Algorithm 2.30: Compute-AC-Fail fail(v) is correctly computed on lines (8)—(11):
Input: AC trie: root, child() and patterns()

Output: AC failure function fail() and updated patterns() e The nodes that represent suffixes of S, that are exactly
(1) Create new node fallback fail*(v) = {v, fail(v), fail(fail(v)), ..., root}.
(2) for c € X do child(fallback,c) <+ root
(3) fail(root) < fallback e Let u = parent(v) and child(u,c) =wv. Then S, = S,c and a string S is a
(4) queue < {root} suffix of S, iff Sc is suffix of S,. Thus for any node w
EZ; Wh”euq:egg;?rgni?queue) — If w € fail*(v), then parent(fail(v)) € fail*(u).
€] for c € = such that child(u,c) # L do — If w € fail*(u) and child(w,c) # L, then child(w,c) € fail(v).
(8) v < child(u, c)
(9) w < fail(u) o Therefore, fail(v) = child(w,c), where w is the first node in faif(u)
(10) while child(w,c) = L do w <« fail(w) other than u such that child(w,c) # L.
(11) fail(v) « child(w, c)
(12) patterns(v) < patterns(v) U patterns(fail(v)) patterns(v) is correctly computed on line (12):
(13) pushback(queue, v)
(14) return (fail(), patterns()) patterns(v) = {i | P; is a suffix of S,}

={i| P, =S, and fail*
The algorithm does a breath first traversal of the trie. This ensures that {Z_ | Sw and w € fai (1‘))}
correct values of fail() and patterns() are already computed when needed. = {i| P = S,} U patterns(fail(v))

105 106

Assuming o is constant:

e The search time is O(n).

e The space complexity is O(m), where m = ||P||. Summary: Exact String Matching
— Implementation of patterns() requires care (exercise). Exact string matching is a fundamental problem in stringology. We have
e The preprocessing time is O(m), where m = ||P||. seen several different algorithms for solving the problem.

— The only non-trivial issue is the while-loop on line (10). The properties of the algorithms vary with respect to worst case time
complexity, average case time complexity, type of alphabet

— Let root,vi,v2,...,v, be the nodes on the path from root to a node (ordered/integer) and even space complexity

representing a pattern P,. Let w; = fail(v;) for all j. Let depth(v) be
the depth of a node v (depth(root) = 0).

— When processing v; and computing w; = fail(v;), we have

The algorithms use a wide range of completely different techniques:

depth(w;) = depth(w;-1) + 1 before line (10) and e There exists numerous algorithms for exact string matching but almost
depth(w;) < depth(w;-1) + 1 — ¢; after line (10), where ¢; is the all them are based on these techniques.
number of rounds in the while-loop.

— Thus, the total number of rounds in the while-loop when processing e Many of the techniques can be adapted to other problems. All of the
the nodes v, va,..., v is at most ¢ = |P|, and thus over the whole techniques have some uses in practice too.

algorithm at most ||P||.

The analysis when o is not constant is left as an exercise.
107 108

Edit distance

The edit distance ed(A, B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

3. Approximate String Matching S Substitution of a single character with another character.

I Insertion of a single character.
Often in applications we want to search a text for something that is similar

to the pattern but not necessarily exactly the same. D Deletion of a single character.

To formalize this problem, we have to specify what does “similar’ mean. Example 3.1: Let A = Lewensteinn and B = Levenshtein. Then
This can be done by defining a similarity or a distance measure. ed(A,B) = 3.
A natural and popular distance measure for strings is the edit distance, also The set of edit operations can be described

known as the Levenshtein distance.
with an edit sequence: NNSNNNINNNND
or with an alignment: Lewens-teinn
Levenshtein-

In the edit sequence, N means No edit.

There are many variations and extension of the edit distance, for example:

e Hamming distance allows only the subtitution operation. Computing Edit Distance

e Damerau-Levenshtein distance adds an edit operation: Given two strings A[1..m] and B[1l..n], define the values d;; with the
T Transposition swaps two adjacent characters. recurrence:
e With weighted edit distance, each operation has a cost or weight, doo = 0,

which can be other than one. dio=1i, 1<i<m,

e Allow insertions and deletions (indels) of factors at a cost that is lower do; =74, 1<j<n, and
than the sum of character indels. S T o=))
di—1,-1 + 6(Ald], B[5])

We will focus on the basic Levenshtein distance. dij = min di1;+1 1<i<m,1<j<n,
Levenshtein distance has the following two useful properties, which are not dij-1+1
shared by all variations (exercise):
where
e Levenshtein distance is a metric. . oy [1 if A[i] # B[j]
s su) ={ 5 i 40 Z PY)

o If ed(A, B) = k, there exists an edit sequence and an alignment with k
edit operations, but no edit sequence or alignment with less than k edit Theorem 3.2: d;; = ed(A[l..i], B[1..5]) forall 0 <i<m, 0<j <n.
operations. An edit sequence and an alignment with ed(A4, B) edit In particular, dm, = ed(A, B). - o
operations is called optimal.

111 112

Example 3.3: A = ballad, B = handball

d

ap HHP o
OO WN PO
OUE WN R R
G WN RN N
GOD W NN W W B
SOA W W w s e
OB DD D T
(<20 S I NG B Y)
oo oo N
oo ol o N 0|

ed(A, B) = dmn = deg = 6.

113

The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 3.4: Edit distance
Input: strings A[1..m] and B[1l..n]
Output: ed(A, B)
(1) for i+ 0 to m do djp « ¢
(2) for j <« 1ton do doj « j
(3) for j+ 1 ton do
(4) for i < 1 to m do
(5) dij < min{di_1,j-1 + 6(A[i], Bj]), di-1,; + 1,d; j-1 + 1}
(6) return dmy,

The time and space complexity is O(mn).

115

Algorithm 3.5: Edit distance in O(m) space
Input: strings A[l..m] and B[1..n]
Output: ed(A, B)

(1) for i<+ 0 to m do C[i] « i

(2) for j<«1tondo

3 c+ C[0]; C[0] +j

(4) for i + 1 to m do

(5) d « min{c+ 6(A[i], B[j]),C[i — 1] + 1,C[i] + 1}
(6) ¢+ C[i]

@) Cli] + d

(8) return C[m]

e Note that because ed(A, B) = ed(B, A) (exercise), we can assume that
m < n.

117

Example 3.6: A = ballad, B = handball

d h a n d 1 1
0=1==2=3=4—-35->6—>7—>28
bl | X N N N Y
1 1234 4 -5 56 —>7
al | N | X X
2 2 1=2-=23—=4 4 +5—=6
1 L M AN A\ N AVENARN N
3 3 2 2=3—=+4-=>5 4 =+ 5
1 L Ml JUNR VIR X N VRN
4 4 3 3 3=4-5 5 4
Y IR VIR VIR VIR VIR X |
5 5 4 4 4 4 4 =5 5
al |~ | R VAN VIR VA N |
6 6 5 5 4 -5 5 5=06

There are 7 paths from (0,0) to (6,8) corresponding to 7 different optimal
edit sequences and alignments, including the following three:

IIIINNNNDD SNISSNIS SNSSINSI
----ballad ba-lla-d ball-ad-
handball-- handball handball

119

Proof of Theorem 3.2. We use induction with respect to i + j. For
brevity, write A; = A[1..q] and B; = B[1..5].

Basis: doo = 0 = ed(e, €)
dio = i = ed(Aj, €)
doj = j = ed(e, B;)

(i deletions)
(j insertions)

Induction step: We show that the claim holds for d;;, 1 <i<m,1 <j <n.
By induction assumption, d,; = ed(A,, B;) when p+¢q < i+ j.

Let E;; be an optimal edit sequence with the cost ed(A;, Bj). We have three
cases depending on what the last operation symbol in E;; is:

N or S: Eij = Ejfl‘],lN or Eij = El;l_jfls and
ed(A;, Bj) = ed(Ai-1, Bj-1) +0(A[], B[j]) = di-1,j-1+ 6 (Ali], Blj]).

I. E;;= 1‘1]‘,11 and ed(Ai,B]‘) = ed(A“Bj,l) + 1= dz7]‘,1 + 1.
D: E;, = 1‘71ij and ed(Az,B]’) = ed(Aifl,Bj) -‘r 1= di—Lj + 1.

One of the cases above is always true, and since the edit sequence is
optimal, it must be one with the minimum cost, which agrees with the
definition of d;;. O

114

The space complexity can be reduced by noticing that each column of the
matrix (d;;) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing d;;, we only need to store
the bottom part of column j — 1 and the already computed top part of

column j. We store these in an array C[0..m] and variables ¢ and d as shown
below:

C[0..m]
doj-1 | do; do,
c
di—1j-1 | dic1j : di—1,; d
dij1 dij dij-1 dij
dmj-1 | dm; dm,j-1

116

It is also possible to find optimal edit sequences and alignments from the
matrix d;.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

o If A[i] = B[j] and dij = dij—1,-1, there is an edge (i — 1,5 — 1) — (4,5)
labelled with N.

If Ali] # B[j] and d;; = d;—1,j-1 + 1, there is an edge (i — 1,5 — 1) — (4,5)
labelled with S.

o If djj =d; ;-1 + 1, there is an edge (i,j — 1) — (4,7) labelled with L.
e If djj =d;—1;+ 1, there is an edge (i —1,j) — (4,7) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.

118

