
Suffix Array Construction

Suffix array construction means simply sorting the set of all suffixes.

• Using standard sorting or string sorting the time complexity is
Ω(DP (T[0..n])).

• Another possibility is to first construct the suffix tree and then traverse
it from left to right to collect the suffixes in lexicographical order. The
time complexity is O(n) on a constant size alphabet.

Specialized suffix array construction algorithms are a better option, though.

In fact, possibly the fastest way to construct a suffix tree is to first
construct the suffix array and the LCP array, and then the suffix tree using
the algorithm we saw earlier.

165

Prefix Doubling

Our first specialized suffix array construction algorithm is a conceptually
simple algorithm achieving O(n logn) time.

Let T `i denote the text factor T [i..min{i+ `, n+ 1}) and call it an `-factor.
In other words:

• T `i is the factor starting at i and of length ` except when the factor is
cut short by the end of the text.

• T `i is the prefix of the suffix Ti of length `, or Ti when |Ti| < `.

The idea is to sort the sets T `[0..n] for ever increasing values of `.

• First sort T 1
[0..n], which is equivalent to sorting individual characters.

This can be done in O(n logn) time.

• Then, for ` = 1,2,4,8, . . . , use the sorted set T `[0..n] to sort the set T 2`
[0..n]

in O(n) time.

• After O(logn) rounds, ` > n and T `[0..n] = T[0..n], so we have sorted the
set of all suffixes.

166

We still need to specify, how to use the order for the set T `[0..n] to sort the

set T 2`
[0..n]. The key idea is assigning order preserving names for the factors in

T `[0..n]. For i ∈ [0..n], let N `
i be an integer in the range [0..n] such that, for all

i, j ∈ [0..n]:

N `
i ≤ N `

j if and only if T `i ≤ T `j .

Then, for ` > n, N `[i] = SA−1[i].

For smaller values of `, there can be many ways of satisfying the conditions
and any one of them will do. A simple choice is

N `
i = |{j ∈ [0, n] | T `j < T `i }| .

Example 4.12: Prefix doubling for T = banana$.

N1

4 b
1 a
5 n
1 a
5 n
1 a
0 $

N2

4 ba
2 an
5 na
2 an
5 na
1 a$
0 $

N4

4 bana
3 anan
6 nana
2 ana$
5 na$
1 a$
0 $

N8 = SA−1

4 banana$
3 anana$
6 nana$
2 ana$
5 na$
1 a$
0 $

167

Now, given N `, for the purpose of sorting, we can use

• N `
i to represent T `i

• the pair (N `
i , N

`
i+`) to represent T 2`

i = T `i T
`
i+`.

Thus we can sort T 2`
[0..n] by sorting pairs of integers, which can be done in

O(n) time using LSD radix sort.

Theorem 4.13: The suffix array of a string T [0..n] can be constructed in
O(n logn) time using prefix doubling.

• The technique of assigning order preserving names to factors whose
lengths are powers of two is called the Karp–Miller–Rosenberg naming
technique. It was developed for other purposes in the early seventies
when suffix arrays did not exist yet.

• The best practical implementation is the Larsson–Sadakane algorithm,
which uses ternary quicksort instead of LSD radix sort for sorting the
pairs, but still achieves O(n logn) total time.

168

Let us return to the first phase of the prefix doubling algorithm: assigning
names N1

i to individual characters. This is done by sorting the characters,
which is easily within the time bound O(n logn), but sometimes we can do
it faster:

• On an ordered alphabet, we can use ternary quicksort for time
complexity O(n logσT) where σT is the number of distinct symbols in T .

• On an integer alphabet of size nc for any constant c, we can use LSD
radix sort with radix n for time complexity O(n).

After this, we can replace each character T [i] with N1
i to obtain a new

string T ′:

• The characters of T ′ are integers in the range [0..n].

• The character T ′[n] = 0 is the unique, smallest symbol, i.e., $.

• The suffix arrays of T and T ′ are exactly the same.

Thus, we can assume that the text is like T ′ during the suffix array
construction. After the construction, we can use either T or T ′ as the text
depending on what we want to do.

169

Recursive Suffix Array Construction

Let us now describe a linear time algorithm for suffix array construction. We
assume that the alphabet of the text T [0..n) is [1..n] and that T [n] = 0 (=$
in the examples).

The outline of the algorithm is:

0. Divide the suffixes into two subsets A ⊂ [0..n] and Ā = [0..n] \A.

1. Sort the set TA. This is done by a reduction to the suffix array
construction of a string of length |A|, which is done recursively.

2. Sort the set TĀ using the order of TA.

3. Merge the two sorted sets TA and TĀ.

The set A can be chosen so that

• |A| ≤ αn for a constant α < 1.

• Excluding the recursive call, all steps can be done in linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(αn), whose solution is t(n) = O(n).

170

The set A must be chosen so that:

1. Sorting TA can be reduced to suffix array construction on a text of
length |A|.

2. Given sorted TA the suffix array of T is easy to construct.

There are a few different options. Here we use the simplest one.

Step 0: Select A.

• For k ∈ {0,1,2}, define Ck = {i ∈ [0..n] | i mod 3 = k}.

• Let A = C1 ∪ C2.

Example 4.14: i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $

Ā = C0 = {0,3,6,9,12}, C1 = {1,4,7,10}, C2 = {2,5,8,11} and
A = {1,2,4,5,7,8,10,11}.

171

Step 1: Sort TA.

• For k ∈ {1,2}, Construct the strings Rk = (T 3
k , T

3
k+3, T

3
k+6, . . . , T

3
maxCk

)
whose characters are factors of length 3 in the original text, and let
R = R1R2.

• Replace each factor T 3
i in R with a lexicographic name N3

i ∈ [1..|R|].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R′ be the result appended with 0.

• Construct the inverse suffix array SA−1
R′ of R′. This is done recursively

unless all symbols in R′ are unique, in which case SA−1
R′ = R′.

• From SA−1
R′ , we get lexicographic names for suffixes in TA.

For i ∈ A, let N [i] = SA−1
R′ [j], where j is the position of T 3

i in R.
For i ∈ Ā, let N [i] = ⊥. Also let N [n+ 1] = N [n+ 2] = 0.

Example 4.15: R abb ada bba do$ bba dab bad o$
R′ 1 2 4 7 4 6 3 8 0

SA−1
R′ 1 2 5 7 4 6 3 8 0

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] y a b b a d a b b a d o $
N [i] ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0

172

Step 2: Sort TĀ.

• For each i ∈ Ā, we represent Ti with the pair (T [i], N [i+ 1]). Then

Ti ≤ Tj ⇐⇒ (T [i], N [i+ 1]) ≤ (T [j], N [j + 1]) .

Note that N [i+ 1] 6= ⊥.

• The pairs (T [i], N [i+ 1]) are sorted by LSD radix sort in O(n) time.

Example 4.16:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
N [i] ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T12 < T6 < T9 < T3 < T0 because ($,0) < (a,5) < (a,7) < (b,2) < (y,1).

173

Step 3: Merge TA and TĀ.

• Use comparison based merging algorithm needing O(n) comparisons.

• To compare Ti ∈ TA and Tj ∈ TĀ, we have two cases:

i ∈ C1 : Ti ≤ Tj ⇐⇒ (T [i], N [i+ 1]) ≤ (T [j], N [j + 1])

i ∈ C2 : Ti ≤ Tj ⇐⇒ (T [i], T [i+ 1], N [i+ 2]) ≤ (T [j], T [j + 1], N [j + 2])

Note that N [i+ 1] 6= ⊥ in the first case and N [i+ 2] 6= ⊥ in the second
case.

Example 4.17:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
N [i] ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T1 < T6 because (a,4) < (a,5).
T3 < T8 because (b, a,6) < (b, a,7).

174

Theorem 4.18: The suffix array of a string T [0..n) can be constructed in
O(n) time plus the time needed to sort the characters of T .

• There are a few other suffix array construction algorithms and one suffix
tree construction algorithm (Farach’s) with the same time complexity.

• All of them have a similar recursive structure, where the problem is
reduced to suffix array construction on a shorter string that represents
a subset of all suffixes.

175

Burrows–Wheeler Transform

The Burrows–Wheeler transform (BWT) is an important technique for text
compression, text indexing, and their combination compressed text indexing.

Let T [0..n] be the text with T [n] = $. For any i ∈ [0..n], T [i..n]T [0..i) is a
rotation of T . Let M be the matrix, where the rows are all the rotations of
T in lexicographical order. All columns of M are permutations of T . In
particular:

• The first column F contains the text characters in order.

• The last column L is the BWT of T .

Example 4.19: The BWT of T = banana$ is L = annb$aa.

F L
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

176

Here are some of the key properties of the BWT.

• The BWT is easy to compute using the suffix array:

L[i] =

{
$ if SA[i] = 0
T [SA[i]− 1] otherwise

• The BWT is invertible, i.e., T can be reconstructed from the BWT L
alone. The inverse BWT can be computed in the same time it takes to
sort the characters.

• The BWT L is typically easier to compress than the text T . Many text
compression algorithms are based on compressing the BWT.

• The BWT supports backward searching, a different technique for
indexed exact string matching. This is used in many compressed text
indexes.

177

Inverse BWT

Let M′ be the matrix obtained by rotating M one step to the right.

Example 4.20:

M
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

rotate−→

M′

a $ b a n a n
n a $ b a n a
n a n a $ b a
b a n a n a $
$ b a n a n a
a n a $ b a n
a n a n a $ b

• The rows of M′ are the rotations of T in a different order.

• In M′ without the first column, the rows are sorted lexicographically. If
we sort the rows of M′ stably by the first column, we obtain M.

This cycle M rotate−→ M′ sort−→M is the key to inverse BWT.

178

• In the cycle, each column moves one step to the right and is permuted.
The permutation is fully determined by the last column of M, i.e., the
BWT.

• By repeating the cycle, we can reconstruct M from the BWT.

• To reconstruct T , we do not need to compute the whole matrix just
one row.

Example 4.21:

- - - - - - a
- - - - - - n
- - - - - - n
- - - - - - b
- - - - - - $
- - - - - - a
- - - - - - a

rotate−→

a - - - - - -
n - - - - - -
n - - - - - -
b - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -

sort−→

$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a

rotate−→

a $ - - - - -
n a - - - - -
n a - - - - -
b a - - - - -
$ b - - - - -
a n - - - - -
a n - - - - -

sort−→

$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a

rotate
& sort−→

$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a

rotate
& sort−→

$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a

rotate
& sort−→

$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a

rotate
& sort−→

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

179

The permutation that transforms M′ into M is called the LF-mapping.
• LF-mapping is the permutation that stably sorts the BWT L, i.e.,
F [LF [i]] = L[i]. Thus it is easy to compute from L.

• Given the LF-mapping, we can easily follow a row through the
permutations.

Algorithm 4.22: Inverse BWT
Input: BWT L[0..n]
Output: text T [0..n]
Compute LF-mapping:

(1) for i← 0 to n do R[i] = (L[i], i)
(2) sort R (stably by first element)
(3) for i← 0 to n do
(4) (·, j)← R[i]; LF [j]← i

Reconstruct text:
(5) j ← position of $ in L
(6) for i← n downto 0 do
(7) T [i]← L[j]
(8) j ← LF [j]
(9) return T

The time complexity is dominated by the stable sorting.

180

