
Suffix array is much simpler data structure than suffix tree. In particular,
the type and the size of the alphabet are usually not a concern.

• The size on the suffix array is O(n) on any alphabet.

• We will later see that the suffix array can be constructed in the same
asymptotic time it takes to sort the characters of the text.

Suffix array construction algorithms are quite fast in practice too. Probably
the fastest way to construct a suffix tree is to construct a suffix array first
and then use it to construct the suffix tree. (We will see how in a moment.)

Suffix arrays are rarely used alone but are augmented with other arrays and
data structures depending on the application. We will see some of them in
the next slides.

177

Exact String Matching

As with suffix trees, exact string matching in T can be performed by a
prefix search on the suffix array. The answer can be conveniently given as a
contiguous interval SA[b..e) that contains the suffixes with the given prefix.
The interval can be found using string binary search.

• If we have the additional arrays LLCP and RLCP , the result interval
can be computed in O(|P |+ logn) time.

• Without the additional arrays, we have the same time complexity on
average but the worst case time complexity is O(|P | logn).

• We can then count the number of occurrences in O(1) time, list all occ
occurrences in O(occ) time, or list a sample of k occurrences in O(k)
time.

We will later see a quite different method for prefix searching called
backward search.

178

LCP Array

Efficient string binary search uses the arrays LLCP and RLCP . However, for
many applications, the suffix array is augmented with the lcp array of
Definition 1.7 (Lecture 2, slide 21). For all i ∈ [1..n], we store

LCP [i] = lcp(TSA[i], TSA[i−1])

Example 4.8: The LCP array for T = banana$.

i SA[i] LCP [i] TSA[i]
0 6 $
1 5 0 a$
2 3 1 ana$
3 1 3 anana$
4 0 0 banana$
5 4 0 na$
6 2 2 nana$

179

Using the solution of Exercise 3.1 (construction of compact trie from sorted
array and LCP array), the suffix tree can be constructed from the suffix and
LCP arrays in linear time.

However, many suffix tree applications can be solved using the suffix and
LCP arrays directly. For example:

• The longest repeating factor is marked by the maximum value in the
LCP array.

• The number of distinct factors can be compute by the formula

n(n+ 1)

2
+ 1−

n∑

i=1

LCP [i]

since it equals the number of nodes in the uncompact suffix trie, for
which we can use Theorem 1.9.

• Matching statistics of S with respect to T can be computed in linear
time using the generalized suffix array of S and T (i.e., the suffix array
of S£T$) and its LCP array (exercise).

180

LCP Array Construction

The LCP array is easy to compute in linear time using the suffix array SA
and its inverse SA−1. The idea is to compute the lcp values by comparing
the suffixes, but skip a prefix based on a known lower bound for the lcp
value obtained using the following result.

Lemma 4.9: For any i ∈ [0..n), LCP [SA−1[i]] ≥ LCP [SA−1[i− 1]]− 1

Proof. For each j ∈ [0..n), let Φ(j) = SA[SA−1[j]− 1]. Then TΦ(j) is the
immediate lexicographical predecessor of Tj and
LCP [SA−1[j]] = lcp(Tj, TΦ(j)).

• Let ` = LCP [SA−1[i− 1]] and `′ = LCP [SA−1[i]]. We want to show that
`′ ≥ `− 1. If ` = 0, the claim is trivially true.

• If ` > 0, then for some symbol c, Ti−1 = cTi and TΦ(i−1) = cTΦ(i−1)+1.
Thus TΦ(i−1)+1 < Ti and lcp(Ti, Tφ(i−1)+1) = lcp(Ti−1, TΦ(i−1))− 1 = `− 1.

• If Φ(i) = Φ(i−1) + 1, then `′ = lcp(Ti, TΦ(i)) = lcp(Ti, TΦ(i−1)+1) = `−1.

• If Φ(i) 6= Φ(i− 1) + 1, then TΦ(i−1)+1 < TΦ(i) < Ti and
`′ = lcp(Ti, TΦ(i)) ≥ lcp(Ti, TΦ(i−1)+1) = `− 1.

�
181

The algorithm computes the lcp values in the order that makes it easy to
use the above lower bound.

Algorithm 4.10: LCP array construction
Input: text T [0..n], suffix array SA[0..n], inverse suffix array SA−1[0..n]
Output: LCP array LCP [1..n]

(1) `← 0
(2) for i← 0 to n− 1 do
(3) k ← SA−1[i]
(4) j ← SA[k − 1] // j = Φ(i)
(5) while T [i+ `] = T [j + `] do `← `+ 1
(6) LCP [k]← `
(7) if ` > 0 then `← `− 1
(8) return LCP

The time complexity is O(n):

• Everything except the while loop on line (5) takes clearly linear time.

• Each round in the loop increments `. Since ` is decremented at most n
times on line (7) and cannot grow larger than n, the loop is executed
O(n) times in total.

182

RMQ Preprocessing

The range minimum query (RMQ) asks for the smallest value in a given
range in an array. Any array can be preprocessed in linear time so that RMQ
for any range can be answered in constant time.

In the LCP array, RMQ can be used for computing the lcp of any two
suffixes.

Lemma 4.11: The length of the longest common prefix of two suffixes
Ti < Tj is lcp(Ti, Tj) = min{LCP [k] | k ∈ [SA−1[i] + 1..SA−1[j]]}.

The lemma can be seen as a generalization of Lemma 1.25 and holds for
any sorted array of strings. The proof is left as an exercise.

• The RMQ preprocessing of the LCP array supports the same kind of
applications as the LCA preprocessing of the suffix tree, but RMQ
preprocessing is simpler than LCA preprocessing.

• The RMQ preprocessed LCP array can also replace the LLCP and
RLCP arrays.

183

We will next describe the RMQ data structure for an arbitrary array L[1..n]
of integers.

• We precompute and store the minimum values for the following
collection of ranges:
– Divide L[1..n] into blocks of size logn.
– For all 0 ≤ ` ≤ log(n/ logn)), include all ranges that consist of 2`

blocks. There are O(logn · n
logn

) = O(n) such ranges.

– Include all prefixes and suffixes of blocks. There are a total of O(n)
of them.

• Now any range L[i..j] that overlaps or touches a block boundary can be
exactly covered by at most four ranges in the collection.

The minimum value in L[i..j] is the minimum of the minimums of the
covering ranges and can be computed in constant time.

184

Ranges L[i..j] that are completely inside one block are handled differently.

• Let NSV (i) = min{k > i | L[k] < L[i]} (NSV=Next Smaller Value).
Then the position of the minimum value in the range L[i..j] is the last
position in the sequence i, NSV (i), NSV (NSV (i)), . . . that is in the
range. We call these the NSV positions for i.

• For each i, store the NSV positions for i up to the end of the block
containing i as a bit vector B(i). Each bit corresponds to a position
within the block and is one if it is an NSV position. The size of B(i) is
logn bits and we can assume that it fits in a single machine word. Thus
we need O(n) words to store B(i) for all i.

• The position of the minimum in L[i..j] is found as follows:
– Turn all bits in B(i) after position j into zeros. This can be done in

constant time using bitwise shift -operations.
– The right-most 1-bit indicates the position of the minimum. It can

be found in constant time using a lookup table of size O(n).

All the data structures can be constructed in O(n) time (exercise).

185

Enhanced Suffix Array

The enhanced suffix array adds two more arrays to the suffix and LCP
arrays to make the data structure fully equivalent to suffix tree.

• The idea is to represent a suffix tree node v representing a factor Sv by
the suffix array interval of the suffixes that begin with Sv. That interval
contains exactly the suffixes that are in the subtree rooted at v.

• The additional arrays support navigation in the suffix tree using this
representation: one array along the regular edges, the other along suffix
links.

With all the additional arrays the suffix array is not very space efficient data
structure any more. Nowadays suffix arrays and trees are often replaced
with compressed text indexes that provide the same functionality in much
smaller space.

186

Burrows–Wheeler Transform

The Burrows–Wheeler transform (BWT) is an important technique for text
compression, text indexing, and their combination compressed text indexing.

Let T [0..n] be the text with T [n] = $. For any i ∈ [0..n], T [i..n]T [0..i) is a
rotation of T . Let M be the matrix, where the rows are all the rotations of
T in lexicographical order. All columns of M are permutations of T . In
particular:

• The first column F contains the text characters in order.

• The last column L is the BWT of T .

Example 4.12: The BWT of T = banana$ is L = annb$aa.

F L
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

187

Here are some of the key properties of the BWT.

• The BWT is easy to compute using the suffix array:

L[i] =

{
$ if SA[i] = 0
T [SA[i]− 1] otherwise

• The BWT is invertible, i.e., T can be reconstructed from the BWT L
alone. The inverse BWT can be computed in the same time it takes to
sort the characters.

• The BWT L is typically easier to compress than the text T . Many text
compression algorithms are based on compressing the BWT.

• The BWT supports backward searching, a different technique for
indexed exact string matching. This is used in many compressed text
indexes.

188

Inverse BWT

Let M′ be the matrix obtained by rotating M one step to the right.

Example 4.13:

M
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

rotate−→

M′

a $ b a n a n
n a $ b a n a
n a n a $ b a
b a n a n a $
$ b a n a n a
a n a $ b a n
a n a n a $ b

• The rows of M′ are the rotations of T in a different order.

• In M′ without the first column, the rows are sorted lexicographically. If
we sort the rows of M′ stably by the first column, we obtain M.

This cycle M rotate−→ M′ sort−→M is the key to inverse BWT.

189

• In the cycle, each column moves one step to the right and is then
permuted. The permutation is fully determined by the last column of
M, i.e., the BWT.

• Thus if we know column j, we can obtain column j + 1 by permuting
column j. By repeating this, we can reconstruct M.

• To reconstruct T , we do not need to compute the whole matrix just
one row.

Example 4.14:

- - - - - - a
- - - - - - n
- - - - - - n
- - - - - - b
- - - - - - $
- - - - - - a
- - - - - - a

rotate−→

a - - - - - -
n - - - - - -
n - - - - - -
b - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -

sort−→

$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a

rotate−→

a $ - - - - -
n a - - - - -
n a - - - - -
b a - - - - -
$ b - - - - -
a n - - - - -
a n - - - - -

sort−→

$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a

rotate
& sort−→

$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a

rotate
& sort−→

$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a

rotate
& sort−→

$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a

rotate
& sort−→

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

190

The permutation that transforms M′ into M is called the LF-mapping.
• LF-mapping is the permutation that stably sorts the BWT L, i.e.,
F [LF [i]] = L[i]. Thus it is easy to compute from L.

• Given the LF-mapping, we can easily follow a row through the
permutations.

Algorithm 4.15: Inverse BWT
Input: BWT L[0..n]
Output: text T [0..n]
Compute LF-mapping:

(1) for i← 0 to n do R[i] = (L[i], i)
(2) sort R (stably by first element)
(3) for i← 0 to n do
(4) (·, j)← R[i]; LF [j]← i

Reconstruct text:
(5) j ← position of $ in L
(6) for i← n downto 0 do
(7) T [i]← L[j]
(8) j ← LF [j]
(9) return T

The time complexity is dominated by the stable sorting.

191

On Burrows-Wheeler Compression

The basic principle of text compression is that, the more frequently a factor
occurs, the shorter its encoding should be.

Let c be a symbol and w a string such that the factor cw occurs frequently
in the text.

• The occurrences of cw may be distributed all over the text, so
recognizing cw as a frequently occurring factor is not easy. It requires
some large, global data structures.

• In the BWT, the high frequency of cw means that c is frequent in that
part of the BWT that corresponds to the rows of the matrix M
beginning with w. This is easy to recognize using local data structures.

This localizing effect makes compressing the BWT much easier than
compressing the original text.

We will not go deeper into text compression on this course.

192

Example 4.16: A part of the BWT of a reversed english text
corresponding to rows beginning with ht:

oreeereoeeieeeeaooeeeeeaereeeeeeeeeeeeereeeeeeeeeeaaeeaeeeeeeee
eaeeeeeeeeaeieeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeaeeieeeeeeaaieee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeieeeeeeeeeeeeeeeeeeeeeeeeeeeeaee
eeeeeeeeeeeeeeeeeeereeeeeeeeeeeieaeeeeieeeeaeeeeeeeeeieeeeeeeee
eeeieeeeeeeeioaaeeaoereeeeeeeeeeaaeaaeeeeieeeeeeeieeeeeeeeaeeee
eeaeeeeeereeeaeeeeeieeeeeeeeiieee. e eeeeiiiiii e ,
i o oo e eiiiiee,er , , , . iii

and some of those symbols in context:

t raise themselves, and the hunter, thankful and r
ery night it flew round the glass mountain keeping
agon, but as soon as he threw an apple at it the b
f animals, were resting themselves. "Halloa, comr
ple below to life. All those who have perished on
that the czar gave him the beautiful Princess Mil
ng of guns was heard in the distance. The czar an
cked magician put me in this jar, sealed it with t
o acted as messenger in the golden castle flew pas
u have only to say, ’Go there, I know not where; b

193

Backward Search

Let P [0..m) be a pattern and let [b..e) be the suffix array range
corresponding to suffixes that begin with P , i.e., SA[b..e) contains the
starting positions of P in the text T . Earlier we noted that [b..e) can be
found by binary search on the suffix array.

Backward search is a different technique for finding this range. It is based
on the observation that [b..e) is also the range of rows in the matrix M
beginning with P .

Let [bi, ei) be the range for the pattern suffix Pi = P [i..m). The backward
search will first compute [bm−1, em−1), then [bm−2, em−2), etc. until it obtains
[b0, e0) = [b, e). Hence the name backward search.

194

Backward search uses the following data structures:

• An array C[0..σ), where C[c] =
∣∣{i ∈ [0..n] | L[i] < c}

∣∣. In other words,
C[c] is the number of occurrences of symbols that are smaller than c.

• The function rankL : Σ× [0..n+ 1]→ [0..n]:

rankL(c, j) =
∣∣{i | i < j and L[i] = c}

∣∣ .
In other words, rankL(c, j) is the number of occurrences of c in L before
position i.

Given bi+1, we can now compute bi as follows. Computing ei from ei+1 is
similar.

• C[P [i]] is the number of rows beginning with a symbol smaller than
P [i]. Thus bi ≥ C[P [i]].

• rankL(P [i], bi+1) is the number of rows that are lexicographically smaller
than Pi+1 and contain P [i] at the last column. Rotating these rows one
step to the right, we obtain the rotations of T that begin with P [i] and
are lexicographically smaller than Pi = P [i]Pi+1.

• Thus bi = C[P [i]] + rankL(P [i], bi+1).

195

Algorithm 4.17: Backward Search
Input: array C, function rankL, pattern P
Output: suffix array range [b..e) containg starting positions of P

(1) b← 0; e← n+ 1
(2) for i← m− 1 downto 0 do
(3) c← P [i]
(4) b← C[c] + rankL(c, b)
(5) e← C[c] + rankL(c, e)
(6) return [b..e)

• The array C requires an integer alphabet that is not too large.

• The trivial implementation of the function rankL as an array requires
Θ(σn) space, which is often too much. There are much more space
efficient (but slower) implementations. There are even implementations
with a size that is close to the size of the compressed text. Such an
implementation is the key component in many compressed text indexes.

196

Suffix Array Construction

Suffix array construction means simply sorting the set of all suffixes.

• Using standard sorting or string sorting the time complexity is
Ω(ΣLCP (T[0..n])).

• Another possibility is to first construct the suffix tree and then traverse
it from left to right to collect the suffixes in lexicographical order. The
time complexity is O(n) on a constant alphabet.

Specialized suffix array construction algorithms are a better option, though.

197

Prefix Doubling

Our first specialized suffix array construction algorithm is a conceptually
simple algorithm achieving O(n logn) time.

Let T `i denote the text factor T [i..min{i+ `, n+ 1}) and call it an `-factor.
In other words:

• T `i is the factor starting at i and of length ` except when the factor is
cut short by the end of the text.

• T `i is the prefix of the suffix Ti of length `, or Ti when |Ti| < `.

The idea is to sort the sets T `[0..n] for ever increasing values of `.

• First sort T 1
[0..n], which is equivalent to sorting individual characters.

This can be done in O(n logn) time.

• Then, for ` = 1,2,4,8, . . . , use the sorted set T `[0..n] to sort the set T 2`
[0..n]

in O(n) time.

• After O(logn) rounds, ` > n and T `[0..n] = T[0..n], so we have sorted the
set of all suffixes.

198

We still need to specify, how to use the order for the set T `[0..n] to sort the

set T 2`
[0..n]. The key idea is assigning order preserving names (lexicographical

names) for the factors in T `[0..n]. For i ∈ [0..n], let N `
i be an integer in the

range [0..n] such that, for all i, j ∈ [0..n]:

N `
i ≤ N `

j if and only if T `i ≤ T `j .
Then, for ` > n, N `

i = SA−1[i].

For smaller values of `, there can be many ways of satisfying the conditions
and any one of them will do. A simple choice is

N `
i = |{j ∈ [0, n] | T `j < T `i }| .

Example 4.18: Prefix doubling for T = banana$.

N1

4 b
1 a
5 n
1 a
5 n
1 a
0 $

N2

4 ba
2 an
5 na
2 an
5 na
1 a$
0 $

N4

4 bana
3 anan
6 nana
2 ana$
5 na$
1 a$
0 $

N8 = SA−1

4 banana$
3 anana$
6 nana$
2 ana$
5 na$
1 a$
0 $

199

Now, given N `, for the purpose of sorting, we can use

• N `
i to represent T `i

• the pair (N `
i , N

`
i+`) to represent T 2`

i = T `i T
`
i+`.

Thus we can sort T 2`
[0..n] by sorting pairs of integers, which can be done in

O(n) time using LSD radix sort.

Theorem 4.19: The suffix array of a string T [0..n] can be constructed in
O(n logn) time using prefix doubling.

• The technique of assigning order preserving names to factors whose
lengths are powers of two is called the Karp–Miller–Rosenberg naming
technique. It was developed for other purposes in the early seventies
when suffix arrays did not exist yet.

• The best practical variant is the Larsson–Sadakane algorithm, which
uses ternary quicksort instead of LSD radix sort for sorting the pairs,
but still achieves O(n logn) total time.

200

Let us return to the first phase of the prefix doubling algorithm: assigning
names N1

i to individual characters. This is done by sorting the characters,
which is easily within the time bound O(n logn), but sometimes we can do
it faster:

• On an ordered alphabet, we can use ternary quicksort for time
complexity O(n logσT) where σT is the number of distinct symbols in T .

• On an integer alphabet of size nc for any constant c, we can use LSD
radix sort with radix n for time complexity O(n).

After this, we can replace each character T [i] with N1
i to obtain a new

string T ′:

• The characters of T ′ are integers in the range [0..n].

• The character T ′[n] = 0 is the unique, smallest symbol, i.e., $.

• The suffix arrays of T and T ′ are exactly the same.

Thus we can construct the suffix array using T ′ as the text instead of T .

As we will see next, the suffix array of T ′ can be constructed in linear time.
Then sorting the characters of T to obtain T ′ is the asymptotically most
expensive operation in the suffix array construction of T for any alphabet.

201

