
Example 3.3: A = ballad, B = handball

d h a n d b a l l

0 1 2 3 4 5 6 7 8
b 1 1 2 3 4 4 5 6 7
a 2 2 1 2 3 4 4 5 6
l 3 3 2 2 3 4 5 4 5
l 4 4 3 3 3 4 5 5 4
a 5 5 4 4 4 4 4 5 5
d 6 6 5 5 4 5 5 5 6

ed(A,B) = dmn = d6,8 = 6.

113

Proof of Theorem 3.2. We use induction with respect to i+ j. For
brevity, write Ai = A[1..i] and Bj = B[1..j].

Basis: d00 = 0 = ed(ε, ε)

di0 = i = ed(Ai, ε) (i deletions)

d0j = j = ed(ε, Bj) (j insertions)

Induction step: We show that the claim holds for dij, 1 ≤ i ≤ m,1 ≤ j ≤ n.
By induction assumption, dpq = ed(Ap, Bq) when p+ q < i+ j.

Let Eij be an optimal edit sequence with the cost ed(Ai, Bj). We have three
cases depending on what the last operation symbol in Eij is:

N or S: Eij = Ei−1,j−1N or Eij = Ei−1,j−1S and
ed(Ai, Bj) = ed(Ai−1, Bj−1)+δ(A[i], B[j]) = di−1,j−1 +δ(A[i], B[j]).

I: Eij = Ei,j−1I and ed(Ai, Bj) = ed(Ai, Bj−1) + 1 = di,j−1 + 1.

D: Eij = Ei−1,jD and ed(Ai, Bj) = ed(Ai−1, Bj) + 1 = di−1,j + 1.

One of the cases above is always true, and since the edit sequence is
optimal, it must be one with the minimum cost, which agrees with the
definition of dij. �

114

The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 3.4: Edit distance
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do di0 ← i
(2) for j ← 1 to n do d0j ← j
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) dij ← min{di−1,j−1 + δ(A[i], B[j]), di−1,j + 1, di,j−1 + 1}
(6) return dmn

The time and space complexity is O(mn).

115

The space complexity can be reduced by noticing that each column of the
matrix (dij) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing dij, we only need to store
the bottom part of column j − 1 and the already computed top part of
column j. We store these in an array C[0..m] and variables c and d as shown
below:

d0,j−1

dm,j−1

di−1,j

d0,j

dm,j

di−1,j

d0,j

di−1,j−1

c

di,j di,j−1di,j−1

dm,j−1

di,j

ddi−1,j−1

C[0..m]

116

Algorithm 3.5: Edit distance in O(m) space
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do C[i]← i
(2) for j ← 1 to n do
(3) c← C[0]; C[0]← j
(4) for i← 1 to m do
(5) d← min{c+ δ(A[i], B[j]), C[i− 1] + 1, C[i] + 1}
(6) c← C[i]
(7) C[i]← d
(8) return C[m]

• Note that because ed(A,B) = ed(B,A) (exercise), we can assume that
m ≤ n.

117

It is also possible to find optimal edit sequences and alignments from the
matrix dij.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

• If A[i] = B[j] and dij = di−1,j−1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with N.

• If A[i] 6= B[j] and dij = di−1,j−1 + 1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with S.

• If dij = di,j−1 + 1, there is an edge (i, j − 1)→ (i, j) labelled with I.

• If dij = di−1,j + 1, there is an edge (i− 1, j)→ (i, j) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.

118

Example 3.6: A = ballad, B = handball

d h a n d b a l l

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4 → 5 → 6 → 7 → 8
b

→ ⇒ → → → ⇒
1 1 → 2 → 3 → 4 4 → 5 → 6 → 7

a

→ → → ⇒ ⇒
2 2 1 ⇒ 2 → 3 → 4 4 → 5 → 6

l

→ → → → ⇒ ⇒ → → → ⇒ →
3 3 2 2 ⇒ 3 → 4 → 5 4 → 5

l

→ → → → → → ⇒ ⇒ → → → ⇒
4 4 3 3 3 ⇒ 4 → 5 5 4

a

→ → → → → → → → → → ⇒ ⇒

5 5 4 4 4 4 4 ⇒ 5 5
d

→ → → → → → → → → → → ⇒ ⇒ ⇒

6 6 5 5 4 → 5 5 5 ⇒ 6

There are 7 paths from (0,0) to (6,8) corresponding to 7 different optimal
edit sequences and alignments, including the following three:

IIIINNNNDD SNISSNIS SNSSINSI
----ballad ba-lla-d ball-ad-
handball-- handball handball

119

Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 3.7: Given a text T [1..n], a pattern P [1..m] and an integer k ≥ 0,
report all positions j ∈ [1..m] such that ed(P, T (j − `...j]) ≤ k for some ` ≥ 0.

The factor T (j − `...j] is called an approximate occurrence of P .

There can be multiple occurrences of different lengths ending at the same
position j, but usually it is enough to report just the end positions.
We ask for the end position rather than the start position because that is
more natural for the algorithms.

120



Define the values gij with the recurrence:

g0j = 0, 0 ≤ j ≤ n,
gi0 = i, 1 ≤ i ≤ m, and

gij = min





gi−1,j−1 + δ(P [i], T [j])

gi−1,j + 1

gi,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n.

Theorem 3.8: For all 0 ≤ i ≤ m, 0 ≤ j ≤ n:

gij = min{ed(P [1..i], T (j − `...j]) | 0 ≤ ` ≤ j} .
In particular, j is an ending position of an approximate occurrence if and
only if gmj ≤ k.

121

Proof. We use induction with respect to i+ j.

Basis:
g00 = 0 = ed(ε, ε)

g0j = 0 = ed(ε, ε) = ed(ε, T (j − 0..j]) (min at ` = 0)

gi0 = i = ed(P [1..i], ε) = ed(P [1..i], T (0− 0..0]) (0 ≤ ` ≤ j = 0)

Induction step: Essentially the same as in the proof of Theorem 3.2.

122

Example 3.9: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m ⇒
1 1 1 0 1 1 1 1 1 1

a ⇒
2 2 2 1 0 1 2 2 2 2

t

⇒

3 3 3 2 1 1 2 3 3 3
c ⇒

4 4 4 3 2 1 2 3 4 4
h ⇒

5 5 5 4 3 2 1 2 3 4

One occurrence ending at position 6.

123

Algorithm 3.10: Approximate string matching
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(6) if qmj ≤ k then output j

• Time and space complexity is O(mn) on ordered alphabet.

• The space complexity can be reduced to O(m) by storing only one
column as in Algorithm 3.5.

124

Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gij):

A diagonal d, −m ≤ d ≤ n, consists of the cells gij with j − i = d.
Every diagonal in (gij) is monotonically non-decreasing.

Example 3.11: Diagonals -3 and 2.

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m –

1 1 1 0 1 1 1 1 1 1
a –

2 2 2 1 0 1 2 2 2 2
t –

3 3 3 2 1 1 2 3 3 3
c – –

4 4 4 3 2 1 2 3 4 4
h – –

5 5 5 4 3 2 1 2 3 4

125

More specifically, we have the following property.

Lemma 3.12: For every i ∈ [1..m] and every j ∈ [1..n],
gij = gi−1,j−1 or gij = gi−1,j−1 + 1.

Proof. By definition, gij ≤ gi−1,j−1 + δ(P [i], T [j]) ≤ gi−1,j−1 + 1. We show
that gij ≥ gi−1,j−1 by induction on i+ j.

The induction assumption is that gpq ≥ gp−1,q−1 when p ∈ [1..m], q ∈ [1..n] and
p+ q < i+ j. At least one of the following holds:

1. gij = gi−1,j−1 + δ(P [i], T [j]). Then gij ≥ gi−1,j−1.

2. gij = gi−1,j + 1 and i > 1. Then

gij = gi−1,j + 1
ind. assump.

≥ gi−2,j−1 + 1
definition
≥ gi−1,j−1

3. gij = gi,j−1 + 1 and j > 1. Then

gij = gi,j−1 + 1
ind. assump.

≥ gi−1,j−2 + 1
definition
≥ gi−1,j−1

4. gij = gi−1,j + 1 and i = 1. Then gij = 0 + 1 > 0 = gi−1,j−1.

5. gij = gi,j−1 + 1 and j = 1. Then gij = i+ 1 = (i− 1) + 2 = gi−1,j−1 + 2,
which cannot be true. Thus this case can never happen. �

126

We can reduce computation using diagonal monotonicity:

• Whenever the value on a diagonal d grows larger than k, we can discard
d from consideration, because we are only interested in values at most k
on the row m.

• We keep track of the smallest undiscarded diagonal d. Each column is
computed only up to diagonal d.

Example 3.13: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m
1 1 1 0 1 1 1 1 1 1

a
2 2 1 0 1 2 2 2 2

t
1 1 2 3

c
1 2 3

h
1 2

127

The position of the smallest undiscarded diagonal on the current column is
kept in a variable top.

Algorithm 3.14: Ukkonen’s cut-off algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to min(k,m) do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) top← min(k + 1,m)
(4) for j ← 1 to n do
(5) for i← 1 to top do
(6) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(7) while gtop,j > k do top← top− 1
(8) if top = m then output j
(9) else top← top+ 1

128



The time complexity is proportional to the computed area in the
matrix (gij).

• The worst case time complexity is still O(mn) on ordered alphabet.

• The average case time complexity is O(kn). The proof is not trivial.

There are many other algorithms based on diagonal monotonicity. Some of
them achieve O(kn) worst case time complexity.

129

Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix (gij), we store differences between adjacent cells:

Vertical delta: ∆vij = gij − gi−1,j

Horizontal delta: ∆hij = gij − gi,j−1

Diagonal delta: ∆dij = gij − gi−1,j−1

Because gi0 = i ja g0j = 0,

gij = ∆v1j + ∆v2j + · · ·+ ∆vij

= i+ ∆hi1 + ∆hi2 + · · ·+ ∆hij

Because of diagonal monotonicity, ∆dij ∈ {0,1} and it can be stored in one
bit. By the following result, ∆hij and ∆vij can be stored in two bits.

Lemma 3.15: ∆hij,∆vij ∈ {−1,0,1} for every i, j that they are defined for.

The proof is left as an exercise.

130

Example 3.16: ‘–’ means −1, ‘=’ means 0 and ‘+’ means +1

r e m a c h i n e
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

m + + + + + = = + + + + + + + + + + + +
1 = 1 = 1 – 0 + 1 = 1 = 1 = 1 = 1 = 1

a + + + + + = + = – = = + + + + + + + +
2 = 2 = 2 – 1 – 0 + 1 + 2 = 2 = 2 = 2

t + + + + + = + = + + = + = + + + + + +
3 = 3 = 3 – 2 – 1 = 1 + 2 + 3 = 3 = 3

c + + + + + = + = + = = + = + = + + + +
4 = 4 = 4 – 3 – 2 – 1 + 2 + 3 + 4 = 4

h + + + + + = + = + = + = – = – = – = =
5 = 5 = 5 – 4 – 3 – 2 – 1 + 2 + 3 + 4

131

In the standard computation of a cell:

• Input is gi−1,j, gi−1,j−1, gi,j−1 and δ(P [i], T [j]).

• Output is gij.

In the corresponding bitparallel computation:

• Input is ∆vin = ∆vi,j−1, ∆hin = ∆hi,j−1 and Eqij = 1− δ(P [i], T [j]).

• Output is ∆vout = ∆vi,j and ∆hout = ∆hi,j.

gi−1,j−1
∆hin

−−−−−−−−→ gi−1,j

∆vin

y

y∆vout

gi,j−1 −−−−−−−−−→
∆hout

gij

The algorithm does not compute the ∆d values but they are useful in the
proofs.

132

The computation rule is defined by the following result.

Lemma 3.17: If Eq = 1 or ∆vin = −1 or ∆hin = −1,
then ∆d = 0, ∆vout = −∆hin and ∆hout = −∆vin.
Otherwise ∆d = 1, ∆vout = 1−∆hin and ∆hout = 1−∆vin.

Proof. We can write the recurrence for gij as

gij = min{gi−1,j−1 + δ(P [i], T [j]), gi,j−1 + 1, gi−1,j + 1}
= gi−1,j−1 + min{1− Eq,∆vin + 1,∆hin + 1}.

Then ∆d = gij − gi−1,j−1 = min{1− Eq,∆vin + 1,∆hin + 1}
which is 0 if Eq = 1 or ∆vin = −1 or ∆hin = −1 and 1 otherwise.

Clearly ∆d = ∆vin + ∆hout = ∆hin + ∆vout.
Thus ∆vout = ∆d−∆hin and ∆hout = ∆d−∆vin. �

133

To enable bitparallel operation, we need two changes:

• The ∆v and ∆h values are “trits” not bits. We encode each of them
with two bits as follows:

Pv =

{
1 if ∆v = +1
0 otherwise

Mv =

{
1 if ∆v = −1
0 otherwise

Ph =

{
1 if ∆h = +1
0 otherwise

Mh =

{
1 if ∆h = −1
0 otherwise

Then

∆v = Pv −Mv

∆h = Ph−Mh

• We replace arithmetic operations (+, −, min) with Boolean (logical)
operations (∧, ∨, ¬).

134

Now the computation rules can be expressed as follows.

Lemma 3.18: Pvout = Mhin ∨ ¬(Xv ∨ Phin) Mvout = Phin ∧Xv
Phout = Mvin ∨ ¬(Xh ∨ Pvin) Mhout = Pvin ∧Xh

where Xv = Eq ∨Mvin and Xh = Eq ∨Mhin.

Proof. We show the claim for Pv and Mv only. Ph and Mh are symmetrical.

By Lemma 3.17,

Pvout = (¬∆d ∧Mhin) ∨ (∆d ∧ ¬Phin)

Mvout = (¬∆d ∧ Phin) ∨ (∆d ∧ 0) = ¬∆d ∧ Phin

Because ∆d = ¬(Eq ∨Mvin ∨Mhin) = ¬(Xv ∨Mhin) = ¬Xv ∧ ¬Mhin,

Pvout = ((Xv ∨Mhin) ∧Mhin) ∨ (¬Xv ∧ ¬Mhin ∧ ¬Phin)

= Mhin ∨ ¬(Xv ∨Mhin ∨ Phin)

= Mhin ∨ ¬(Xv ∨ Phin)

Mvout = (Xv ∨Mhin) ∧ Phin = Xv ∧ Phin

All the steps above use just basic laws of Boolean algebra except the last
step, where we use the fact that Mhin and Phin cannot be 1 simultaneously.
�

135

According to Lemma 3.18, the bit representation of the matrix can be
computed as follows.

for i← 1 to m do
Pvi0 ← 1; Mvi0 ← 0

for j ← 1 to n do
Ph0j ← 0; Mh0j ← 0
for i← 1 to m do

Xhij ← Eqij ∨Mhi−1,j

Phij ←Mvi,j−1 ∨ ¬(Xhij ∨ Pvi,j−1)
Mhij ← Pvi,j−1 ∧Xhij

for i← 1 to m do
Xvij ← Eqij ∨Mvi,j−1

Pvij ←Mhi−1,j ∨ ¬(Xvij ∨ Phi−1,j)
Mvij ← Phi−1,j ∧Xvij

This is not yet bitparallel though.

136



To obtain a bitparallel algorithm, the columns Pv∗j, Mv∗j, Xv∗j, Ph∗j, Mh∗j,
Xh∗j and Eq∗j are stored in bitvectors.

Now the second inner loop can be replaced with the code

Xv∗j ← Eq∗j ∨Mv∗,j−1

Pv∗j ← (Mh∗,j << 1) ∨ ¬(Xv∗j ∨ (Ph∗j << 1))
Mv∗j ← (Ph∗j << 1) ∧Xv∗j

A similar attempt with the for first inner loop leads to a problem:

Xh∗j ← Eq∗j ∨ (Mh∗j << 1)
Ph∗j ←Mv∗,j−1 ∨ ¬(Xh∗j ∨ Pv∗,j−1)
Mh∗j ← Pv∗,j−1 ∧Xh∗j

Now the vector Mh∗j is used in computing Xh∗j before Mh∗j itself is
computed! Changing the order does not help, because Xh∗j is needed to
compute Mh∗j.

To get out of this dependency loop, we compute Xh∗j without Mh∗j using
only Eq∗j and Pv∗,j−1 which are already available when we compute Xh∗j.

137

Lemma 3.19: Xhij = ∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1).

Proof. We use induction on i.

Basis i = 1: The right-hand side reduces to Eq1j, because ` = 1. By
Lemma 3.18, Xh1j = Eq1j ∨Mh0j, which is Eq1j because Mh0j = 0 for all j.

Induction step: The induction assumption is that Xhi−1,j is as claimed. Now
we have

∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ (Pvi−1,j−1 ∧ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 2] : Pvx,j−1))

= Eqij ∨ (Pvi−1,j−1 ∧Xhi−1,j) (ind. assump.)

= Eqij ∨Mhi−1,j (Lemma 3.18)

= Xhij (Lemma 3.18)

�

138

At first sight, we cannot use Lemma 3.19 to compute even a single bit in
constant time, not to mention a whole vector Xh∗j. However, it can be
done, but we need more bit operations:

• Let Y denote the xor-operation: 0 Y 1 = 1 Y 0 = 1 and 0 Y 0 = 1 Y 1 = 0.

• A bitvector is interpreted as an integer and we use addition as a bit
operation. The carry mechanism in addition plays a key role. For
example 0001 + 0111 = 1000.

In the following, for a bitvector B, we will write

B = B[1..m] = B[m]B[m− 1] . . . B[1]

The reverse order of the bits reflects the interpretation as an integer.

139

Lemma 3.20: Denote X = Xh∗j, E = Eq∗j, P = Pv∗,j−1 and let
Y = (((E ∧ P ) + P ) Y P ) ∨ E. Then X = Y .

Proof. By Lemma 3.19, X[i] = 1 iff and only if

a) E[i] = 1 or

b) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] = 11 · · ·1.

and X[i] = 0 iff and only if

c) E1...i = 00 · · ·0 or

d) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] 6= 11 · · ·1.

We prove that Y [i] = X[i] in all of these cases:

a) The definition of Y ends with “∨E” which ensures that Y [i] = 1 in this
case.

140

b) The following calculation shows that Y [i] = 1 in this case:

i `

E[` . . . i] =00...01

P [` . . . i] =b1...11

(E ∧ P )[` . . . i] =00...01

((E ∧ P ) + P )[` . . . i] =b̄0...0c

(((E ∧ P ) + P ) Y P )[` . . . i] =11...1c̄

Y = ((((E ∧ P ) + P ) Y P ) ∨ E)[` . . . i] =11...11

where b is the unknown bit P [i], c is the possible carry bit coming from
the summation of bits 1 . . . , `− 1, and b̄ and c̄ are their negations.

c) Because for all bitvectors B, 0 ∧B = 0 ja 0 +B = B, we get
Y = (((0 ∧ P ) + P ) Y P ) ∨ 0 = (P Y P ) ∨ 0 = 0.

d) Consider the calculation in case b). A key point there is that the carry
bit in the summation travels from position ` to i and produces b̄ to
position i. The difference in this case is that at least one bit P [k],
` ≤ k < i, is zero, which stops the carry at position k. Thus
((E ∧ P ) + P )[i] = b and Y [i] = 0.

�
141

As a final detail, we compute the bottom row values gmj using the equalities
gm0 = m ja gmj = gm,j−1 + ∆hmj.

Algorithm 3.21: Myers’ bitparallel algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for c ∈ Σ do B[c]← 0m

(2) for i← 1 to m do B[P [i]][i] = 1
(3) Pv ← 1m; Mv ← 0; g ← m
(4) for j ← 1 to n do
(5) Eq ← B[T [j]]
(6) Xh← (((Eq ∧ Pv) + Pv) Y Pv) ∨ Eq
(7) Ph←Mv ∨ ¬(Xh ∨ Pv)
(8) Mh← Pv ∧Xh
(9) Xv ← Eq ∨Mv

(10) Pv ← (Mh << 1) ∨ ¬(Xv ∨ (Ph << 1))
(11) Mv ← (Ph << 1) ∧Xv
(12) g ← g + Ph[m]−Mh[m]
(13) if g ≤ k then output j

142

On an integer alphabet, when m ≤ w:

• Pattern preprocessing time is O(m+ σ).

• Search time is O(n).

When m > w, we can store each bit vector in dm/we machine words:

• The worst case search time is O(ndm/we).

• Using Ukkonen’s cut-off heuristic, it is possible reduce the average case
search time to O(ndk/we).

143

There are also algorithms based on bitparallel simulation of a
nondeterministic automaton.

Example 3.22: P = pattern, k = 3
a t t e r np

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

no errors

1 error

2 errors

3 errors

• The algorithm of Wu and Manber uses a bit vector for each row. It can
be seen as an extension of Shift-And. The search time complexity is
O(kndm/we).

• The algorithm of Baeza-Yates and Navarro uses a bit vector for each
diagonal, packed into one long bitvector. The search time complexity is
O(ndkm/we).

144


