
The preceding lower bound does not hold for algorithms specialized for
sorting strings.

Theorem 1.13: Let R = {S1, S2, . . . , Sn} be a set of n strings. Sorting R
into the lexicographical order by any algorithm based on symbol
comparisons requires Ω(ΣLCP (R) + n logn) symbol comparisons.

Proof. If we are given the strings in the correct order and the job is to
verify that this is indeed so, we need at least ΣLCP (R) symbol
comparisons. No sorting algorithm could possibly do its job with less symbol
comparisons. This gives a lower bound Ω(ΣLCP (R)).

On the other hand, the general sorting lower bound Ω(n logn) must hold
here too.

The result follows from combining the two lower bounds. �

• Note that the expected value of ΣLCP (R) for a random set of n
strings is O(n logσ n). The lower bound then becomes Ω(n logn).

We will next see that there are algorithms that match this lower bound.
Such algorithms can sort a random set of strings in O(n logn) time.

33

String Quicksort (Multikey Quicksort)

Quicksort is one of the fastest general purpose sorting algorithms in
practice.

Here is a variant of quicksort that partitions the input into three parts
instead of the usual two parts.

Algorithm 1.14: TernaryQuicksort(R)

Input: (Multi)set R in arbitrary order.
Output: R in ascending order.

(1) if |R| ≤ 1 then return R
(2) select a pivot x ∈ R
(3) R< ← {s ∈ R | s < x}
(4) R= ← {s ∈ R | s = x}
(5) R> ← {s ∈ R | s > x}
(6) R< ← TernaryQuicksort(R<)
(7) R> ← TernaryQuicksort(R>)
(8) return R< ·R= ·R>

34

In the normal, binary quicksort, we would have two subsets R≤ and R≥, both
of which may contain elements that are equal to the pivot.

• Binary quicksort is slightly faster in practice for sorting sets.

• Ternary quicksort can be faster for sorting multisets with many
duplicate keys. Sorting a multiset of size n with σ distinct elements
takes O(n logσ) comparisons (exercise).

The time complexity of both the binary and the ternary quicksort depends
on the selection of the pivot (exercise).

In the following, we assume an optimal pivot selection giving O(n logn)
worst case time complexity.

35

String quicksort is similar to ternary quicksort, but it partitions using a single
character position. String quicksort is also known as multikey quicksort.

Algorithm 1.15: StringQuicksort(R, `)
Input: (Multi)set R of strings and the length ` of their common prefix.
Output: R in ascending lexicographical order.

(1) if |R| ≤ 1 then return R
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) select pivot X ∈ R
(4) R< ← {S ∈ R | S[`] < X[`]}
(5) R= ← {S ∈ R | S[`] = X[`]}
(6) R> ← {S ∈ R | S[`] > X[`]}
(7) R< ← StringQuicksort(R<, `)
(8) R= ← StringQuicksort(R=, `+ 1)
(9) R> ← StringQuicksort(R>, `)

(10) return R⊥ · R< · R= · R>

In the initial call, ` = 0.

36

Example 1.16: A possible partitioning, when ` = 2.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al i gnment
al g orithm
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

Theorem 1.17: String quicksort sorts a set R of n strings in
O(ΣLCP (R) + n logn) time.

• Thus string quicksort is an optimal symbol comparison based algorithm.

• String quicksort is also fast in practice.

37

Proof of Theorem 1.17. The time complexity is dominated by the symbol
comparisons on lines (4)–(6). We charge the cost of each comparison either
on a single symbol or on a string depending on the result of the comparison:

S[`] = X[`]: Charge the comparison on the symbol S[`].
• Now the string S is placed in the set R=. The recursive call on R=

increases the common prefix length to `+ 1. Thus S[`] cannot be
involved in any future comparison and the total charge on S[`] is 1.

• Only lcp(S,R \ {S}) symbols in S can be involved in these
comparisons. Thus the total number of symbol comparisons
resulting equality is at most Σlcp(R) = Θ(ΣLCP (R)).
(Exercise: Show that the number is exactly ΣLCP (R).)

S[`] 6= X[`]: Charge the comparison on the string S.
• Now the string S is placed in the set R< or R>. The size of either

set is at most |R|/2 assuming an optimal choice of the pivot X.
• Every comparison charged on S halves the size of the set containing
S, and hence the total charge accumulated by S is at most logn.
Thus the total number of symbol comparisons resulting inequality is
at most O(n logn). �

38

Radix Sort

The Ω(n logn) sorting lower bound does not apply to algorithms that use
stronger operations than comparisons. A basic example is counting sort for
sorting integers.

Algorithm 1.18: CountingSort(R)
Input: (Multi)set R = {k1, k2, . . . kn} of integers from the range [0..σ).
Output: R in nondecreasing order in array J[0..n).

(1) for i← 0 to σ − 1 do C[i]← 0
(2) for i← 1 to n do C[ki]← C[ki] + 1
(3) sum← 0
(4) for i← 0 to σ − 1 do // cumulative sums
(5) tmp← C[i]; C[i]← sum; sum← sum+ tmp
(6) for i← 1 to n do // distribute
(7) J[C[ki]]← ki; C[ki]← C[ki] + 1
(8) return J

• The time complexity is O(n+ σ).

• Counting sort is a stable sorting algorithm, i.e., the relative order of
equal elements stays the same.

39

Similarly, the Ω(ΣLCP (R) + n logn) lower bound does not apply to string
sorting algorithms that use stronger operations than symbol comparisons.
Radix sort is such an algorithm for integer alphabets.

Radix sort was developed for sorting large integers, but it treats an integer
as a string of digits, so it is really a string sorting algorithm.

There are two types of radix sorting:

MSD radix sort starts sorting from the beginning of strings (most
significant digit).

LSD radix sort starts sorting from the end of strings (least
significant digit).

40

The LSD radix sort algorithm is very simple.

Algorithm 1.19: LSDRadixSort(R)
Input: (Multi)set R = {S1, S2, . . . , Sn} of strings of length m over alphabet [0..σ).
Output: R in ascending lexicographical order.

(1) for `← m− 1 to 0 do CountingSort(R,`)
(2) return R

• CountingSort(R,`) sorts the strings in R by the symbols at position `
using counting sort (with ki replaced by Si[`]). The time complexity is
O(|R|+ σ).

• The stability of counting sort is essential.

Example 1.20: R = {cat, him, ham, bat}.
cat
him
ham
bat

=⇒
hi m
ha m
ca t
ba t

=⇒
h a m
c a t
b a t
h i m

=⇒
b at
c at
h am
h im

It is easy to show that after i rounds, the strings are sorted by suffix of
length i. Thus, they are fully sorted at the end.

41

The algorithm assumes that all strings have the same length m, but it can
be modified to handle strings of different lengths (exercise).

Theorem 1.21: LSD radix sort sorts a set R of strings over the alphabet
[0..σ) in O(||R||+mσ) time, where ||R|| is the total length of the strings in
R and m is the length of the longest string in R.

Proof. Assume all strings have length m. The LSD radix sort performs m
rounds with each round taking O(n+ σ) time. The total time is
O(mn+mσ) = O(||R||+mσ).

The case of variable lengths is left as an exercise. �

• The weakness of LSD radix sort is that it uses Ω(||R||) time even when
ΣLCP (R) is much smaller than ||R||.

• It is best suited for sorting short strings and integers.

42

MSD radix sort resembles string quicksort but partitions the strings into σ
parts instead of three parts.

Example 1.22: MSD radix sort partitioning.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al g orithm
al i gnment
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

43

Algorithm 1.23: MSDRadixSort(R, `)
Input: (Multi)set R = {S1, S2, . . . , Sn} of strings over the alphabet [0..σ)

and the length ` of their common prefix.
Output: R in ascending lexicographical order.

(1) if |R| < σ then return StringQuicksort(R, `)
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) (R0,R1, . . . ,Rσ−1)← CountingSort(R, `)
(4) for i← 0 to σ − 1 do Ri ←MSDRadixSort(Ri, `+ 1)
(5) return R⊥ · R0 · R1 · · ·Rσ−1

• Here CountingSort(R,`) not only sorts but also returns the partitioning
based on symbols at position `. The time complexity is still O(|R|+ σ).

• The recursive calls eventually lead to a large number of very small sets,
but counting sort needs Ω(σ) time no matter how small the set is. To
avoid the potentially high cost, the algorithm switches to string
quicksort for small sets.

44

Theorem 1.24: MSD radix sort sorts a set R of n strings over the
alphabet [0..σ) in O(ΣLCP (R) + n logσ) time.

Proof. Consider a call processing a subset of size k ≥ σ:

• The time excluding the recursive calls but including the call to counting
sort is O(k + σ) = O(k). The k symbols accessed here will not be
accessed again.

• At most dp(S,R \ {S}) ≤ lcp(S,R \ {S}) + 1 symbols in S will be
accessed by the algorithm. Thus the total time spent in this kind of
calls is O(Σdp(R)) = O(Σlcp(R) + n) = O(ΣLCP (R) + n).

The calls for a subsets of size k < σ are handled by string quicksort. Each
string is involved in at most one such call. Therefore, the total time over all
calls to string quicksort is O(ΣLCP (R) + n logσ).

�
• There exists a more complicated variant of MSD radix sort with time

complexity O(ΣLCP (R) + n+ σ).

• Ω(ΣLCP (R) + n) is a lower bound for any algorithm that must access
symbols one at a time.

• In practice, MSD radix sort is very fast, but it is sensitive to
implementation details.

45

String Mergesort

General (non-string) comparison-based sorting algorithms are not optimal
for sorting strings because of an imbalance between effort and result in a
string comparison: it can take a lot of time but the result is only a bit or a
trit of useful information.

String quicksort solves this problem by processing the obtained information
immediately after each symbol comparison.

String mergesort takes the opposite approach. It replaces a standard string
comparison with an lcp-comparison, which is the operation
LcpCompare(A,B, k):

• The return value is the pair (x, `), where x ∈ {<,=, >} indicates the
order, and ` = lcp(A,B), the length of the longest common prefix of
strings A and B.

• The input value k is the length of a known common prefix, i.e., a lower
bound on lcp(A,B). The comparison can skip the first k characters.

Extra time spent in the comparison is balanced by the extra information
obtained in the form of the lcp value.

46

The following result shows how we can use the information from earlier
comparisons to obtain a lower bound or even the exact value for an lcp.

Lemma 1.25: Let A, B and C be strings.

(a) lcp(A,C) ≥ min{lcp(A,B), lcp(B,C)}.

(b) If A ≤ B ≤ C, then lcp(A,C) = min{lcp(A,B), lcp(B,C)}.

Proof. Assume ` = lcp(A,B) ≤ lcp(B,C). The opposite case
lcp(A,B) ≥ lcp(B,C) is symmetric.

(a) Now A[0..`) = B[0..`) = C[0..`) and thus lcp(A,C) ≥ `.

(b) Either |A| = ` or A[`] < B[`] ≤ C[`]. In either case, lcp(A,C) = `.

�

47

It can also be possible to determine the order of two strings without
comparing them directly.

Lemma 1.26: Let A, B, B′ and C be strings such that A ≤ B ≤ C and
A ≤ B′ ≤ C.

(a) If lcp(A,B) > lcp(A,B′), then B < B′.

(b) If lcp(B,C) > lcp(B′, C), then B > B′.

Proof. We show (a); (b) is symmetric. Assume to the contrary that B ≥ B′.
Then by Lemma 1.25, lcp(A,B) = min{lcp(A,B′), lcp(B′, B)} ≤ lcp(A,B′),
which is a contradiction. �

48

String mergesort has the same structure as the standard mergesort: sort the
first half and the second half separately, and then merge the results.

Algorithm 1.27: StringMergesort(R)
Input: Set R = {S1, S2, . . . , Sn} of strings.
Output: R sorted and augmented with LCPR values.

(1) if |R| = 1 then return ((S1,0))
(2) m← bn/2c
(3) P ← StringMergesort({S1, S2, . . . , Sm})
(4) Q ← StringMergesort({Sm+1, Sm+2, . . . , Sn})
(5) return StringMerge(P,Q)

The output is of the form

((T1, `1), (T2, `2), . . . , (Tn, `n))

where `i = lcp(Ti, Ti−1) for i > 1 and `1 = 0. In other words, `i = LCPR[i].

Thus we get not only the order of the strings but also a lot of information
about their common prefixes. The procedure StringMerge uses this
information effectively.

49

Algorithm 1.28: StringMerge(P,Q)
Input: Sequences P =

(
(S1, k1), . . . , (Sm, km)

)
and Q =

(
(T1, `1), . . . , (Tn, `n)

)

Output: Merged sequence R
(1) R← ∅; i← 1; j ← 1
(2) while i ≤ m and j ≤ n do
(3) if ki > `j then append (Si, ki) to R; i← i+ 1
(4) else if `j > ki then append (Tj, `j) to R; j ← j + 1
(5) else // ki = `j
(6) (x, h)← LcpCompare(Si, Tj, ki)
(7) if x = ”<” then
(8) append (Si, ki) to R; i← i+ 1
(9) `j ← h

(10) else
(11) append (Tj, `j) to R; j ← j + 1
(12) ki ← h
(13) while i ≤ m do append (Si, ki) to R; i← i+ 1
(14) while j ≤ n do append (Tj, `j) to R; j ← j + 1
(15) return R

50

Lemma 1.29: StringMerge performs the merging correctly.

Proof. We will show that the following invariant holds at the beginning of
each round in the loop on lines (2)–(12):

Let X be the last string appended to R (or ε if R = ∅). Then
ki = lcp(X,Si) and `j = lcp(X,Tj).

The invariant is clearly true in the beginning. We will show that the invariant
is maintained and the smaller string is chosen in each round of the loop.

• If ki > `j, then lcp(X,Si) > lcp(X,Tj) and thus

– Si < Tj by Lemma 1.26.

– lcp(Si, Tj) = lcp(X,Tj) because, by Lemma 1.25,
lcp(X,Tj) = min{lcp(X,Si), lcp(Si, Tj)}.

Hence, the algorithm chooses the smaller string and maintains the
invariant. The case `j > ki is symmetric.

• If ki = `j, then clearly lcp(Si, Tj) ≥ ki and the call to LcpCompare is safe,
and the smaller string is chosen. The update `j ← h or ki ← h maintains
the invariant. �

51

Theorem 1.30: String mergesort sorts a set R of n strings in
O(ΣLCP (R) + n logn) time.

Proof. If the calls to LcpCompare took constant time, the time complexity
would be O(n logn) by the same argument as with the standard mergesort.

Whenever LcpCompare makes more than one, say 1 + t symbol
comparisons, one of the lcp values stored with the strings increases by t.
Since the sum of the final lcp values is exactly ΣLCP (R), the extra time
spent in LcpCompare is bounded by O(ΣLCP (R)).

�

• Other comparison based sorting algorithms, for example heapsort and
insertion sort, can be adapted for strings using the lcp-comparison
technique.

52

String Binary Search

An ordered array is a simple static data structure supporting queries in
O(logn) time using binary search.

Algorithm 1.31: Binary search
Input: Ordered set R = {k1, k2, . . . , kn}, query value x.
Output: The number of elements in R that are smaller than x.

(1) left← 0; right← n+ 1 // output value is in the range [left..right)
(2) while right− left > 1 do
(3) mid← b(left+ right)/2c
(4) if kmid < x then left← mid
(5) else right← mid
(6) return left

With strings as elements, however, the query time is

• O(m logn) in the worst case for a query string of length m

• O(m+ logn logσ n) on average for a random set of strings.

53

We can use the lcp-comparison technique to improve binary search for
strings. The following is a key result.

Lemma 1.32: Let A, B, B′ and C be strings such that A ≤ B ≤ C and
A ≤ B′ ≤ C. Then lcp(B,B′) ≥ lcp(A,C).

Proof. Let Bmin = min{B,B′} and Bmax = max{B,B′}. By Lemma 1.25,

lcp(A,C) = min(lcp(A,Bmax), lcp(Bmax, C))

≤ lcp(A,Bmax) = min(lcp(A,Bmin), lcp(Bmin, Bmax))

≤ lcp(Bmin, Bmax) = lcp(B,B′)

�

54

During the binary search of P in {S1, S2, . . . , Sn}, the basic situation is the
following:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright, and we know that
Sleft ≤ P, Smid ≤ Sright.

• By using lcp-comparisons, we know lcp(Sleft, P) and lcp(P, Sright).

By Lemmas 1.25 and 1.32,

lcp(P, Smid) ≥ lcp(Sleft, Sright) = min{lcp(Sleft, P), lcp(P, Sright)}
Thus we can skip min{lcp(Sleft, P), lcp(P, Sright)} first characters when
comparing P and Smid.

55

Algorithm 1.33: String binary search (without precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n+ 1
(2) llcp← 0; rlcp← 0
(3) while right− left > 1 do
(4) mid← b(left+ right)/2c
(5) mlcp← min{llcp, rlcp}
(6) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(7) if x = “ < ” then left← mid; llcp← mclp
(8) else right← mid; rlcp← mclp
(9) return left

• The average case query time is now O(m+ logn).

• The worst case query time is still O(m logn).

56

We can further improve string binary search using precomputed information
about the lcp’s between the strings in R.

Consider again the basic situation during string binary search:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright, and we know
lcp(Sleft, P) and lcp(P, Sright).

The values left and right are fully determined by mid independently of P .
That is, P only determines whether the search ends up at position mid at
all, but if it does, left and right are always the same.

Thus, we can precompute and store the values

LLCP [mid] = lcp(Sleft, Smid)

RLCP [mid] = lcp(Smid, Sright)

57

Now we know all lcp values between P , Sleft, Smid, Sright except lcp(P, Smid).
The following lemma shows how to utilize this.

Lemma 1.34: Let A, B, B′ and C be strings such that A ≤ B ≤ C and
A ≤ B′ ≤ C.
(a) If lcp(A,B) > lcp(A,B′), then B < B′ and lcp(B,B′) = lcp(A,B′).
(b) If lcp(A,B) < lcp(A,B′), then B > B′ and lcp(B,B′) = lcp(A,B).
(c) If lcp(B,C) > lcp(B′, C), then B > B′ and lcp(B,B′) = lcp(B′, C).
(d) If lcp(B,C) < lcp(B′, C), then B < B′ and lcp(B,B′) = lcp(B,C).
(e) If lcp(A,B) = lcp(A,B′) and lcp(B,C) = lcp(B′, C), then

lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}.

Proof. Cases (a)–(d) are symmetrical, we show (a). B < B′ follows from
Lemma 1.26. Then by Lemma 1.25, lcp(A,B′) = min{lcp(A,B), lcp(B,B′)}.
Since lcp(A,B′) < lcp(A,B), we must have lcp(A,B′) = lcp(B,B′).

In case (e), we use Lemma 1.25:

lcp(B,B′) ≥ min{lcp(A,B), lcp(A,B′)} = lcp(A,B)

lcp(B,B′) ≥ min{lcp(B,C), lcp(B′, C)} = lcp(B,C)

Thus lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}. �
58

Algorithm 1.35: String binary search (with precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, arrays LLCP and RLCP,

query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n+ 1
(2) llcp← 0; rlcp← 0
(3) while right− left > 1 do
(4) mid← b(left+ right)/2c
(5) if LLCP [mid] > llcp then left← mid
(6) else if LLCP [mid] < llcp then right← mid; rlcp← LLCP [mid]
(7) else if RLCP [mid] > rlcp then right← mid
(8) else if RLCP [mid] < rlcp then left← mid; llcp← RLCP [mid]
(9) else

(10) mlcp← max{llcp, rlcp}
(11) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(12) if x = “ < ” then left← mid; llcp← mclp
(13) else right← mid; rlcp← mclp
(14) return left

59

Theorem 1.36: An ordered string set R = {S1, S2, . . . , Sn} can be
preprocessed in O(ΣLCP (R) + n) time and O(n) space so that a binary
search with a query string P can be executed in O(|P |+ logn) time.

Proof. The values LLCP [mid] and RLCP [mid] can be computed in
O(lcp(Smid,R \ {Smid}) + 1) time. Thus the arrays LLCP and RLCP can be
computed in O(Σlcp(R) + n) = O(ΣLCP (R) + n) time and stored in O(n)
space.

The main while loop in Algorithm 1.35 is executed O(logn) times and
everything except LcpCompare on line (11) needs constant time.

If a given LcpCompare call performs t+ 1 symbol comparisons, mclp
increases by t on line (11). Then on lines (12)–(13), either llcp or rlcp
increases by at least t, since mlcp was max{llcp, rlcp} before LcpCompare.
Since llcp and rlcp never decrease and never grow larger than |P |, the total
number of extra symbol comparisons in LcpCompare during the binary
search is O(|P |). �

60

