
Algorithm 2.30: Compute-AC-Fail
Input: AC trie: root, child() and patterns()
Output: AC failure function fail() and updated patterns()

(1) Create new node fallback
(2) for c ∈ Σ do child(fallback, c)← root
(3) fail(root)← fallback
(4) queue← {root}
(5) while queue 6= ∅ do
(6) u← popfront(queue)
(7) for c ∈ Σ such that child(u, c) 6= ⊥ do
(8) v ← child(u, c)
(9) w ← fail(u)

(10) while child(w, c) = ⊥ do w ← fail(w)
(11) fail(v)← child(w, c)
(12) patterns(v)← patterns(v) ∪ patterns(fail(v))
(13) pushback(queue, v)
(14) return (fail(),patterns())

The algorithm does a breath first traversal of the trie. This ensures that
correct values of fail() and patterns() are already computed when needed.

105

fail(v) is correctly computed on lines (8)–(11):

• The nodes that represent suffixes of Sv that are exactly
fail∗(v) = {v, fail(v), fail(fail(v)), . . . , root}.

• Let u = parent(v) and child(u, c) = v. Then Sv = Suc and a string S is a
suffix of Su iff Sc is suffix of Sv. Thus for any node w

– If w ∈ fail∗(v), then parent(fail(v)) ∈ fail∗(u).

– If w ∈ fail∗(u) and child(w, c) 6= ⊥, then child(w, c) ∈ fail∗(v).

• Therefore, fail(v) = child(w, c), where w is the first node in fail∗(u)
other than u such that child(w, c) 6= ⊥.

patterns(v) is correctly computed on line (12):

patterns(v) = {i | Pi is a suffix of Sv}
= {i | Pi = Sw and w ∈ fail∗(v)}
= {i | Pi = Sv} ∪ patterns(fail(v))

106

Assuming σ is constant:

• The search time is O(n).

• The space complexity is O(m), where m = ||P||.
– Implementation of patterns() requires care (exercise).

• The preprocessing time is O(m), where m = ||P||.
– The only non-trivial issue is the while-loop on line (10).

– Let root, v1, v2, . . . , v` be the nodes on the path from root to a node
representing a pattern Pi. Let wj = fail(vj) for all j. Let depth(v) be
the depth of a node v (depth(root) = 0).

– When processing vj and computing wj = fail(vj), we have
depth(wj) = depth(wj−1) + 1 before line (10) and
depth(wj) ≤ depth(wj−1) + 1− tj after line (10), where tj is the
number of rounds in the while-loop.

– Thus, the total number of rounds in the while-loop when processing
the nodes v1, v2, . . . , v` is at most ` = |Pi|, and thus over the whole
algorithm at most ||P||.

The analysis when σ is not constant is left as an exercise.

107

Summary: Exact String Matching

Exact string matching is a fundamental problem in stringology. We have
seen several different algorithms for solving the problem.

The properties of the algorithms vary with respect to worst case time
complexity, average case time complexity, type of alphabet
(ordered/integer) and even space complexity.

The algorithms use a wide range of completely different techniques:

• There exists numerous algorithms for exact string matching but almost
all them are based on these techniques.

• Many of the techniques can be adapted to other problems. All of the
techniques have some uses in practice too.

108

3. Approximate String Matching

Often in applications we want to search a text for something that is similar
to the pattern but not necessarily exactly the same.

To formalize this problem, we have to specify what does “similar” mean.
This can be done by defining a similarity or a distance measure.

A natural and popular distance measure for strings is the edit distance, also
known as the Levenshtein distance.

109

Edit distance

The edit distance ed(A,B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

S Substitution of a single character with another character.

I Insertion of a single character.

D Deletion of a single character.

Example 3.1: Let A = Lewensteinn and B = Levenshtein. Then
ed(A,B) = 3.

The set of edit operations can be described

with an edit sequence: NNSNNNINNNND
or with an alignment: Lewens-teinn

Levenshtein-

In the edit sequence, N means No edit.

110

There are many variations and extension of the edit distance, for example:

• Hamming distance allows only the subtitution operation.

• Damerau–Levenshtein distance adds an edit operation:
T Transposition swaps two adjacent characters.

• With weighted edit distance, each operation has a cost or weight,
which can be other than one.

• Allow insertions and deletions (indels) of factors at a cost that is lower
than the sum of character indels.

We will focus on the basic Levenshtein distance.

Levenshtein distance has the following two useful properties, which are not
shared by all variations (exercise):

• Levenshtein distance is a metric.

• If ed(A,B) = k, there exists an edit sequence and an alignment with k
edit operations, but no edit sequence or alignment with less than k edit
operations. An edit sequence and an alignment with ed(A,B) edit
operations is called optimal.

111

Computing Edit Distance

Given two strings A[1..m] and B[1..n], define the values dij with the
recurrence:

d00 = 0,

di0 = i, 1 ≤ i ≤ m,
d0j = j, 1 ≤ j ≤ n, and

dij = min





di−1,j−1 + δ(A[i], B[j])

di−1,j + 1

di,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n,

where

δ(A[i], B[j]) =

{
1 if A[i] 6= B[j]
0 if A[i] = B[j]

Theorem 3.2: dij = ed(A[1..i], B[1..j]) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.
In particular, dmn = ed(A,B).

112

Example 3.3: A = ballad, B = handball

d h a n d b a l l

0 1 2 3 4 5 6 7 8
b 1 1 2 3 4 4 5 6 7
a 2 2 1 2 3 4 4 5 6
l 3 3 2 2 3 4 5 4 5
l 4 4 3 3 3 4 5 5 4
a 5 5 4 4 4 4 4 5 5
d 6 6 5 5 4 5 5 5 6

ed(A,B) = dmn = d6,8 = 6.

113

Proof of Theorem 3.2. We use induction with respect to i+ j. For
brevity, write Ai = A[1..i] and Bj = B[1..j].

Basis: d00 = 0 = ed(ε, ε)

di0 = i = ed(Ai, ε) (i deletions)

d0j = j = ed(ε, Bj) (j insertions)

Induction step: We show that the claim holds for dij, 1 ≤ i ≤ m,1 ≤ j ≤ n.
By induction assumption, dpq = ed(Ap, Bq) when p+ q < i+ j.

Let Eij be an optimal edit sequence with the cost ed(Ai, Bj). We have three
cases depending on what the last operation symbol in Eij is:

N or S: Eij = Ei−1,j−1N or Eij = Ei−1,j−1S and
ed(Ai, Bj) = ed(Ai−1, Bj−1)+δ(A[i], B[j]) = di−1,j−1 +δ(A[i], B[j]).

I: Eij = Ei,j−1I and ed(Ai, Bj) = ed(Ai, Bj−1) + 1 = di,j−1 + 1.

D: Eij = Ei−1,jD and ed(Ai, Bj) = ed(Ai−1, Bj) + 1 = di−1,j + 1.

One of the cases above is always true, and since the edit sequence is
optimal, it must be one with the minimum cost, which agrees with the
definition of dij. �

114

The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 3.4: Edit distance
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do di0 ← i
(2) for j ← 1 to n do d0j ← j
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) dij ← min{di−1,j−1 + δ(A[i], B[j]), di−1,j + 1, di,j−1 + 1}
(6) return dmn

The time and space complexity is O(mn).

115

The space complexity can be reduced by noticing that each column of the
matrix (dij) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing dij, we only need to store
the bottom part of column j − 1 and the already computed top part of
column j. We store these in an array C[0..m] and variables c and d as shown
below:

d0,j−1

dm,j−1

di−1,j

d0,j

dm,j

di−1,j

d0,j

di−1,j−1

c

di,j di,j−1di,j−1

dm,j−1

di,j

ddi−1,j−1

C[0..m]

116

Algorithm 3.5: Edit distance in O(m) space
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do C[i]← i
(2) for j ← 1 to n do
(3) c← C[0]; C[0]← j
(4) for i← 1 to m do
(5) d← min{c+ δ(A[i], B[j]), C[i− 1] + 1, C[i] + 1}
(6) c← C[i]
(7) C[i]← d
(8) return C[m]

• Note that because ed(A,B) = ed(B,A) (exercise), we can assume that
m ≤ n.

117

It is also possible to find optimal edit sequences and alignments from the
matrix dij.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

• If A[i] = B[j] and dij = di−1,j−1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with N.

• If A[i] 6= B[j] and dij = di−1,j−1 + 1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with S.

• If dij = di,j−1 + 1, there is an edge (i, j − 1)→ (i, j) labelled with I.

• If dij = di−1,j + 1, there is an edge (i− 1, j)→ (i, j) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.

118

Example 3.6: A = ballad, B = handball

d h a n d b a l l

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4 → 5 → 6 → 7 → 8
b

→ ⇒ → → → ⇒
1 1 → 2 → 3 → 4 4 → 5 → 6 → 7

a

→ → → ⇒ ⇒
2 2 1 ⇒ 2 → 3 → 4 4 → 5 → 6

l

→ → → → ⇒ ⇒ → → → ⇒ →
3 3 2 2 ⇒ 3 → 4 → 5 4 → 5

l

→ → → → → → ⇒ ⇒ → → → ⇒
4 4 3 3 3 ⇒ 4 → 5 5 4

a

→ → → → → → → → → → ⇒ ⇒

5 5 4 4 4 4 4 ⇒ 5 5
d

→ → → → → → → → → → → ⇒ ⇒ ⇒

6 6 5 5 4 → 5 5 5 ⇒ 6

There are 7 paths from (0,0) to (6,8) corresponding to 7 different optimal
edit sequences and alignments, including the following three:

IIIINNNNDD SNISSNIS SNSSINSI
----ballad ba-lla-d ball-ad-
handball-- handball handball

119

