z2), . . . , (zrank(u)−rank(v)−1, v) are added to
Z.

Denote by rmax the maximum rank of G̃. We further
transform G̃ by making it such that all of its sources
have rank rmax. This can be done by adding, for each

source s of rank rs < rmax, a directed path of length
rmax − rs ending in s, whose starting point, thus, has
rank rmax; the arcs of this path are added to Z (e.g.,
the path (z4, z5, x6) ending in x6 in Fig. 4(c)). The
resulting graph G̃ has at most ⟨G⟩ vertices at each
rank, by Lemma 1.

Let G̃r denote the subgraph of G̃ induced by the
vertices of rank at least r. We will solve the problem
on the subgraphs G̃rmax , G̃rmax−1, . . . , G̃1, G̃0 = G̃, as
follows.

For every rank r ∈ {rmax, . . . , 0} we compute a
table solr, which for every k-tuple (v1, . . . , vk) of sinks
of G̃r (that is, of vertices of rank r of G̃), stores the
value of the p-norm, raised to the power p, of the k-
paths optimal for G̃r and ending in (v1, . . . , vk). Stated
formally,

solr(v1, . . . , vk) :=

min
paths P1, . . . , Pk in G̃r ,

each Pi is from a source to vi

(∥err(P1, . . . , Pk, r)∥p)p,

where err(P1, . . . , Pk, r) is the vector with value

f

⎛

⎝w(a),
∑

j∈{1!t!k | a∈Pt}

wj

⎞

⎠

on the component corresponding to arc a of G̃r, for
each arc a of G̃r.

The solution for Problem (f, k, p)-GGMA with the
given expression levels will be obtained by taking the
minimum over all k-tuples of sinks of G̃0 = G̃. In
tables solr, we can also store the predecessors of the
k-tuples of endpoints on the optimal paths, in order
to retrieve these paths.

We initialize the table solrmax with 0, for every k-
tuple of vertices of rank rmax. For every rank i, rmax >
i " 1 in decreasing order, we initialize each entry in
table soli by ∞, and compute it as follows.

Observe that the set of arcs between ranks i + 1
and i, which we denote here Ei, has cardinality at
most ⟨G⟩, from the fact that G is acyclic and by the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

z5
u3 = u4

x3

v3 = v4

x6

v1

w1

z2
u2

z3
v2

z5
u1 y1

y3 = y4

y2

E2

Fig. 5. The set E2 of arcs from the vertices of rank 3
(on the left) to those of rank 2 (on the left) of the graph
G̃ from Fig. 4(c). In this particular example k = 4, and
the first path uses the arc (z5, x6), the second uses the
arc (w2, w3), while the third and the fourth paths both
use the arc (w5, x3).

definition of rank. We enumerate all ways of assigning
the arcs in Ei to the k solution paths, that is, through
all k-tuples (y1, . . . , yk) ∈ (Ei)k where a ∈ Ei equals
some yj if arc a is assigned to the jth path. Note that
this assignment induces an assignment (u1, . . . , uk) of
the vertices of rank i+ 1 to the k solution paths, and
an assignment (v1, . . . , vk) of the vertices of rank i to
the k solution paths.

For each arc a ∈ Ei \ Z we can then compute
its predicted coverage by looking at which paths it
belongs to in the assignment (y1, . . . , yk), and which
are the weights of the corresponding paths in the
given tuple (w1, . . . , wk).

If leading to a lower value, we update
soli(v1, . . . , vk) with soli+1(u1, . . . , uk) plus the fitting
function applied to the observed and predicted
coverages of all arcs in Ei \ Z.

Graph G̃ can be constructed in time O(m). The
update at each rank takes time O(⟨G⟩k(⟨G⟩+k)), since
each of the O(⟨G⟩) arcs in Ei must be inspected and
the fitting function must be applied to their observed
and predicted coverage. Since the maximum rank in
G̃ is at most the maximum rank in G, which is n, then
the entire procedure takes time O(⟨G⟩k(⟨G⟩+k)n).

Corollary 4. If Properties 1 or 2 hold for the fitting func-
tion f , and the expression levels of the solution paths are
allowed to take only integer values, then Problem (f, k, p)-
GGMA can be solved in time O(W k⟨G⟩k(⟨G⟩ + k)n),
where W is the maximum weight of an arc of the input
DAG G.

3.3 Some approximation results
Our first approximation result is a negative one, stat-
ing that for fitting functions f(x) = |x|, or f(x) = x2,
Problems k-UTEC or k-UTEO are hard to approxi-
mate. The proof of this fact is an immediate conse-
quence of the reduction given in the proofs of Thms. 1

and 2.

Corollary 5. For all α > 0, there exists no polynomial-
time approximation algorithm, with multiplicative approx-
imation factor α, for Problems k-UTEC or k-UTEO with
fitting functions f(x) = |x|, or f(x) = x2, unless P = NP.

Proof: In both reductions given in the proofs of
Thms. 1 and 2, for fitting functions f(x) = |x|, or
f(x) = x2, an instance of the 3-PARTITION, or SUB-
SET SUM problem, respectively, is a ‘yes’ instance if
and only if Problem k-UTEC or k-UTEO, respectively,
admits a solution with total cost 0.

Despite this hardness result, the DP algorithm in
Sec. 3.2 can lead to an additive approximation algo-
rithm, obtained by the simple strategy of discretizing
the set of possible expression levels of the solution
paths, according to an arithmetic progression. Given
ε > 0, let

W := {1, εW, 2εW, 3εW, . . . ,W}.

Observe that the set W of approximated expression
levels for the paths has cardinality 1 + 1/ε. For every
tuple (w1, . . . , wk) ∈ {1, . . . ,W}k of exact expression
levels for the k paths, there exists a tuple of expression
levels (w′

1, . . . , w
′
k) ∈ Wk such that for every 1 ! i ! k,

it holds that

−εW ! wi − w′
i ! εW.

For example, this strategy leads to the following
approximation result for Problem (fabs, k,∞)-GGMA,
where fabs(x, y) = |x − y|. If OPT is the value of the
objective function for the optimal paths of an optimal
tuple of expression levels (w1, . . . , wk) ∈ {1, . . . ,W}k,
and OPT ′ is the value of the objective function for the
optimal paths with approximated expression levels
(w′

1, . . . , w
′
k), such that for every 1 ! i ! k, −εW !

wi − w′
i ! εW holds, then it also holds that

OPT − εW ! OPT ′ ! OPT + εW.

Therefore, in order to find an εW -additive approxi-
mation for Problem (| · |, k,∞)-GGMA, we enumerate
over k-tuples in Wk, and for each such tuple compute
the optimal paths using Thm. 3.

Corollary 6. If the optimal solution for Problem (| ·
|, k,∞)-GGMA has cost OPT , then for every ε > 0, in
time O(

(
1 + 1

ε

)k ⟨G⟩k(⟨G⟩+ k)n), we can find a solution
of cost OPT ′, such that

OPT − εW ! OPT ′ ! OPT + εW,

where W is the maximum weight of an arc.

In the case of Problem (fr, k, p)-GGMA, however,
we can write a multiplicative approximation algo-
rithm, using the same method, but this time using
a geometric progression. Given ε > 0, let

W ′ := {1, (1 + ε), (1 + ε)2, . . . , (1 + ε)⌊log1+ε W⌋}.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

The set W ′ has cardinality 1+⌊log1+ε W ⌋. For every
tuple (w1, . . . , wk) ∈ {1, . . . ,W}k of exact expression
levels for the k paths, there exists a tuple of weights
(w′

1, . . . , w
′
k) ∈ (W ′)k such that for every 1 ! i ! k, it

holds that
wi ! w′

i ! (1 + ε)wi.

If OPT is the value of the objective function
for the optimal paths of optimal expression levels
(w1, . . . , wk), and OPT ′ is the value of the objective
function for the optimal paths of approximated ex-
pression levels (w′

1, . . . , w
′
k) such that for every 1 !

i ! k, wi ! w′
i ! (1 + ε)wi holds, then it also holds

that
1

1 + ε
OPT ! OPT ′ ! (1 + ε)OPT.

Thus, just as before, we have

Corollary 7. If the optimal solution for Problem (fr, k, p)-
GGMA has cost OPT , then for every ε > 0, in time
O((log1+ε W)k⟨G⟩k(s+ k)n), where W is the maximum
weight of an arc, we can find a solution of cost OPT ′, such
that

1

1 + ε
OPT ! OPT ′ ! (1 + ε)OPT.

Thus, when k is bounded, Problem (fr, k, p)-GGMA ad-
mits an FPTAS, since the running time is then polynomial
in n, 1/ε and logW .

4 EXPERIMENTS
One of these optimization objectives, namely the one
in Problem k-UTEC, or equivalently Problem (fc, k, 1)-
GGMA, was already shown to be a relevant model
on real instances in the conference version of this
article [1].3 There the RNA transcripts predicted by the
cited dynamic programming algorithm for finding the
k-paths solution were shown to be more accurate than
those predicted by competing methods. As neither
the optimization goals nor the implementation have
changed, we do not repeat these tests verbatim here,
but we concentrate on the running time, as we have
made several improvements to the dynamic program-
ming algorithms.

Namely, we conducted an undirect test to see the ef-
fect of the arc-width parameter ⟨G⟩ introduced in this
article. In [1] the algorithms had an Ω(nk) factor in the
running time, which we improved here to Ω(⟨G⟩k). In
order to see how ⟨G⟩ compares to n, we constructed
splicing graphs based on simulated data for the same
1,462 genes of the human chromosome 2 as in the
experiments of [1]. We repeated this experiment on
a real RNA-seq dataset [GenBank:SRR065504] also
used in [11] and [1], creating splicing graphs from all
the reads that aligned to chromosome 2. Due to the
sheer number of the created graphs, we filtered out
those graphs that had only one vertex. We computed

3. The corresponding implementation is available at http://
sourceforge.net/projects/traph/.

the arc-width of these graphs, and we illustrate the
results Figs. 6 and 7; the arc-width parameter is clearly
smaller than the number of vertices on average. For
example, for a splicing graph on 50 vertices, the
average arc-width is approximately 10 times smaller,
both on simulated and real data. The effect to the
practical running time of the implementation should
also be noticeable: this is left as future work, see
Discussion.

5 DISCUSSION

We focused here on exploring the complexity of the
genome-guided multi-assembly problem when the
number of allowed paths is bounded, which is the
case of most practical interest. For this we took special
care to define the problem as generally as possible,
in order to show the full power of the applied dy-
namic programming approach and also to make the
hardness results as strong as possible. The generality
of the problem definition was exemplified by four
quite different optimization objectives, and some fur-
ther approximability results were derived for some of
these.

We expect that the machinery developed in this
paper for Problem GGMA to find applications in other
multi-assembly -like problems, since, ultimately, this
is a quite natural graph problem. Moreover, this is
supported by the experimental results showing that
the arc-width is small in practice.

Another fundamental aspect is that all the problems
studied here assume pair-wise information on the
possible consecutive exons in the transcript. However,
with longer sequencing reads, one can obtain subpath
constraints telling which exons should go together in a
transcript. A subset of the authors of this article stud-
ied how to take this additional information into ac-
count in multi-assembly [32]. Those results apply for a
version of the problem, where one optimizes only the
transcript sequences to satisfy the subpath constraints,
but not the coverage values. We are currently studying
a combined problem formulation which takes both
of these aspects into account. For this reason, we are
investing in implementing the dynamic programming
improvements of this article for this new combined
problem formulation.

ACKNOWLEDGMENTS

This work was partially supported by the Academy of
Finland under grant 250345 (CoECGR). Travis Gagie
was partially supported by the Academy of Finland
under grant 268324. Alexandru Tomescu was partially
supported by the Academy of Finland under grant
274977.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
1

5

10

15

20

number of vertices |V (G)|

ar
c-

w
id

th
⟨G

⟩

Fig. 6. Comparison of arc-width parameter and number of vertices on simulated data. The color intensity of
the data points reflects their frequency in the dataset. The bold line shows the mean and the thinner lines the
variance of the arc-width.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135
1

5

10

15

20

25

30

number of vertices |V (G)|

ar
c-

w
id

th
⟨G

⟩

Fig. 7. Comparison of arc-width parameter and number of vertices on real data. The color intensity of the data
points reflects their frequency in the dataset. The bold line shows the mean and the thinner lines the variance of
the arc-width.

REFERENCES

[1] A. I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen,
“A Novel Combinatorial Method for Estimating Transcript
Expression with RNA-Seq: Bounding the Number of Paths,”
in WABI 2013 – 13th Workshop on Algorithms for Bioinformatics,
ser. LNCS, vol. 8126, 2013, pp. 85–98.

[2] Y. Xing, A. Resch, and C. Lee, “The multiassembly problem:
reconstructing multiple transcript isoforms from EST fragment
mixtures,” Genome Res, vol. 14, no. 3, pp. 426–441, Mar. 2004.

[3] A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, and
B. Wold, “Mapping and quantifying mammalian transcrip-
tomes by RNA-Seq,” Nature Methods, vol. 5, pp. 621–628, 2008.

[4] S. Pepke, B. Wold, and A. Mortazavi, “Computation for ChIP-
seq and RNA-seq studies,” Nature methods, vol. 6, no. 11, pp.
s22–s32, 2009.

[5] F. Ozsolak and P. M. Milos, “RNA sequencing: advances,
challenges and opportunities.” Nature reviews. Genetics, vol. 12,
no. 2, pp. 87–98, Feb. 2011.

[6] I. Birol, S. Jackman, C. Nielsen, J. Qian, R. Varhol, G. Stazyk,
R. Morin, Y. Zhao, M. Hirst, J. Schein, D. Horsman, J. Connors,
R. Gascoyne, M. Marra, and S. Jones, “De novo transcriptome
assembly with ABySS,” Bioinformatics, vol. 25, no. 21, pp. 2872–
2877, Nov. 2009.

[7] C. Trapnell, L. Pachter, and S. L. Salzberg, “TopHat: discov-
ering splice junctions with RNA-Seq,” Bioinformatics, vol. 25,
no. 9, pp. 1105–1111, 2009.

[8] K. F. Au, H. Jiang, L. Lin, Y. Xing, and W. H. Wong, “De-
tection of splice junctions from paired-end RNA-seq data by
SpliceMap,” Nucleic Acids Res, vol. 38, no. 14, pp. 4570–4578,
Aug. 2010.

[9] C. Trapnell, B. Williams, G. Pertea, A. Mortazavi, G. Kwan,
M. van Baren, S. Salzberg, B. Wold, and L. Pachter, “Transcript
assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation,”
Nature Biotechnology, vol. 28, pp. 511–515, 2010.

[10] J. Feng, W. Li, and T. Jiang, “Inference of isoforms from short
sequence reads,” in RECOMB 2010, ser. LNCS, B. Berger, Ed.,
vol. 6044. Springer, 2010, pp. 138–157.

[11] W. Li, J. Feng, and T. Jiang, “IsoLasso: a LASSO regression ap-
proach to RNA-Seq based transcriptome assembly,” J. Comput.
Biol., vol. 18, no. 11, pp. 1693–1707, 2011.

[12] J. J. Li, C. Jiang, J. Brown, H. Huang, and P. Bickel, “Sparse
linear modeling of next-generation mRNA sequencing (RNA-
Seq) data for isoform discovery and abundance estimation,”
Proc. of the National Academy of Sciences, vol. 108, no. 50, pp.
19 867–19 872, 2011.

[13] Y.-Y. Lin, P. Dao, F. Hach, M. Bakhshi, F. Mo, A. Lapuk,
C. Collins, and S. C. Sahinalp, “CLIIQ: Accurate Comparative
Detection and Quantification of Expressed Isoforms in a Pop-
ulation,” in Proc. WABI 2012, ser. LNCS, vol. 7534. Springer,
2012, pp. 178–189.

[14] M. Guttman, M. Garber, J. Z. Levin, J. Donaghey, J. Robinson,
X. Adiconis, L. Fan, M. J. Koziol, A. Gnirke, C. Nusbaum,
J. L. Rinn, E. S. Lander, and A. Regev, “Ab initio reconstruc-
tion of cell type-specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs.” Nat Biotechnol,
vol. 28, no. 5, pp. 503–510, May 2010.

[15] A. M. Mezlini, E. J. Smith, M. Fiume, O. Buske, G. Savich,
S. Shah, S. Aparicion, D. Chiang, A. Goldenberg, and
M. Brudno, “iReckon: Simultaneous isoform discovery and
abundance estimation from RNA-seq data,” Genome Research,
vol. 23, no. 3, pp. 519–529, 2012.

[16] S. Mangul, A. Caciula, S. Al Seesi, D. Brinza, A. R. Banday,
and R. Kanadia, “An integer programming approach to novel
transcript reconstruction from paired-end RNA-Seq reads,” in
BCB, S. Ranka and et al., Eds. ACM, 2012, pp. 369–376.

[17] Z. Xia, J. Wen, C.-C. Chang, and X. Zhou, “NSMAP: A method
for spliced isoforms identification and quantification from
RNA-Seq,” BMC Bioinformatics, vol. 12, no. 1, pp. 162+, 2011.

[18] D. Hiller and W. H. H. Wong, “Simultaneous isoform discov-
ery and quantification from RNA-seq,” Statistics in biosciences,
vol. 5, no. 1, pp. 100–118, May 2013.

[19] E. Bernard, L. Jacob, J. Mairal, and J.-P. Vert, “Efficient RNA
isoform identification and quantification from RNA-Seq data
with network flows,” Bioinformatics, vol. 30, no. 17, pp. 2447–
2455, 2014.

[20] S. Heber, M. Alekseyev, S. S.H., T. H., and P. P.A., “Splicing

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

graphs and EST assembly problem,” Bioinformatics, vol. 18, no.
suppl 1, pp. S181–S188, 2002.

[21] A. I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen,
“A Novel Min-Cost Flow Method for Estimating Transcript
Expression with RNA-Seq,” BMC Bioinformatics, vol. 14, no.
Suppl 5, p. S15, 2013, presented at RECOMB-Seq 2013, Beijing,
China.

[22] M. Garber, M. G. Grabherr, M. Guttman, and C. Trapnell,
“Computational methods for transcriptome annotation and
quantification using RNA-seq,” Nature Methods, vol. 8, no. 6,
pp. 469–477, 2011.

[23] D. Brett, H. Pospisil, J. Valcárcel, J. Reich, and P. Bork, “Al-
ternative splicing and genome complexity,” Nature Genetics,
vol. 30, no. 1, pp. 29–30, Dec. 2001.

[24] T. Maniatis and B. Tasic, “Alternative pre-mRNA splicing and
proteome expansion in metazoans,” Nature, vol. 418, no. 6894,
pp. 236–243, 2002.

[25] L. M. McIntyre, K. K. Lopiano, A. M. Morse, V. Amin, A. L.
Oberg, L. J. Young, and S. V. Nuzhdin, “RNA-seq: technical
variability and sampling,” BMC Genomics, vol. 12, no. 1, pp.
293+, Jun. 2011.

[26] B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey, “Simple
bounds and greedy algorithms for decomposing a flow into a
minimal set of paths,” European Journal of Operational Research,
vol. 185, no. 3, pp. 1390 – 1401, 2008.

[27] P. D. Grünwald, The Minimum Description Length Principle, ser.
MIT Press Books. The MIT Press, December 2007, vol. 1, no.
0262072815.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York, NY, USA:
W. H. Freeman & Co., 1979.

[29] R. P. Dilworth, “A Decomposition Theorem for Partially Or-
dered Sets,” The Annals of Mathematics, vol. 51, no. 1, 1950.

[30] D. R. Fulkerson, “Note on Dilworth’s decomposition theorem
for partially ordered sets,” Proceedings of the American Mathe-
matical Society, vol. 7, no. 4, pp. 701–702, 1956.

[31] J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for
Maximum Matchings in Bipartite Graphs,” SIAM J. Comput.,
vol. 2, no. 4, pp. 225–231, 1973.

[32] R. Rizzi, A. I. Tomescu, and V. Mäkinen, “On the complexity
of minimum path cover with subpath constraints for multi-
assembly,” BMC Bioinformatics, vol. 15, no. Suppl 9, p. S5, 2014.

Alexandru I. Tomescu obtained his PhD
in Computer Science from the Univer-
sity of Udine, Italy, in 2012. After spend-
ing six months at the Technical University
Berlin, Germany, he joined the Genome-
scale algorithmics group at the University of
Helsinki, Finland, where he currently holds
an Academy of Finland Postdoctoral Fellow-
ship.

Travis Gagie received a Dr. rer. nat. in Bioin-
formatics in 2009 from Bielefeld University,
Germany. After three years at the University
of Chile and Aalto University, Finland, in 2013
he moved to the Genome-scale algorithmics
group at the University of Helsinki as a
Postdoctoral Research Fellow, funded by the
Helsinki Institute for Information Technology
and the Academy of Finland.

Alexandru Popa obtained his PhD in Com-
puter Science from the University of Bris-
tol, UK, in 2011. Then, he was a Postdoc-
toral Researcher at Aalto University from
2011 to 2013. From September 2013 to Jan-
uary 2015 he was an Assistant Professor at
Masaryk University, Brno, Czech Republic.
Currently, he is an Assistant Professor at
Nazarbayev University, Astana, Kazakhstan.

Romeo Rizzi received in 1997 a Ph.D. in
Computational Mathematics and Informat-
ics from the University of Padova, Italy. He
held Postdoc and other positions at research
centers like CWI (Amsterdam, Netherlands),
BRICS (Aarhus, Denmark) and IRST (Trento,
Italy), University of Trento and University of
Udine, Italy. Since 2011 he is Associate Pro-
fessor at the University of Verona. He has a
background in Operations Research and his
main interests are in Combinatorial Optimiza-

tion and Algorithms. He is an Area Editor of 4OR. He published more
than 70 research papers in a broad range of scientific journals in
the areas of Discrete Mathematics, Combinatorics, and Algorithms.
Including also research papers in refereed conference proceedings,
the number of his scientific publications is well over one hundred.
Since 2004, he has intensively acted as a trainer of the Italian team
for the iOi.

Anna Kuosmanen obtained her M.Sc. in
Bioinformatics from University of Helsinki,
Finland, in 2013. She is currently pursuing
her PhD at University of Helsinki and working
in the Genome-scale algorithmics group.

Veli Mäkinen finished his PhD studies in
Computer Science in 2003 at the University
of Helsinki, Finland. He worked as a Post-
doctoral Researcher (2004-2005) at Biele-
feld University, Germany, and then back in
Helsinki as Postdoctoral Research Fellow
(2005-2007) and Academy Research Fellow
(2007-2010). In 2010, he was appointed as a
Professor in computer science at the Univer-
sity of Helsinki. Veli Mäkinen now heads the
Genome-scale algorithmics research group

as part of the Center of Excellence in Cancer Genetics Research.

