
A Novel Combinatorial Method for
Estimating Transcript Expression with RNA-Seq:

Finding a Bounded Number of Paths

Alexandru I. Tomescu1, Anna Kuosmanen1, Romeo Rizzi2,
Veli Mäkinen1

1Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

2Department of Computer Science, University of Verona, Italy

HiTSeq
July 20, 2013

1 / 14



THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq reads

2 / 14



THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq reads

2 / 14



THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq reads

2 / 14



THE BIOLOGICAL PROBLEM

gene
Exon 1 Exon 2 Exon 3 Exon 4

⇓ Transcription, alternative splicing

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

⇓ RNA-Seq

The problem: Assemble the transcripts and estimate their expression levels
using only the RNA-Seq reads

2 / 14



EXISTING METHODS

Genome-independent:
I TransABySS (’10), Trinity (’11), Oases (’12)

Genome-guided:
I Annotation-free:

Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 14



EXISTING METHODS

Genome-independent:
I TransABySS (’10), Trinity (’11), Oases (’12)

Genome-guided:
I Annotation-free:

Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 14



EXISTING METHODS

Genome-independent:
I TransABySS (’10), Trinity (’11), Oases (’12)

Genome-guided:
I Annotation-free:

Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 14



EXISTING METHODS

Genome-independent:
I TransABySS (’10), Trinity (’11), Oases (’12)

Genome-guided:
I Annotation-free:

Scripture (’10), TRIP (’12),

Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 14



EXISTING METHODS

Genome-independent:
I TransABySS (’10), Trinity (’11), Oases (’12)

Genome-guided:
I Annotation-free:

Scripture (’10), TRIP (’12), Traph (Transcripts in Graphs)

I Annotation-guided:
Cufflinks (’10), IsoLasso (’11), SLIDE (’11), iReckon (’12), CLIIQ (’12)

3 / 14



GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them

I look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (most of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 14



GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (most of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 14



GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (most of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 14



GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (most of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages

I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 14



GRAPH MODELS AND MAIN EXISTING SOLUTIONS

1. Overlap graph (Cufflinks)
I each read is a node
I if two reads overlap we add an edge between them
I look for a path cover of minimum cost
I estimate the expression levels of the paths in the cover

2. Splicing graph (most of the other tools)
I detect exon boundaries from the spliced alignments
I every node stands for an exon
I every edge stands for reads spanning two consecutive exons

gene
Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 2 Exon 3 Exon 4

Exon 1 Exon 3 Exon 4

Exon 1 Exon 2 Exon 4

1

2

3

4

I the splicing graph is a DAG
I nodes and edges have observed coverages
I exhaustively enumerate all possible paths
I choose the most likely ones based on their coverage using an ILP, QP, QP +

LASSO, statistical methods

4 / 14



A UNIFIED PROBLEM FORMULATION [RECOMB-SEQ 2013]

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and

I penalty functions fv(·) and fuv(·)
FIND:

I a tuple P of paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 14



A UNIFIED PROBLEM FORMULATION [RECOMB-SEQ 2013]

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I penalty functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 14



A UNIFIED PROBLEM FORMULATION [RECOMB-SEQ 2013]

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I penalty functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,

I an expression level e(P) for each path P ∈ P ,
which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 14



A UNIFIED PROBLEM FORMULATION [RECOMB-SEQ 2013]

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I penalty functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 14



A UNIFIED PROBLEM FORMULATION [RECOMB-SEQ 2013]

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I penalty functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 14



A UNIFIED PROBLEM FORMULATION [RECOMB-SEQ 2013]

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V,E), and for all v ∈ V and (u, v) ∈ E,
I observed coverage values cov(v) and cov(u, v), and
I penalty functions fv(·) and fuv(·)

FIND:
I a tuple P of paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


For example, if for all nodes v and edges (u, v),
I fv(x) = x, fuv(x) = x⇒ least sum of absolute differences model [CLIIQ]
I fu(x) = x2, fuv(x) = x2 ⇒ least sum of squares model [IsoLasso, SLIDE]

5 / 14



A UNIFIED PROBLEM FORMULATION

I The problem is polynomially-time solvable by min-cost flows if the
penalty functions are convex

I But in practice we are interested in parsimonious solutions

PROBLEM (k-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and
I number of paths k

FIND:
I a tuple P of k paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


6 / 14



A UNIFIED PROBLEM FORMULATION

I The problem is polynomially-time solvable by min-cost flows if the
penalty functions are convex

I But in practice we are interested in parsimonious solutions

PROBLEM (k-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and
I number of paths k

FIND:
I a tuple P of k paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


6 / 14



A UNIFIED PROBLEM FORMULATION

I The problem is polynomially-time solvable by min-cost flows if the
penalty functions are convex

I But in practice we are interested in parsimonious solutions

PROBLEM (k-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and
I number of paths k

FIND:
I a tuple P of k paths from the sources of G to the sinks of G,

I an expression level e(P) for each path P ∈ P ,
which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


6 / 14



A UNIFIED PROBLEM FORMULATION

I The problem is polynomially-time solvable by min-cost flows if the
penalty functions are convex

I But in practice we are interested in parsimonious solutions

PROBLEM (k-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and
I number of paths k

FIND:
I a tuple P of k paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


6 / 14



A UNIFIED PROBLEM FORMULATION

I The problem is polynomially-time solvable by min-cost flows if the
penalty functions are convex

I But in practice we are interested in parsimonious solutions

PROBLEM (k-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and
I number of paths k

FIND:
I a tuple P of k paths from the sources of G to the sinks of G,
I an expression level e(P) for each path P ∈ P ,

which minimize

∑
v∈V

fv

(∣∣∣∣∣cov(v)−
∑

P∈P: v∈P

e(P)

∣∣∣∣∣
)

+
∑

(u,v)∈E

fuv

∣∣∣∣∣∣cov(u, v)−
∑

P∈P: (u,v)∈P

e(P)

∣∣∣∣∣∣


6 / 14



EXAMPLE fv(x) = x2 , fuv(x) = x2 , k = 2

∑
v∈V

cov(v) −
∑

P∈P: v∈P
e(P)

2

+
∑

(u,v)∈E

cov(u, v) −
∑

P∈P: (u,v)∈P
e(P)


2

a
8

b
6

e
3

c
5

f
3

d
8

5

3

3
4

5
5

3
4

a
5+3

b
5

e
3

c
5

f
3

d
5+3

5

3

3
4

5
5

3
3

a
5+3

b
5+3

e
3

c
5

f
3

d
5+3

5

3

3
3

5
5

3
3

I [Left] A non-optimal tuple of 2 paths with cost 1 + 1 + 33 + 42 = 27,
from b, (f , d), (e, b), (b, f )

I [Right] The optimal tuple of 2 paths with cost 22 + 1 + 1 + 32 = 15,
from b, and (b, f ), (f , d), (e, f )

7 / 14



EXAMPLE fv(x) = x2 , fuv(x) = x2 , k = 2

∑
v∈V

cov(v) −
∑

P∈P: v∈P
e(P)

2

+
∑

(u,v)∈E

cov(u, v) −
∑

P∈P: (u,v)∈P
e(P)


2

a
8

b
6

e
3

c
5

f
3

d
8

5

3

3
4

5
5

3
4

a
5+3

b
5

e
3

c
5

f
3

d
5+3

5

3

3
4

5
5

3
3

a
5+3

b
5+3

e
3

c
5

f
3

d
5+3

5

3

3
3

5
5

3
3

I [Left] A non-optimal tuple of 2 paths with cost 1 + 1 + 33 + 42 = 27,
from b, (f , d), (e, b), (b, f )

I [Right] The optimal tuple of 2 paths with cost 22 + 1 + 1 + 32 = 15,
from b, and (b, f ), (f , d), (e, f )

7 / 14



EXAMPLE fv(x) = x2 , fuv(x) = x2 , k = 2

∑
v∈V

cov(v) −
∑

P∈P: v∈P
e(P)

2

+
∑

(u,v)∈E

cov(u, v) −
∑

P∈P: (u,v)∈P
e(P)


2

a
8

b
6

e
3

c
5

f
3

d
8

5

3

3
4

5
5

3
4

a
5+3

b
5

e
3

c
5

f
3

d
5+3

5

3

3
4

5
5

3
3

a
5+3

b
5+3

e
3

c
5

f
3

d
5+3

5

3

3
3

5
5

3
3

I [Left] A non-optimal tuple of 2 paths with cost 1 + 1 + 33 + 42 = 27,
from b, (f , d), (e, b), (b, f )

I [Right] The optimal tuple of 2 paths with cost 22 + 1 + 1 + 32 = 15,
from b, and (b, f ), (f , d), (e, f )

7 / 14



COMPUTATIONAL COMPLEXITY

THEOREM

If the penalty functions fv and fuv are such that fv(0) = 0, fuv(0) = 0, and fv(x) > 0,
fuv(x) > 0 for all x > 0, then Problem k-UTEC is NP-hard in the strong sense.

I The proof reduces from the 3-PARTITION Problem
I Our proof idea was already employed by [Li, Jiang, Zhang, arXiv, 2013]

to show that the Isoform Reconstruction by Maximum Likelihood
Problem, deployed in tools such as iReckon, NSMAP, Montebello, is also
NP-hard

8 / 14



COMPUTATIONAL COMPLEXITY

THEOREM

If the penalty functions fv and fuv are such that fv(0) = 0, fuv(0) = 0, and fv(x) > 0,
fuv(x) > 0 for all x > 0, then Problem k-UTEC is NP-hard in the strong sense.

I The proof reduces from the 3-PARTITION Problem
I Our proof idea was already employed by [Li, Jiang, Zhang, arXiv, 2013]

to show that the Isoform Reconstruction by Maximum Likelihood
Problem, deployed in tools such as iReckon, NSMAP, Montebello, is also
NP-hard

8 / 14



A DYNAMIC PROGRAMMING ALGORITHM
We can exploit the fact that the input splicing graph G is acyclic.

I Fix a k-tuple of expression levels
I For each k-tuple of vertices of G, store the cost of the optimal paths

ending in these k vertices

I Compute the cost of a k-tuple from the cost of all k-tuples immediately
preceding it

v1 v2 = v4 = v⇤ v3

u2 u4

S

E.g., (v1, v2, v3, v4) with v2 = v4 = v∗ is immediately preceded by (v1, u2, v2, u4)

THEOREM

If the penalty functions positive-valued then Problem k-UTEC can be solved in time
O(|M|k∆knk),
where n := |V(G)|, we assume that M is the set of possible expression levels, and the
maximum in-degree of G is ∆.

9 / 14



A DYNAMIC PROGRAMMING ALGORITHM
We can exploit the fact that the input splicing graph G is acyclic.

I Fix a k-tuple of expression levels
I For each k-tuple of vertices of G, store the cost of the optimal paths

ending in these k vertices
I Compute the cost of a k-tuple from the cost of all k-tuples immediately

preceding it

v1 v2 = v4 = v⇤ v3

u2 u4

S

E.g., (v1, v2, v3, v4) with v2 = v4 = v∗ is immediately preceded by (v1, u2, v2, u4)

THEOREM

If the penalty functions positive-valued then Problem k-UTEC can be solved in time
O(|M|k∆knk),
where n := |V(G)|, we assume that M is the set of possible expression levels, and the
maximum in-degree of G is ∆.

9 / 14



A DYNAMIC PROGRAMMING ALGORITHM
We can exploit the fact that the input splicing graph G is acyclic.

I Fix a k-tuple of expression levels
I For each k-tuple of vertices of G, store the cost of the optimal paths

ending in these k vertices
I Compute the cost of a k-tuple from the cost of all k-tuples immediately

preceding it

v1 v2 = v4 = v⇤ v3

u2 u4

S

E.g., (v1, v2, v3, v4) with v2 = v4 = v∗ is immediately preceded by (v1, u2, v2, u4)

THEOREM

If the penalty functions positive-valued then Problem k-UTEC can be solved in time
O(|M|k∆knk),
where n := |V(G)|, we assume that M is the set of possible expression levels, and the
maximum in-degree of G is ∆.

9 / 14



A DYNAMIC PROGRAMMING ALGORITHM
We can exploit the fact that the input splicing graph G is acyclic.

I Fix a k-tuple of expression levels
I For each k-tuple of vertices of G, store the cost of the optimal paths

ending in these k vertices
I Compute the cost of a k-tuple from the cost of all k-tuples immediately

preceding it

v1 v2 = v4 = v⇤ v3

u2 u4

S

E.g., (v1, v2, v3, v4) with v2 = v4 = v∗ is immediately preceded by (v1, u2, v2, u4)

THEOREM

If the penalty functions positive-valued then Problem k-UTEC can be solved in time
O(|M|k∆knk),
where n := |V(G)|, we assume that M is the set of possible expression levels, and the
maximum in-degree of G is ∆.

9 / 14



HEURISTICS AND OPTIMIZATIONS

For a practical implementation, we

1. Decompose the problem along cut nodes

G

G1 G2

2. Employ a genetic algorithm for finding the optimal expression levels

3. Reduce the exponential dependency on k by iteratively looking for the
optimal k′ < k paths and removing their coverage from the graph, until
obtaining k paths

10 / 14



HEURISTICS AND OPTIMIZATIONS

For a practical implementation, we

1. Decompose the problem along cut nodes

G

G1 G2

2. Employ a genetic algorithm for finding the optimal expression levels

3. Reduce the exponential dependency on k by iteratively looking for the
optimal k′ < k paths and removing their coverage from the graph, until
obtaining k paths

10 / 14



HEURISTICS AND OPTIMIZATIONS

For a practical implementation, we

1. Decompose the problem along cut nodes

G

G1 G2

2. Employ a genetic algorithm for finding the optimal expression levels

3. Reduce the exponential dependency on k by iteratively looking for the
optimal k′ < k paths and removing their coverage from the graph, until
obtaining k paths

10 / 14



VALIDATION

I construct a bipartite graph with predicted and true transcripts
predicted:

P1, e(P1) P2, e(P2) P3, e(P3)

true: T1, e(T1) T2, e(T2) T3, e(T3) T4, e(T4)

I the edge weight between [Pi, e(Pi)] and [Tj, e(Tj)] is a combined measure
of

I sequence dissimilarity :=
edit distance between Tj and Pi

max(|Tj|, |Pi|)

I relative expression level difference :=
|e(Tj)−e(Pi)|

e(Tj)

I compute minimum weight perfect matching

I a True Positive is a match with sequence dissimilarity and expression
difference under given thresholds

I other events define False Positives and False Negatives
I compute precision, recall, F-measure

11 / 14



VALIDATION

I construct a bipartite graph with predicted and true transcripts
predicted:

P1, e(P1) P2, e(P2) P3, e(P3)

true: T1, e(T1) T2, e(T2) T3, e(T3) T4, e(T4)

I the edge weight between [Pi, e(Pi)] and [Tj, e(Tj)] is a combined measure
of

I sequence dissimilarity :=
edit distance between Tj and Pi

max(|Tj|, |Pi|)

I relative expression level difference :=
|e(Tj)−e(Pi)|

e(Tj)

I compute minimum weight perfect matching

I a True Positive is a match with sequence dissimilarity and expression
difference under given thresholds

I other events define False Positives and False Negatives
I compute precision, recall, F-measure

11 / 14



VALIDATION

I construct a bipartite graph with predicted and true transcripts
predicted:

P1, e(P1) P2, e(P2) P3, e(P3)

true: T1, e(T1) T2, e(T2) T3, e(T3) T4, e(T4)

I the edge weight between [Pi, e(Pi)] and [Tj, e(Tj)] is a combined measure
of

I sequence dissimilarity :=
edit distance between Tj and Pi

max(|Tj|, |Pi|)

I relative expression level difference :=
|e(Tj)−e(Pi)|

e(Tj)

I compute minimum weight perfect matching

I a True Positive is a match with sequence dissimilarity and expression
difference under given thresholds

I other events define False Positives and False Negatives
I compute precision, recall, F-measure

11 / 14



EXPERIMENTAL RESULTS ON SIMULATED DATA

I Simulated paired-end reads from the transcripts of 1,462 genes in HC 2
I Reads aligned with TopHat
I Alignments for all genes combined into one file, fed to the tools

EXPERIMENTAL RESULTS ON SIMULATED DATA
I Simulated paired-end reads from the transcripts of 1,462 genes in HC2
I Reads aligned with TopHat

1. Alignments fed to the tools for each gene independently

10% 30% 50% 70% 90%
0

0.1

0.2

0.3

sequence dissimilarity

F-
m

ea
su

re

Cufflinks

IsoLasso

SLIDE

Min-cost flow

Traph cover

10% 30% 50% 70% 90%
0

0.1

0.2

0.3

sequence dissimilarity

2. Alignments for all genes combined into one file, fed to the tools

10% 30% 50% 70% 90%
0

0.035

0.07

sequence dissimilarity

(c) expr. difference threshold 0.1

10% 30% 50% 70% 90%
0

0.1

0.2

0.3

sequence dissimilarity

(d) expr. difference threshold 0.9

10 / 12

10% 30% 50% 70% 90%
0

0.035

0.07

sequence dissimilarity

F-
m

ea
su

re

(a) expr. difference threshold 10%

10% 30% 50% 70% 90%
0

0.1

0.2

0.3

sequence dissimilarity

(b) expr. difference threshold 90%

12 / 14



EXPERIMENTAL RESULTS ON REAL DATA

I 2,406,339 paired-end reads of length 75bp mapping to HC 2
I 735 genes where all tools made predictions
I 6,325 annotated transcripts in total

Tool
Total Shared with annotation at

predicted sequence dissimilarity under
10% 20% 30% 40% 50%

Cufflinks 1916 648 955 1171 1307 1413
IsoLasso 1468 589 782 923 1022 1100
SLIDE 2229 635 983 1242 1391 1474
Min-cost flow 2148 722 1000 1228 1341 1456
Traph cover 2109 788 1063 1283 1407 1501

13 / 14



CONCLUSIONS CS.HELSINKI.FI/GSA/TRAPH/

I A unified problem formulation for transcript identification and
quantification

I We replace the exhaustive enumeration of all (tuples of) paths by
enumeration of all k-tuples of vertices

I We can increase the accuracy of the min-cost flow solution by tackling an
NP-hard problem

Future work:
I integrate paired-end information
I procure real ground-truth
I exploit graph-width measures (e.g. tree-width), write approximation

algorithms
I apply to other multi-assembly problems

14 / 14



CONCLUSIONS CS.HELSINKI.FI/GSA/TRAPH/

I A unified problem formulation for transcript identification and
quantification

I We replace the exhaustive enumeration of all (tuples of) paths by
enumeration of all k-tuples of vertices

I We can increase the accuracy of the min-cost flow solution by tackling an
NP-hard problem

Future work:
I integrate paired-end information
I procure real ground-truth
I exploit graph-width measures (e.g. tree-width), write approximation

algorithms
I apply to other multi-assembly problems

14 / 14


