A Novel Combinatorial Method for Estimating Transcript Expression with RNA-Seq: Finding a Bounded Number of Paths

Alexandru I. Tomescu¹, Anna Kuosmanen¹, Romeo Rizzi², Veli Mäkinen¹

¹Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Finland ²Department of Computer Science, University of Verona, Italy

> HiTSeq July 20, 2013

The problem: Assemble the transcripts and estimate their expression levels using only the RNA-Seq reads

EXISTING METHODS

Genome-independent:

► TransABySS ('10), Trinity ('11), Oases ('12)

EXISTING METHODS

Genome-independent:

► TransABySS ('10), Trinity ('11), Oases ('12)

Genome-guided:

 Annotation-free: Scripture ('10), TRIP ('12),

Genome-independent:

► TransABySS ('10), Trinity ('11), Oases ('12)

Genome-guided:

- Annotation-free: Scripture ('10), TRIP ('12),
- Annotation-guided: Cufflinks ('10), IsoLasso ('11), SLIDE ('11), iReckon ('12), CLIIQ ('12)

Genome-independent:

► TransABySS ('10), Trinity ('11), Oases ('12)

Genome-guided:

- Annotation-free: Scripture ('10), TRIP ('12),
- Annotation-guided: Cufflinks ('10), IsoLasso ('11), SLIDE ('11), iReckon ('12), CLIIQ ('12)

Genome-independent:

► TransABySS ('10), Trinity ('11), Oases ('12)

Genome-guided:

- Annotation-free: Scripture ('10), TRIP ('12), Traph (Transcripts in Graphs)
- Annotation-guided: Cufflinks ('10), IsoLasso ('11), SLIDE ('11), iReckon ('12), CLIIQ ('12)

- 1. Overlap graph (Cufflinks)
 - each read is a node
 - if two reads overlap we add an edge between them

- 1. Overlap graph (Cufflinks)
 - each read is a node
 - if two reads overlap we add an edge between them
 - look for a path cover of minimum cost
 - estimate the expression levels of the paths in the cover

- 1. Overlap graph (Cufflinks)
 - each read is a node
 - if two reads overlap we add an edge between them
 - look for a path cover of minimum cost
 - estimate the expression levels of the paths in the cover
- 2. Splicing graph (most of the other tools)
 - detect exon boundaries from the spliced alignments
 - every node stands for an exon
 - every edge stands for reads spanning two consecutive exons

- 1. Overlap graph (Cufflinks)
 - each read is a node
 - if two reads overlap we add an edge between them
 - look for a path cover of minimum cost
 - estimate the expression levels of the paths in the cover
- 2. Splicing graph (most of the other tools)
 - detect exon boundaries from the spliced alignments
 - every node stands for an exon
 - every edge stands for reads spanning two consecutive exons

gene Exon	1	Exon 2	Exon 3	Exon 4
Exon 1	Exon 2	Exon 3 I	ixon 4	
Exon 1	Exon 3	Exon 4		
Exon 1	Exon 2	Exon 4		3

- the splicing graph is a DAG
- nodes and edges have observed coverages

- 1. Overlap graph (Cufflinks)
 - ▶ each read is a node
 - if two reads overlap we add an edge between them
 - look for a path cover of minimum cost
 - estimate the expression levels of the paths in the cover
- 2. Splicing graph (most of the other tools)
 - detect exon boundaries from the spliced alignments
 - every node stands for an exon
 - every edge stands for reads spanning two consecutive exons

gene	Exon	1	Exon 2]	Exc	n3 Exon 4
	Exon 1	Exon 2	Exon 3		Exon 4	
	Evon 1	Evon	2	Evon 4		
	LAUTI	LAUIT		LAUTI		
	Exon 1	Exon 2	Exon 4			-31

- the splicing graph is a DAG
- nodes and edges have observed coverages
- exhaustively enumerate all possible paths
- exhaustively enumerate all possible paths
 choose the most likely ones based on their coverage using an ILP, QP, QP + LASSO, statistical methods

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V, E), and for all $v \in V$ and $(u, v) \in E$,

• observed coverage values cov(v) and cov(u, v), and

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V, E), and for all $v \in V$ and $(u, v) \in E$,

- ▶ observed coverage values cov(v) and cov(u, v), and
- penalty functions $f_v(\cdot)$ and $f_{uv}(\cdot)$

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V, E), and for all $v \in V$ and $(u, v) \in E$,

- ▶ observed coverage values cov(v) and cov(u, v), and
- penalty functions $f_v(\cdot)$ and $f_{uv}(\cdot)$

FIND:

• a tuple \mathcal{P} of paths from the sources of G to the sinks of G,

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V, E), and for all $v \in V$ and $(u, v) \in E$,

- ▶ observed coverage values cov(v) and cov(u, v), and
- penalty functions $f_v(\cdot)$ and $f_{uv}(\cdot)$

FIND:

- a tuple \mathcal{P} of paths from the sources of G to the sinks of G,
- an expression level e(P) for each path $P \in \mathcal{P}$,

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V, E), and for all $v \in V$ and $(u, v) \in E$,

- ▶ observed coverage values cov(v) and cov(u, v), and
- penalty functions $f_v(\cdot)$ and $f_{uv}(\cdot)$

FIND:

- a tuple \mathcal{P} of paths from the sources of G to the sinks of G,
- an expression level e(P) for each path $P \in \mathcal{P}$,

which minimize

$$\sum_{v \in V} f_v \left(\left| cov(v) - \sum_{P \in \mathcal{P}: v \in P} e(P) \right| \right) + \sum_{(u,v) \in E} f_{uv} \left(\left| cov(u,v) - \sum_{P \in \mathcal{P}: (u,v) \in P} e(P) \right| \right)$$

PROBLEM (UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: a splicing DAG G = (V, E), and for all $v \in V$ and $(u, v) \in E$,

- ▶ observed coverage values cov(v) and cov(u, v), and
- penalty functions $f_v(\cdot)$ and $f_{uv}(\cdot)$

FIND:

- a tuple \mathcal{P} of paths from the sources of G to the sinks of G,
- an expression level e(P) for each path $P \in \mathcal{P}$,

which minimize

$$\sum_{v \in V} f_v \left(\left| cov(v) - \sum_{P \in \mathcal{P}: v \in P} e(P) \right| \right) + \sum_{(u,v) \in E} f_{uv} \left(\left| cov(u,v) - \sum_{P \in \mathcal{P}: (u,v) \in P} e(P) \right| \right)$$

For example, if for all nodes v and edges (u, v),

- $f_v(x) = x, f_{uv}(x) = x \Rightarrow$ least sum of absolute differences model [CLIIQ]
- ► $f_u(x) = x^2, f_{uv}(x) = x^2 \Rightarrow$ least sum of squares model [IsoLasso, SLIDE]

- The problem is polynomially-time solvable by min-cost flows if the penalty functions are convex
- But in practice we are interested in parsimonious solutions

- The problem is polynomially-time solvable by min-cost flows if the penalty functions are convex
- But in practice we are interested in parsimonious solutions

PROBLEM (*k*-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and

► number of paths k

- The problem is polynomially-time solvable by min-cost flows if the penalty functions are convex
- ► But in practice we are interested in parsimonious solutions

PROBLEM (*k*-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and

► number of paths k

FIND:

• a tuple \mathcal{P} of k paths from the sources of G to the sinks of G,

- The problem is polynomially-time solvable by min-cost flows if the penalty functions are convex
- But in practice we are interested in parsimonious solutions

PROBLEM (*k*-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and

► number of paths k

FIND:

- a tuple \mathcal{P} of *k* paths from the sources of *G* to the sinks of *G*,
- an expression level e(P) for each path $P \in \mathcal{P}$,

- The problem is polynomially-time solvable by min-cost flows if the penalty functions are convex
- ► But in practice we are interested in parsimonious solutions

PROBLEM (*k*-UNANNOTATED TRANSCRIPT EXPRESSION COVER)

INPUT: same as before, and

▶ number of paths k

FIND:

- a tuple \mathcal{P} of *k* paths from the sources of *G* to the sinks of *G*,
- an expression level e(P) for each path $P \in \mathcal{P}$,

which minimize

$$\sum_{v \in V} f_v \left(\left| cov(v) - \sum_{P \in \mathcal{P}: v \in P} e(P) \right| \right) + \sum_{(u,v) \in E} f_{uv} \left(\left| cov(u,v) - \sum_{P \in \mathcal{P}: (u,v) \in P} e(P) \right| \right)$$

EXAMPLE $f_v(x) = x^2, f_{uv}(x) = x^2, k = 2$

$$\sum_{v \in V} \left(cov(v) - \sum_{P \in \mathcal{P}: v \in P} e(P) \right)^2 + \sum_{(u,v) \in E} \left(cov(u,v) - \sum_{P \in \mathcal{P}: (u,v) \in P} e(P) \right)^2$$

EXAMPLE $f_v(x) = x^2, f_{uv}(x) = x^2, k = 2$

• [Left] A non-optimal tuple of 2 paths with cost $1 + 1 + 3^3 + 4^2 = 27$, from *b*, (*f*, *d*), (*e*, *b*), (*b*, *f*)

EXAMPLE $f_v(x) = x^2, f_{uv}(x) = x^2, k = 2$

- ► [Left] A non-optimal tuple of 2 paths with cost 1 + 1 + 3³ + 4² = 27, from *b*, (*f*, *d*), (*e*, *b*), (*b*, *f*)
- [Right] The optimal tuple of 2 paths with cost $2^2 + 1 + 1 + 3^2 = 15$, from *b*, and (*b*,*f*), (*f*,*d*), (*e*,*f*)

COMPUTATIONAL COMPLEXITY

Theorem

If the penalty functions f_v and f_{uv} are such that $f_v(0) = 0$, $f_{uv}(0) = 0$, and $f_v(x) > 0$, $f_{uv}(x) > 0$ for all x > 0, then Problem k-UTEC is NP-hard in the strong sense.

COMPUTATIONAL COMPLEXITY

Theorem

If the penalty functions f_v and f_{uv} are such that $f_v(0) = 0$, $f_{uv}(0) = 0$, and $f_v(x) > 0$, $f_{uv}(x) > 0$ for all x > 0, then Problem k-UTEC is NP-hard in the strong sense.

- ► The proof reduces from the 3-PARTITION Problem
- Our proof idea was already employed by [Li, Jiang, Zhang, arXiv, 2013] to show that the Isoform Reconstruction by Maximum Likelihood Problem, deployed in tools such as iReckon, NSMAP, Montebello, is also NP-hard

We can exploit the fact that the input splicing graph *G* is acyclic.

- ► Fix a *k*-tuple of expression levels
- ► For each *k*-tuple of vertices of *G*, store the cost of the optimal paths ending in these *k* vertices

We can exploit the fact that the input splicing graph G is acyclic.

- ► Fix a *k*-tuple of expression levels
- ► For each *k*-tuple of vertices of *G*, store the cost of the optimal paths ending in these *k* vertices
- ► Compute the cost of a *k*-tuple from the cost of all *k*-tuples immediately preceding it

We can exploit the fact that the input splicing graph *G* is acyclic.

- ► Fix a *k*-tuple of expression levels
- ► For each *k*-tuple of vertices of *G*, store the cost of the optimal paths ending in these *k* vertices
- ► Compute the cost of a *k*-tuple from the cost of all *k*-tuples immediately preceding it

E.g., (v_1, v_2, v_3, v_4) with $v_2 = v_4 = v^*$ is immediately preceded by (v_1, u_2, v_2, u_4)

We can exploit the fact that the input splicing graph *G* is acyclic.

- ► Fix a *k*-tuple of expression levels
- ► For each *k*-tuple of vertices of *G*, store the cost of the optimal paths ending in these *k* vertices
- ► Compute the cost of a *k*-tuple from the cost of all *k*-tuples immediately preceding it

E.g., (v_1, v_2, v_3, v_4) with $v_2 = v_4 = v^*$ is immediately preceded by (v_1, u_2, v_2, u_4)

Theorem

If the penalty functions positive-valued then Problem k-UTEC can be solved in time $O(|M|^k \Delta^k n^k)$, where n := |V(G)|, we assume that M is the set of possible expression levels, and the maximum in-degree of G is Δ .

HEURISTICS AND OPTIMIZATIONS

For a practical implementation, we

1. Decompose the problem along cut nodes

HEURISTICS AND OPTIMIZATIONS

For a practical implementation, we

1. Decompose the problem along cut nodes

2. Employ a genetic algorithm for finding the optimal expression levels

HEURISTICS AND OPTIMIZATIONS

For a practical implementation, we

1. Decompose the problem along cut nodes

- 2. Employ a genetic algorithm for finding the optimal expression levels
- 3. Reduce the exponential dependency on *k* by iteratively looking for the optimal *k*' < *k* paths and removing their coverage from the graph, until obtaining *k* paths

VALIDATION

construct a bipartite graph with predicted and true transcripts

- the edge weight between $[P_i, e(P_i)]$ and $[T_j, e(T_j)]$ is a combined measure of
 - sequence dissimilarity := $\frac{\text{edit distance between } T_j \text{ and } P_i}{\max(|T_j|, |P_i|)}$
 - relative expression level difference := $\frac{|e(T_j) e(P_i)|}{e(T_i)}$

VALIDATION

construct a bipartite graph with predicted and true transcripts

- ► the edge weight between [P_i, e(P_i)] and [T_j, e(T_j)] is a combined measure of
 - sequence dissimilarity := $\frac{\text{edit distance between } T_j \text{ and } P_i}{\max(|T_j|, |P_i|)}$
 - relative expression level difference := $\frac{|e(T_j) e(P_i)|}{e(T_i)}$
- compute minimum weight perfect matching

VALIDATION

construct a bipartite graph with predicted and true transcripts

- the edge weight between $[P_i, e(P_i)]$ and $[T_j, e(T_j)]$ is a combined measure of
 - sequence dissimilarity := $\frac{\text{edit distance between } T_j \text{ and } P_i}{\max(|T_j|, |P_i|)}$
 - relative expression level difference := $\frac{|e(T_j) e(P_i)|}{e(T_i)}$
- compute minimum weight perfect matching
- ► a True Positive is a match with sequence dissimilarity and expression difference under given thresholds
- ► other events define False Positives and False Negatives
- ► compute precision, recall, F-measure

EXPERIMENTAL RESULTS ON SIMULATED DATA

- ► Simulated paired-end reads from the transcripts of 1,462 genes in HC 2
- Reads aligned with TopHat
- ► Alignments for all genes combined into one file, fed to the tools

EXPERIMENTAL RESULTS ON REAL DATA

- ▶ 2,406,339 paired-end reads of length 75bp mapping to HC 2
- ► 735 genes where all tools made predictions
- ► 6,325 annotated transcripts in total

	Total	Shared with annotation at					
Tool	predicted	sec	sequence dissimilarity			der	
		10%	20%	30%	40%	50%	
Cufflinks	1916	648	955	1171	1307	1413	
IsoLasso	1468	589	782	923	1022	1100	
SLIDE	2229	635	983	1242	1391	1474	
Min-cost flow	2148	722	1000	1228	1341	1456	
Traph cover	2109	788	1063	1283	1407	1501	

CONCLUSIONS cs.helsinki.fi/gsa/traph/

- A unified problem formulation for transcript identification and quantification
- ► We replace the exhaustive enumeration of all (tuples of) paths by enumeration of all *k*-tuples of vertices
- ► We can increase the accuracy of the min-cost flow solution by tackling an NP-hard problem

CONCLUSIONS cs.helsinki.fi/gsa/traph/

- A unified problem formulation for transcript identification and quantification
- ► We replace the exhaustive enumeration of all (tuples of) paths by enumeration of all *k*-tuples of vertices
- ► We can increase the accuracy of the min-cost flow solution by tackling an NP-hard problem

Future work:

- integrate paired-end information
- procure real ground-truth
- exploit graph-width measures (e.g. tree-width), write approximation algorithms
- apply to other multi-assembly problems