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THE BIOLOGICAL PROBLEM

gene
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The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq reads
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EXISTING METHODS

Genome-independent:
I TransABySS (’10), Trinity (’11), Oases (’12)

Genome-guided:
I Annotation-free:

Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)
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GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them

I look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (most of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods
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A UNIFIED PROBLEM FORMULATION [RECOMB-SEQ 2013]

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and

I penalty functions fv(·) and fuv(·)
FIND:

I a tuple P of paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]
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A UNIFIED PROBLEM FORMULATION

I The problem is polynomially-time solvable by min-cost flows if the
penalty functions are convex

I But in practice we are interested in parsimonious solutions

PROBLEM (k-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and
I number of paths k

FIND:
I a tuple P of k paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv
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EXAMPLE fv(x) = x2 , fuv(x) = x2 , k = 2

∑
v∈V

cov(v) −
∑

P∈P: v∈P
e(P)

2

+
∑

(u,v)∈E

cov(u, v) −
∑

P∈P: (u,v)∈P
e(P)


2

a
8

b
6

e
3

c
5

f
3

d
8

5

3

3
4

5
5

3
4

a
5+3

b
5

e
3

c
5

f
3

d
5+3

5

3

3
4

5
5

3
3

a
5+3

b
5+3

e
3

c
5

f
3

d
5+3

5

3

3
3

5
5

3
3

I [Left] A non-optimal tuple of 2 paths with cost 1 + 1 + 33 + 42 = 27,
from b, (f , d), (e, b), (b, f )

I [Right] The optimal tuple of 2 paths with cost 22 + 1 + 1 + 32 = 15,
from b, and (b, f ), (f , d), (e, f )
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COMPUTATIONAL COMPLEXITY

THEOREM

If the penalty functions fv and fuv are such that fv(0) = 0, fuv(0) = 0, and fv(x) > 0,
fuv(x) > 0 for all x > 0, then Problem k-UTEC is NP-hard in the strong sense.

I The proof reduces from the 3-PARTITION Problem
I Our proof idea was already employed by [Li, Jiang, Zhang, arXiv, 2013]

to show that the Isoform Reconstruction by Maximum Likelihood
Problem, deployed in tools such as iReckon, NSMAP, Montebello, is also
NP-hard
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A DYNAMIC PROGRAMMING ALGORITHM
We can exploit the fact that the input splicing graph G is acyclic.

I Fix a k-tuple of expression levels
I For each k-tuple of vertices of G, store the cost of the optimal paths

ending in these k vertices

I Compute the cost of a k-tuple from the cost of all k-tuples immediately
preceding it

v1 v2 = v4 = v⇤ v3

u2 u4

S

E.g., (v1, v2, v3, v4) with v2 = v4 = v∗ is immediately preceded by (v1, u2, v2, u4)

THEOREM

If the penalty functions positive-valued then Problem k-UTEC can be solved in time
O(|M|k∆knk),
where n := |V(G)|, we assume that M is the set of possible expression levels, and the
maximum in-degree of G is ∆.
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HEURISTICS AND OPTIMIZATIONS

For a practical implementation, we

1. Decompose the problem along cut nodes

G

G1 G2

2. Employ a genetic algorithm for finding the optimal expression levels

3. Reduce the exponential dependency on k by iteratively looking for the
optimal k′ < k paths and removing their coverage from the graph, until
obtaining k paths
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VALIDATION

I construct a bipartite graph with predicted and true transcripts
predicted:

P1, e(P1) P2, e(P2) P3, e(P3)

true: T1, e(T1) T2, e(T2) T3, e(T3) T4, e(T4)

I the edge weight between [Pi, e(Pi)] and [Tj, e(Tj)] is a combined measure
of

I sequence dissimilarity :=
edit distance between Tj and Pi

max(|Tj|, |Pi|)

I relative expression level difference :=
|e(Tj)−e(Pi)|

e(Tj)

I compute minimum weight perfect matching

I a True Positive is a match with sequence dissimilarity and expression
difference under given thresholds

I other events define False Positives and False Negatives
I compute precision, recall, F-measure
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EXPERIMENTAL RESULTS ON SIMULATED DATA

I Simulated paired-end reads from the transcripts of 1,462 genes in HC 2
I Reads aligned with TopHat
I Alignments for all genes combined into one file, fed to the tools
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EXPERIMENTAL RESULTS ON REAL DATA

I 2,406,339 paired-end reads of length 75bp mapping to HC 2
I 735 genes where all tools made predictions
I 6,325 annotated transcripts in total

Tool
Total Shared with annotation at

predicted sequence dissimilarity under
10% 20% 30% 40% 50%

Cufflinks 1916 648 955 1171 1307 1413
IsoLasso 1468 589 782 923 1022 1100
SLIDE 2229 635 983 1242 1391 1474
Min-cost flow 2148 722 1000 1228 1341 1456
Traph cover 2109 788 1063 1283 1407 1501

13 / 14



CONCLUSIONS CS.HELSINKI.FI/GSA/TRAPH/

I A unified problem formulation for transcript identification and
quantification

I We replace the exhaustive enumeration of all (tuples of) paths by
enumeration of all k-tuples of vertices

I We can increase the accuracy of the min-cost flow solution by tackling an
NP-hard problem

Future work:
I integrate paired-end information
I procure real ground-truth
I exploit graph-width measures (e.g. tree-width), write approximation

algorithms
I apply to other multi-assembly problems
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