There are many implementation options for the child function including:

Array: Each node stores an array of size . The space complexity is O(aN),
where N is the number of nodes in trie(R). The time complexity of the
child operation is O(1). Requires an integer alphabet.

Binary tree: Replace the array with a binary tree. The space complexity is
O(N) and the time complexity O(logo). Works for an ordered alphabet.

Hash table: One hash table for the whole trie, storing the values
child(v,c) # L. Space complexity O(N), time complexity O(1).
Requires an integer alphabet.

A common simplification in the analysis of tries is to assume a constant
alphabet. Then the implementation does not matter: Insertion, deletion,
lookup and Icp query for a string S take O(|S]) time.

Note that a trie is a complete representation of the strings. There is no
need to store the strings separately.

17

Longest Common Prefixes

The standard ordering for strings is the lexicographical order. 1t is induced
by an order over the alphabet. We will use the same symbols (<, <, >, &,
etc.) for both the alphabet order and the induced lexicographical order.

We can define the lexicographical order using the concept of the longest
common prefix.

Definition 1.4: The length of the longest common prefix of two strings
A[0..m) and B[0..n), denoted by lcp(A, B), is the largest integer
£ < min{m,n} such that A[0..£) = B[0..£).

Definition 1.5: Let A and B be two strings over an alphabet with a total
order <, and let £ = lcp(A, B). Then A is lexicographically smaller than or
equal to B, denoted by A < B, if and only if

1. either [A| =¢
2. or |A| > ¢, |B| > ¢ and Al¢] < B[4].

19

Definition 1.7: Let R = {S1,52,...,S,} be a set of strings and assume
S1<S2<---<S,. Then the LCP array LCPg[1..n] is defined by

LCPR[i] = lep(Si, {S1, ..., Si-1}) -
Furthermore, the LCP array sum is

SLCP(R)= Y LCPgli] .
i€[1..n]

Example 1.8: Let R = {pot$, potato$, pottery$, tattoo$, tempo$}. Then
Slep(R) = 11, Zdp(R) = 16, SLCP(R) = 7 and the LCP array is:

LCPr
0 pot$
3 potato$
3 pottery$
0 tattoo$
1 tempo$

21

The LCP array LCPg and its sum have other interesting properties:
e SLCP(R) < Slep(R) < 2- SLOP(R).
e For i € [2..n], LCPg[i] = lep(Si, Si-1).

e Let m:[1..n] — [1..n] be an arbitrary permutation. Define

LCPr«[i] = lep(Sry, {Sr1)s - - -» Sri-1) })
SLCPL(R) = Z LCPr L] .
i€[1..n]

In other words, LCPg and XLCP.(R) are the same as LC' P and
S LCP(R) except the order of the strings is different. Then
YLCP;(R) =XLCP(R) and LCPg, is a permutation of LCPg.

The proofs are left as exercises.

23

Many data structures and algorithms for a string set R become simpler if R
is prefix free.

Definition 1.3: A string set R is prefix free if no string in R is a prefix of
another string in R.

If R is prefix free, the leaves of trie(R) represent exactly R. This simplifies
the implementation of the trie:

e Only internal nodes need the child data structure.

e Only leaves need the representation markers.

There is a simple way to make any string set prefix free:
e Let $ ¢ 3 be an extra symbol satisfying $ < ¢ for all c€ .

e Append $ to the end of every string in R.

This has little or no effect on most operations. The length of each string
increases by one only, and the additional symbol could be there only virtually.

18

The concept of longest common prefixes can be generalized for sets:
Definition 1.6: For a string S and a string set R, define

lep(R) = max{¢ | A[0..¢) = B[0..£) for all A,B € R}
lep(S,R) = max{lep(S,T) | T € R}

Tlep(R) =) lep(T, R\ {T})
TeER

The concept of distinguishing prefix is closely related and often used in
place of the longest common prefix for sets. The distinguishing prefix of a
string is the shortest prefix that separates it from other strings in the set.

For a prefix free set R the sum of the lengths of the distinguishing prefixes
is Zdp(R) = Zlcp(R) + |R|. For a non-prefix free set, the distinguishing
prefixes are not always really fully defined.

However, even more interesting is a third measure of longest common
prefixes in a set defined next. It is slightly different from both icp(R) and
Zdp(R).

20

Theorem 1.9: The number of nodes in trie(R) is exactly
||IR|| = ZLCP(R) 4+ 1, where ||R]|| is the total length of the strings in R.

Proof. Consider the construction of trie(R) by inserting the strings one by
one in the lexicographical order using Algorithm 1.2. Initially, the trie has
just one node, the root. When inserting a string S;, the algorithm executes
exactly |Sj| rounds of the two while loops, because each round moves one
step forward in S;. The first loop follows existing edges as long as possible
and thus the number of rounds is LCPg[i] = lep(Si, {S1,...,Si—1}). This
leaves |S;| — LC Pr[i] rounds for the second loop, each of which adds one new
node to the trie. Thus the total number of nodes in the trie at the end is:

1+ Y |8] - LCPrli] =|IR|| - SLCP(R) + 1 .
i€[l..n]
O
The proof reveals a close connection between LCPr and the structure of

the trie. We will later see that LC Py is useful as an actual data structure in
its own right.

22

Compact Trie

Tries suffer from a large number of nodes, close to ||R|| in the worst case.
The space requirement can be problematic, since typically each node needs
much more space than a single symbol.

Path compacted tries reduce the number of nodes by replacing branchless
path segments with a single edge.

e Leaf path compaction applies this to path segments leading to a leaf.
The number of nodes is now |R| 4 Zlcp(R) — ZLCP(R) + 1 (exercise).

e Full path compaction applies this to all path segments. Then every
internal node (except possibly the root) has at least two children. In
such a tree, there is always at least as many leaves as internal nodes.
Thus the number of nodes is at most 2|R|.

The full path compacted trie is called a compact trie.

24

Example 1.10: Path compacted tries for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

The egde labels are factors of the input strings. If the input strings are
stored separately, the edge labels can be represented in constant space using
pointers to the strings.

The time complexity of the basic operations on the compact trie is the
same as for the trie (and depends on the implementation of the child
operation in the same way), but prefix and range queries are faster on the
compact trie (exercise).

25

Example 1.11: Ternary tries for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

Ternary tries have the same asymptotic size as the corresponding tries.

27

In a balanced ternary trie each step down either
e moves the position forward (middle branch), or
e halves the number of strings remaining in the subtree (side branch).

Thus, in a balanced ternary trie storing n strings, any downward traversal
following a string S passes at most |S| middle edges and at most logn side
edges.

Thus the time complexity of insertion, deletion, lookup and Icp query is
O(IS| + log n).

In comparison based tries, where the child function is implemented using
binary search trees, the time complexities could be O(|S|logs), a
multiplicative factor O(log o) instead of an additive factor O(logn).

Prefix and range queries behave similarly (exercise).

29

The following theorem shows that we cannot achieve O(nlogn) symbol
comparisons for any set of strings (when ¢ = n°(1).

Theorem 1.12: Let A be an algorithm that sorts a set of objects using
only comparisons between the objects. Let R = {S1,55,...,5,} be a set of n
strings over an ordered alphabet X of size 0. Sorting R using A requires
Q(nlognlog,n) symbol comparisons on average, where the average is taken
over the initial orders of R.

o If o is considered to be a constant, the lower bound is Q2(n(logn)?).

e Note that the theorem holds for any comparison based sorting algorithm
A and any string set R. In other words, we can choose A and R to
minimize the number of comparisons and still not get below the bound.

e Only the initial order is random rather than “any”. Otherwise, we could
pick the correct order and use an algorithm that first checks if the order
is correct, needing only O(n + X LCP(R)) symbol comparisons.

An intuitive explanation for this result is that the comparisons made by a
sorting algorithm are not random. In the later stages, the algorithm tends
to compare strings that are close to each other in lexicographical order and
thus are likely to have long common prefixes.

31

Ternary Trie

Tries can be implemented for ordered alphabets but a bit awkwardly using a
comparison-based child function. Ternary trie is a simpler data structure
based on symbol comparisons.

Ternary trie is like a binary search tree except:
e Each internal node has three children: smaller, equal and larger.

e The branching is based on a single symbol at a given position as in a
trie. The position is zero (first symbol) at the root and increases along
the middle branches but not along side branches.

Ternary trie has variants similar to the standard (o-ary) trie:
e A basic ternary trie, which is a full representation of the strings.

e Compact ternary tries reduce space by compacting branchless path
segments.

26

A ternary trie is balanced if each left and right subtree contains at most half
of the strings in its parent tree.

e The balance can be maintained by rotations similarly to binary search

trees.
o rotation 6
Bl L

e We can also get reasonably close to a balance by inserting the strings in
the tree in a random order.

28

String Sorting

Q(nlogn) is a well known lower bound for the number of comparisons
needed for sorting a set of n objects by any comparison based algorithm.
This lower bound holds both in the worst case and in the average case.

There are many algorithms that match the lower bound, i.e., sort using
O(nlogn) comparisons (worst or average case). Examples include quicksort,
heapsort and mergesort.

If we use one of these algorithms for sorting a set of n strings, it is clear
that the number of symbol comparisons can be more than O(nlogn) in the
worst case. Determining the order of A and B needs at least lcp(A, B)
symbol comparisons and lcp(A, B) can be arbitrarily large in general.

On the other hand, the average number of symbol comparisons for two
random strings is O(1). Does this mean that we can sort a set of random
strings in O(nlogn) time using a standard sorting algorithm?

30

Proof of Theorem 1.12. Let k = [(log, n)/2]. For any string a € =¥, let
Ra be the set of strings in R having « as a prefix. Let ny = |Raq|.

Let us analyze the number of symbol comparisons when comparing strings
in R, against each other.

e Each string comparison needs at least k symbol comparisons.

e No comparison between a string in R, and a string outside R, gives
any information about the relative order of the strings in R,.

e Thus A needs to do Q(nalogn,) string comparisons and Q(kn, 109 na)
symbol comparisons to determine the relative order of the strings in R,.

Thus the total number of symbol comparisons is 2 (Zagzk knq log na) and

n—vn

ok

Z kne10gna > k(n — v/n) log

aext

> k(n —+v/n)log(vn —1)

= Q (knlogn) = Q2 (nlognlog,n) .

Here we have used the facts that ¢* < \/n, that 3 sina >n— 0" >n—/n,
and that }_ s+ nalogna > (n —/n)log((n — V/n)/ok) (see exercises).]

32

The preceding lower bound does not hold for algorithms specialized for
sorting strings.

Theorem 1.13: Let R = {51,5>,...,5,} be a set of n strings. Sorting R
into the lexicographical order by any algorithm based on symbol
comparisons requires Q(XZLCP(R) + nlogn) symbol comparisons.

Proof. If we are given the strings in the correct order and the job is to
verify that this is indeed so, we need at least X LCP(R) symbol
comparisons. No sorting algorithm could possibly do its job with less symbol
comparisons. This gives a lower bound Q(XLCP(R)).

On the other hand, the general sorting lower bound 2(nlogn) must hold
here too.

The result follows from combining the two lower bounds. O

e Note that the expected value of “LCP(R) for a random set of n
strings is O(nlog, n). The lower bound then becomes 2(nlogn).

We will next see that there are algorithms that match this lower bound.
Such algorithms can sort a random set of strings in O(nlogn) time.

33

In the normal, binary quicksort, we would have two subsets R< and R, both
of which may contain elements that are equal to the pivot.

e Binary quicksort is slightly faster in practice for sorting sets.

e Ternary quicksort can be faster for sorting multisets with many
duplicate keys. Sorting a multiset of size n with o distinct elements
takes O(nlogo) comparisons (exercise).

The time complexity of both the binary and the ternary quicksort depends
on the selection of the pivot (exercise).

In the following, we assume an optimal pivot selection giving O(nlogn)
worst case time complexity.

35

Example 1.16: A possible partitioning, when ¢ = 2.

al | p | habet al gnment
al | i | gnment al orithm
al | 1 | ocate al as

al | g | orithm — al ocate

al | t | ernative al

al | i | as al habet

al | t | ernate al ernative
al |1 al ernate

Theorem 1.17: String quicksort sorts a set R of n strings in
O(ZLCP(R) + nlogn) time.

e Thus string quicksort is an optimal symbol comparison based algorithm.

e String quicksort is also fast in practice.

37

String Quicksort (Multikey Quicksort)

Quicksort is one of the fastest general purpose sorting algorithms in
practice.

Here is a variant of quicksort that partitions the input into three parts
instead of the usual two parts.

Algorithm 1.14: TernaryQuicksort(R)

Input: (Multi)set R in arbitrary order.
Output: R in ascending order.
(1) if |[R| <1 then return R
(2) select a pivot z € R
(3) Rc+{seR|s<uz}
(4) R=«{s€R|s=u}
(5) R« {s€R|s>a}
(6) R< + TernaryQuicksort(R<)
(7) R- + TernaryQuicksort(Rs)
(8) return R<- R=-R>

34

String quicksort is similar to ternary quicksort, but it partitions using a single
character position. String quicksort is also known as multikey quicksort.

Algorithm 1.15: StringQuicksort(R,¢)

Input: (Multi)set R of strings and the length ¢ of their common prefix.
Output: R in ascending lexicographical order.
(1) if |R| <1 then return R
(2) Ri+{SeR||S|=4}; R« R\R.
(3) select pivot X e R
(4) Re+{SeR|S[] < X[}
(5) R=+{SeR|S[=X[]}
(6) R> <+ {SeR|S[]>X[]}
(7) R< + StringQuicksort(R«,)
(8) R= «+ StringQuicksort(R=,¢+ 1)
(9) R~ « StringQuicksort(R,)
(10) return R} -R<-R=-R>

In the initial call, £ = 0.

36

Proof of Theorem 1.17. The time complexity is dominated by the symbol
comparisons on lines (4)—(6). We charge the cost of each comparison either
on a single symbol or on a string depending on the result of the comparison:

S[€] = X[¢]: Charge the comparison on the symbol S[{].

e Now the string S is placed in the set R=. The recursive call on R=
increases the common prefix length to £+ 1. Thus S[¢] cannot be
involved in any future comparison and the total charge on S[¢] is 1.

e Only lep(S, R\ {S}) symbols in S can be involved in these
comparisons. Thus the total number of symbol comparisons
resulting equality is at most Zicp(R) = ©(XLCP(R)).

(Exercise: Show that the number is exactly XLCP(R).)

S[€] # X[¢]: Charge the comparison on the string S.
e Now the string S is placed in the set R- or R~. The size of either
set is at most |R|/2 assuming an optimal choice of the pivot X.
e Every comparison charged on S halves the size of the set containing
S, and hence the total charge accumulated by S is at most logn.
Thus the total number of symbol comparisons resulting inequality is
at most O(nlogn). O

38

