
Algorithm 2.15: BNDM
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T
Preprocess:

(1) for c ∈ Σ do B[c]← 0
(2) for i← 0 to m− 1 do B[P [m− 1− i]]← B[P [m− 1− i]] + 2i

Search:
(3) j ← 0
(4) while j +m ≤ n do
(5) i← m; shift← m
(6) D ← 2m − 1 // D ← 1m

(7) while D 6= 0 do
// Now T [j + i..j +m) is a pattern factor

(8) i← i− 1
(9) D ← D & B[T [j + i]]

(10) if D & 2m−1 6= 0 then
// Now T [j + i..j +m) is a pattern prefix

(11) if i = 0 then return j
(12) else shift← i
(13) D ← D << 1
(14) j ← j + shift
(15) return n
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Example 2.16: P = assi, T = apassi.

B[c], c ∈ {a,i,p,s}
a i p s

i 0 1 0 0
s 0 0 0 1
s 0 0 0 1
a 1 0 0 0

D when scanning apas backwards
a p a s

i 0 0 0 1
s 0 0 1 1
s 0 0 1 1
a 0 1 0 1 ⇒ shift = 2

D when scanning assi backwards
a s s i

i 0 0 0 1 1
s 0 0 1 0 1
s 0 1 0 0 1
a 1 0 0 0 1 ⇒ occurrence
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On an integer alphabet when m ≤ w:

• Preprocessing time is O(σ +m).

• In the worst case, the search time is O(mn).
For example, P = am−1b and T = an.

• In the best case, the search time is O(n/m).
For example, P = bm and T = an.

• In the average case, the search time is O(n(logσm)/m).
This is optimal! It has been proven that any algorithm needs to inspect
Ω(n(logσm)/m) text characters on average.

When m > w, there are several options:

• Use multi-word bitvectors.

• Search for a pattern prefix of length w and check the rest when the
prefix is found.

• Use BDM or BOM.
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• The search time of BDM and BOM is O(n(logσm)/m), which is
optimal on average. (BNDM is optimal only when m ≤ w.)

• MP and KMP are optimal in the worst case.

• There are also algorithms that are optimal in both cases. They are
based on similar techniques, but we will not describe them here.
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Karp–Rabin

The Karp–Rabin hash function (Definition 1.37) was originally developed for
solving the exact string matching problem. The idea is to compute the hash
values or fingerprints H(P ) and H(T [j..j +m)) for all j ∈ [0..n−m].

• If H(P ) 6= H(T [j..j +m)), then we must have P 6= T [j..j +m).

• If H(P ) = H(T [j..j +m), the algorithm compares P and T [j..j +m) in
brute force manner. If P 6= T [j..j +m), this is a false positive.

The text factor fingerprints are computed in a sliding window fashion. The
fingerprint for T [j + 1..j + 1 +m) = αT [j +m] is computed from the
fingerprint for T [j..j +m) = T [j]α in constant time using Lemma 1.38:

H(T [j + 1..j + 1 +m)) = (H(T [j]α)−H(T [j]) · rm−1) · r +H(T [j +m])) mod q

= (H(T [j..j +m))− T [j] · rm−1) · r + T [j +m]) mod q .

A hash function that supports this kind of sliding window computation is
known as a rolling hash function.

93

Algorithm 2.17: Karp-Rabin

Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) Choose q and r; s← rm−1 mod q
(2) hp← 0;ht← 0
(3) for i← 0 to m− 1 do hp← (hp · r + P [i]) mod q // hp = H(P )
(4) for j ← 0 to m− 1 do ht← (ht · r + T [j]) mod q
(5) for j ← 0 to n−m− 1 do
(6) if hp = ht then if P = T [j . . . j +m) then return j
(7) ht← ((ht− T [j] · s) · r + T [j +m]) mod q
(8) if hp = ht then if P = T [j . . . j +m) then return j
(9) return n

On an integer alphabet:

• The worst case time complexity is O(mn).

• The average case time complexity is O(m+ n).

Karp–Rabin is not competitive in practice for a single pattern, but can be
for multiple patterns (exercise).
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Crochemore

The Crochemore algorithm resembles the Morris–Pratt algorithm at a high
level:

• When the pattern P is aligned against a text factor T [j..j +m), they
compute the longest common prefix ` = lcp(P, T [j..j +m)) and report
an occurrence if ` = m. Otherwise, they shift the pattern forward.

• MP shifts the pattern forward by `− fail[`] positions. In the next lcp
computation, MP skips the first fail[`] characters (cf. lcp-comparison).

• Crochemore either does the same shift and skip as MP, or a shorter
shift and starts the lcp comparison from scratch. Note that the latter
case is inoptimal but always safe: no occurrence is missed.

Despite sometimes shorter shifts and less efficient lcp computation,
Crochemore runs in linear time. More remarkably, it does so without any
preprocessing and using only constant extra space in addition to P and T .

We will only outline the main ideas of the algorithm without detailed proofs.
Even then we will need some concepts from combinatorics on words, a
branch of mathematics that studies combinatorial properties of strings.
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Definition 2.18: Let S[0..m) be a string. An integer p ∈ [1..m] is a period
of S, if S[i] = S[i+ p] for all i ∈ [0..m− p). The smallest period of S is
denoted per(S). S is k-periodic if m/per(S) ≥ k.

Example 2.19: The periods of S1 = aabaaabaa are 4,7,8 and 9. The periods
of S2 = abcabcabcabca are 3, 6, 9, 12 and 13. S2 is 3-periodic but S1 is not.

There is a strong connection between periods and borders.

Lemma 2.20: p is a period of S[0..m) if and only if S has a proper border
of length m− p.

Proof. Both conditions hold if and only if S[0..m− p) = S[p..m). �

Corollary 2.21: The length of the longest proper border of S is m− per(S).
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Recall that fail[`] in MP is the length of the longest proper border of P [0..`).
Thus the pattern shift by MP is `− fail[`] = per(P [0..`)) and the lcp skip is
fail[`] = `− per(P [0..`)). Thus knowing per(P [0..`)) is sufficient to emulate
MP shift and skip.

The Crochemore algorithm has two cases:

• If P [0..`) is 3-periodic, then compute per(P [0..`)) and do the MP shift
and skip.

• If P [0..`) is not 3-periodic, then shift by b`/3c+ 1 ≤ per(P [0..`)) and
start the lcp comparison from scratch.

To find out if P [0..`) is 3-periodic and to compute per(P [0..`)) if it is,
Crochemore uses another combinatorial concept.
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Definition 2.22: Let MS(S) denote the lexicographically maximal suffix of
a string S. If S = MS(S), S is called self-maximal.

Period computation is easier for maximal suffixes and self-maximal strings
than for arbitrary strings.

Lemma 2.23: Let S[0..m) be a self-maximal string and let p = per(S). For
any a ∈ Σ,

MS(Sa) = Sa and per(Sa) = p if a = S[m− p]

MS(Sa) = Sa and per(Sa) = m+ 1 if a > S[m− p]

MS(Sa) 6= Sa if a < S[m− p]

Furthermore, let r = m mod p and R = S[m− r..m). Then R is self-maximal
and

MS(Sa) = MS(Ra) if a < S[m− p]

The proof is omitted.
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Crochemore’s algorithm computes the maximal suffix and its period for
P [0..`) incrementally using Lemma 2.23. The following algorithm updates
the maximal suffix information when the match is extended by one
character.

Algorithm 2.24: Update-MS(P, `, s, p)
Input: a string P and integers `, s, p such that

MS(P [0..`)) = P [s..`) and p = per(P [s..`)).
Output: a triple (`+ 1, s′, p′) such that

MS(P [0..`+ 1)) = P [s′..`+ 1) and p′ = per(P [s′..`+ 1)).
(1) if ` = 0 then return (1,0,1)
(2) i← `
(3) while i < `+ 1 do

// P [s..i) is self-maximal and p = per(P [s..i))
(4) if P [i− p] > P [i] then
(5) i← i− ((i− s) mod p)
(6) s← i
(7) p← 1
(8) else if P [i− p] < P [i] then
(9) p← i− s+ 1

(10) i← i+ 1
(11) return (`+ 1, s, p)

99

As the final piece of the Crochemore algorithm, the following result show
how to use the maximal suffix information to obtain information about the
periodicity of the full string.

Lemma 2.25: Let S[0..m) be a string and let S[s..m) = MS(S) and
p = per(MS(S)).

• S is 3-periodic if and only if p ≤ m/3 and S[0..s) = S[p..p+ s).

• If S is 3-periodic, then per(S) = p.

The algorithm is given on the next slide.

• Time complexity is O(n). (Proof omitted.)

• It uses only a constant number of integer variables in addition to the
strings P and T .

• Works on ordered alphabet.

Crochemore is not competitive in practice. However, there are situations,
where the pattern can be very long and the space complexity is more
important than speed.
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Algorithm 2.26: Crochemore

Input: strings T [0..n) (text) and P [0..m) (pattern).
Output: position of the first occurrence of P in T

(1) j ← `← p← s← 0
(2) while j +m ≤ n do
(3) while j + ` < n and ` < m and T [j + `] = P [`] do
(4) (`, s, p)← Update-MS(P, `, s, p)

// ` = lcp(P, T [j..j +m))
(5) if ` = m then return j

// MS(P [0..`)) = P [s..`) and p = per(P [s..`))
(6) if p ≤ `/3 and P [0..s) = P [p..p+ s) then

// per(P [0..`)) = p
(7) j ← j + p
(8) `← `− p
(9) else // per(P [0..`)) > `/3

(10) j ← j + b`/3c+ 1
(11) (`, s, p)← (0,0,0)
(12) return S
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Aho–Corasick

Given a text T and a set P = {P1.P2, . . . , Pk} of patterns, the multiple exact
string matching problem asks for the occurrences of all the patterns in the
text. The Aho–Corasick algorithm is an extension of the Morris–Pratt
algorithm for multiple exact string matching.

Aho–Corasick uses the trie trie(P) as an automaton and augments it with a
failure function similar to the Morris-Pratt failure function.

Example 2.27: Aho–Corasick automaton for P = {he, she, his, hers}.
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Algorithm 2.28: Aho–Corasick
Input: text T , pattern set P = {P1, P2, . . . , Pk}.
Output: all pairs (i, j) such that Pi occurs in T ending at j.

(1) (root, child(), fail(),patterns())← Construct-AC-Automaton(P)
(2) v ← root
(3) for j ← 0 to n− 1 do
(4) while child(v, T [j]) = ⊥ do v ← fail(v)
(5) v ← child(v, T [j])
(6) for i ∈ patterns(v) do output (i, j)

Let Sv denote the string that node v represents.

• root is the root and child() the child function of the trie.

• fail(v) = u such that Su is the longest proper suffix of Sv represented by
any trie node u.

• patterns(v) is the set of pattern indices i such that Pi is a suffix of Sv.

At each stage, the algorithm computes the node v such that Sv is the
longest suffix of T [0..j] represented by any node.
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Algorithm 2.29: Construct-AC-Automaton
Input: pattern set P = {P1, P2, . . . , Pk}.
Output: AC automaton: root, child(), fail() and patterns().

(1) Create new node root
(2) for i← 1 to k do
(3) v ← root; j ← 0
(4) while child(v, Pi[j]) 6= ⊥ do
(5) v ← child(v, Pi[j]); j ← j + 1
(6) while j < |Pi| do
(7) Create new node u
(8) child(v, Pi[j])← u
(9) v ← u; j ← j + 1

(10) patterns(v)← {i}
(11) (fail(),patterns())← Compute-AC-Fail(root, child(),patterns())
(12) return (root, child(), fail(),patterns())

Lines (3)–(10) form the standard trie insertion (Algorithm 1.2).

• Line (10) marks v as a representative of Pi.

• The creation of a new node v initializes patterns(v) to ∅
(in addition to initializing child(v, c) to ⊥ for all c ∈ Σ).
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Algorithm 2.30: Compute-AC-Fail
Input: AC trie: root, child() and patterns()
Output: AC failure function fail() and updated patterns()

(1) Create new node fallback
(2) for c ∈ Σ do child(fallback, c)← root
(3) fail(root)← fallback
(4) queue← {root}
(5) while queue 6= ∅ do
(6) u← popfront(queue)
(7) for c ∈ Σ such that child(u, c) 6= ⊥ do
(8) v ← child(u, c)
(9) w ← fail(u)

(10) while child(w, c) = ⊥ do w ← fail(w)
(11) fail(v)← child(w, c)
(12) patterns(v)← patterns(v) ∪ patterns(fail(v))
(13) pushback(queue, v)
(14) return (fail(),patterns())

The algorithm does a breath first traversal of the trie. This ensures that
correct values of fail() and patterns() are already computed when needed.
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fail(v) is correctly computed on lines (8)–(11):

• The nodes that represent suffixes of Sv that are exactly
fail∗(v) = {v, fail(v), fail(fail(v)), . . . , root}.

• Let u = parent(v) and child(u, c) = v. Then Sv = Suc and a string S is a
suffix of Su iff Sc is suffix of Sv. Thus for any node w

– If w ∈ fail∗(v), then parent(fail(v)) ∈ fail∗(u).

– If w ∈ fail∗(u) and child(w, c) 6= ⊥, then child(w, c) ∈ fail∗(v).

• Therefore, fail(v) = child(w, c), where w is the first node in fail∗(u)
other than u such that child(w, c) 6= ⊥.

patterns(v) is correctly computed on line (12):

patterns(v) = {i | Pi is a suffix of Sv}
= {i | Pi = Sw and w ∈ fail∗(v)}
= {i | Pi = Sv} ∪ patterns(fail(v))
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Assuming σ is constant:

• The search time is O(n).

• The space complexity is O(m), where m = ||P||.
– Implementation of patterns() requires care (exercise).

• The preprocessing time is O(m), where m = ||P||.
– The only non-trivial issue is the while-loop on line (10).

– Let root, v1, v2, . . . , v` be the nodes on the path from root to a node
representing a pattern Pi. Let wj = fail(vj) for all j. Let depth(v) be
the depth of a node v (depth(root) = 0).

– When processing vj and computing wj = fail(vj), we have
depth(wj) = depth(wj−1) + 1 before line (10) and
depth(wj) ≤ depth(wj−1) + 1− tj after line (10), where tj is the
number of rounds in the while-loop.

– Thus, the total number of rounds in the while-loop when processing
the nodes v1, v2, . . . , v` is at most ` = |Pi|, and thus over the whole
algorithm at most ||P||.

The analysis when σ is not constant is left as an exercise.
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Summary: Exact String Matching

Exact string matching is a fundamental problem in stringology. We have
seen several different algorithms for solving the problem.

The properties of the algorithms vary with respect to worst case time
complexity, average case time complexity, type of alphabet
(ordered/integer) and even space complexity.

The algorithms use a wide range of completely different techniques:

• There exists numerous algorithms for exact string matching but almost
all them are based on these techniques.

• Many of the techniques can be adapted to other problems. All of the
techniques have some uses in practice too.
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