Let us return to the first phase of the prefix doubling algorithm: assigning
names Ni1 to individual characters. This is done by sorting the characters,
which is easily within the time bound O(nlogn), but sometimes we can do
it faster:

e On an ordered alphabet, we can use ternary quicksort for time
complexity O(nlogor) where or is the number of distinct symbols in T'.

e On an integer alphabet of size n¢ for any constant ¢, we can use LSD
radix sort with radix n for time complexity O(n).
After this, we can replace each character T[i] with N} to obtain a new
string T":
e The characters of T” are integers in the range [0..n].
e The character T'[n] = 0 is the unique, smallest symbol, i.e., $.

e The suffix arrays of T' and 7" are exactly the same.

Thus we can construct the suffix array using T’ as the text instead of T.

As we will see next, the suffix array of T’ can be constructed in linear time.
Then sorting the characters of T to obtain 7" is the asymptotically most
expensive operation in the suffix array construction of 7' for any alphabet.

201

The set C must be chosen so that:
1. Sorting T can be reduced to suffix array construction on a text of
length |C].
2. Given sorted T the suffix array of T is easy to construct.

We look at two different ways of choosing C' leading to two different
algorithms:

e DC3 uses difference cover sampling

e SAIS uses induced sorting

A difference cover sample is a set T of suffixes, where
C={ie[0..n]| (i modq) € Dy} .

Example 4.21: If T = banana$ and D3z = {1,2},

then C = {1,2,4,5} and T¢ = {anana$,nana$, na$, a$}.

Once we have sorted the difference cover sample Ty, we can compare any
two suffixes in O(q) time. To compare suffixes T; and Tj:

e If i€ C and j € C, then we already know their order from T¢.

e Otherwise, find ¢ such that i 4¢€ C and 54 ¢ € C. There always exists

such ¢ € [0..q). Then compare:
Ty =Tlii 4+) Tite
Ty =TUoj + OTj4e

That is, compare first T[i..i + £) to T[j..j + ¢), and if they are the same,

then Tit¢ to Tj4, using the sorted Te.

Example 4.22: D3 = {1,2} and C = {1,2,4,5,...}
To = T[0]Th To = T[O]T[1]T»
Ty = T[T, Ty = T[2]T[3]Ta

Ty = T[0]T}
T = T[3]Ts

Step 1: Sort T¢.

e For k € {1,2}, Construct the strings Ry = (T2, T2, 3, T2\, - - -» Traaxc,)
whose characters are 3-factors of the text, and let R = R1R».

e Replace each factor Ti3 in R with an order preserving name Nf € [1..|R]].
The names can be computed by sorting the factors with LSD radix sort

in O(n) time. Let R’ be the result appended with 0.

Construct the inverse suffix array SA;,1 of R'. This is done recursively
using DC3 unless all symbols in R’ are unique, in which case SA};,1 =R

e From SAI’?}, we get order preserving names for suffixes in T¢.
ForieC, let N; = SAI‘?,l[j], where j is the position of T2 in R.
Foriec C, let N;= 1. Also let N,y1 = Ny42 =0.

Example 4.25: R abb ada bba do$ bba dab bad o$
R 1 2 4 7 4 6 3 8 0
SAg 1 2 5 7 4 6 3 8 0

7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Tli]] vy 2 b b a d a b b a d o $
N L 1 4 1L 2 6 L 5 3 1L 7 8 L1 0 O

207

Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We
assume that the alphabet of the text T[0..n) is [1..n] and that T'[n] =0 (=$
in the examples).

The outline of the algorithms is:
0. Choose a subset C C [0..n].

1. Sort the set T¢. This is done by a reduction to the suffix array
construction of a string of length |C|, which is done recursively.

2. Sort the set Tj_, using the order of Tc¢.

The set C can be chosen so that
e |C| < an for a constant a < 1.

e Excluding the recursive call, all steps can be done in linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(an), whose solution is t(n) = O(n).
202

Difference Cover Sampling

A difference cover D, modulo g is a subset of [0..¢) such that all values in
[0..q) can be expressed as a difference of two elements in D, modulo g. In
other words:

[0.q) = {i —jmod g |i,j € Dy} .

Example 4.20: D; = {1,2,4}

1-1=0 1-4=-3=4 (modq)
2-1=1 2-4=-2=5 (mod q)
4-_2=2 1-2=-1=6 (modq)
4-1=3

In general, we want the smallest possible difference cover for a given q.
e For any g, there exist a difference cover D, of size O(\/q).
e The DC3 algorithm uses the simplest non-trivial difference cover
D3 = {1,2}.

204

Algorithm 4.23: DC3

Step 0: Choose C.
e Use difference cover D3 = {1,2}.
e For k € {0,1,2}, define Cy = {i € [0..n] | i mod 3 = k}.
e Let C=C1UC, and C = Cp.

4 5 6 7 8 9 10 11 12
adab©bado $

Co =1{0,3,6,9,12}, C1 = {1,4,7,10}, C> = {2,5,8,11} and
{1,2,4,5,7,8,10,11}.

Example 4.24: i 0 1 2 3
Tl y a b b

c
C

206
Step 2(a): Sort Tg.
e For each i € C, we represent T; with the pair (T[i], N;4+1). Then
T; < Tj <= (T[i], Nig1) < (T[5], Njs1) -
Note that Nj4; 7% L for all i€ C.
e The pairs (T'[i], Ni+1) are sorted by LSD radix sort in O(n) time.
Example 4.26:
i 0 1 2 3 4 5 6 7 8 9 10 11 12
Tl y a b b a d a b b a d o $
N, L 1 4 1 2 6 L 5 3 1L 7 8 L
Tio < Te < To < T3 < Tg because ($,0) < (a,5) < (a,7) < (b,2) < (y,1).
208

Step 2(b): Merge T¢ and Tg.
e Use comparison based merging algorithm needing O(n) comparisons.

e To compare T; € T¢ and T; € Tz, we have two cases:

i€ C1: Ti < Tj <= (Tli], Nit1) < (T[], Njgr)
i€ C2: Ti <Tj <= (T[], T[i + 1], Niy2) < (T[], T[j + 1], Nj42)
Note that none of the N-values is L.

Example 4.27:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T[] y a b b a d a b b a d o $
N, L 1 4 1L 2 6 L 5 3 L1 7 8 1

Ty < Ts because (a,4) < (a,5).
T5 < Ty because (b,a,6) < (b,a,7).

209

Induced Sorting

Define three type of suffixes —, 4+ and x as follows:
- ={i€[0.n) |T:> T}
Ct={ie0.n)|Ti < Tiy1}
c*={iect|i-1eC}
Example 4.29:

it 0 1 2 3 4 5 6 7 9 10 11 12 13 14
T m m i s s i s s i i p p i i 8
typeof ;, — — % — — % — — x + - - - -

For every a € ¥ and z € {—, +.x} define
Co={i€[0..n] | T[i] = a}
ci=Cc,nC”

Then C;={ieC|T <a™}

Cr={ieC.| T >a>"}

and thus, if i € C; and j € Cf, then T; < T;. Hence the suffix array is

nC1Cs...Com1 = nCyCFC;CF ... O CF .

211

To induce C~ suffixes:
1. Set C, empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € C~ in lexicographical order,
append i — 1 into C;[i—l]'

By Lemma 4.30(a), Step 2 can be done by checking the relevant conditions

for all i € nCy C;C, Cs

Algorithm 4.31: InduceMinusSuffixes
Input: Lexicographically sorted lists C}, a € X
Output: Lexicographically sorted lists C,, a € X
(1) forae = do C, <0
(2) pushback(n — 1, C;[7171])
(3) fora+1too—1do

(4) for i€ C; do // include elements added during the loop
(5) if i >0 and T[i — 1] > a then pushback(i — 1,CT’[1_1])
(6) for i € C} do pushback(i — 1,6‘1’,[[71])

Note that since T;_1 > T; by definition of C~, we always have i inserted
before : — 1.

213

We still need to explain how to sort the *-type suffixes. Define
Flil=min{fke[i+1.n] | k€ C* or k =n}
S; = T[i..F[i]]
Si = Sio
where o is a special symbol larger than any other symbol.

Lemma 4.33: For any 4,j € [0..n), T; < Tj iff S; < S} or S; =S} and
T < Trp)-

Proof. The claim is trivially true except in the case that S; is a proper

prefix of S; (or vice versa). In that case, S; > S; but S} < S]’ and thus T; < T}

by the claim. We will show that this is correct.
Let £=F[j] and k=1i+4+¢—j. Then
e fcC*and thus¢—1€C~. By Lemma 4.30, T[f] < T[¢—1].

o T[k—1.k] =T[—1..4] and thus T[k] < T[k — 1]. If we had k € Ct, we
would have k € C*. Since this is not the case, we must have k€ C—.

o Let a=TI[(]. Since £ € CF and k € C,, we must have T; < a"t! < T}.
e Since T'[i.k) = T[j..¢) and T}, < Ty, we have T; < Tj.
O
215

Theorem 4.28: Algorithm DC3 constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T'.

There are many variants:

e DC3 is an optimal algorithm under several parallel and external memory

computation models, too. There exists both parallel and external
memory implementations of DC3.

e Using a larger value of ¢, we obtain more space efficient algorithms. For

example, using g = logn, the time complexity is O(nlogn) and the

space needed in addition to the text and the suffix array is O(n/+/logn).

210

The basic idea of induced sorting is to use information about the order of T;

to induce the order of the suffix T,_; = T'[i — 1]7;. The main steps are:
1. Sort the sets C%, a € [1..0).
2. Use C¥, a € [1..0), to induce the order of the sets C,, a € [1..0).
3. Use C;

a

a € [1..0), to induce the order of the sets CF, a € [1..0).

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 4.30: For all a € [1..0)

(@) i—1e€C; iffi >0 and T[i — 1] = a and one of the following holds
1. i=n
2. ieC*
3. ieC-and T[i— 1] > T[i].

(b) i—1e€Ctiffi >0 and T[i — 1] = a and one of the following holds
1. i€ C and T[i — 1] < T[4]
2. ieCtand T[i— 1] < T[]

212

Inducing +-type suffixes goes similarly but in reverse order so that again i is

always inserted before i — 1:
1. Set C; empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € Ct in descending lexicographical
order, append i — 1 into C;'—[z—l]'
Algorithm 4.32: InducePlusSuffixes
Input: Lexicographically sorted lists C;, a € X
Output: Lexicographically sorted lists C,jr, a€eX
(1) foraex do Ct « 0
(2) for a <+ o —1 downto 1 do

(3) for i € C in reverse order do // include elements added during loop
(4) if i >0 and T[i — 1] < a then pushfront(i — 1,0;:[1.71])
(5) for i € C; in reverse order do
(6) if i >0 and T[i — 1] < a then pushfront(i — 1,071'[1.71])
214

Algorithm 4.34: SAIS

Step 0: Choose C.

e Compute the types of suffixes. This can be done in O(n) time based on

Lemma 4.30.

o Set C = U1.,Ci U{n}. Note that |C| <n/2, since for all i € C,
i—-leCc-CC.

Example 4.35:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
TEl m m i s s i s s i i p p i i $
typeof T;, — — % — — % — — *x + - - - =

Cr=1{2,58}, Ch=C;=Ci=0, C={2,5,8,14}.

216

Step 1: Sort T¢.

e Sort the strings S/, i € C*. Since the total length of the strings S; is
O(n), the sorting can be done in O(n) time using LSD radix sort.

e Assign order preserving names N; € [1..|C| — 1] to the string S} so that
N; < Nj iff S; <5

Construct the sequence R = N;, N, ..
the *-type positions.

. N0, where i1 < i3 < --- < 4 are

Construct the suffix array SAg of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

e The order of the suffixes of R corresponds to the order of x-type
suffixes of 7. Thus we can construct the lexicographically ordered lists
C: a€(l.o).

Example 4.36:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T m m i s s i s s i i p p i i $
N; 2 2 1 0
R = [issiz][issiz][iippii$z]$ = 2210, SAr = (3,2,1,0), C; = (8,5,2)

217

Theorem 4.38: Algorithm SAIS constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T'.

e In Step 1, to sort the strings S;, i € C*, SAIS does not actually use LSD
radix sort but the following procedure:
1. Construct the sets C}, a € [1..0) in arbitrary order.
2. Run InduceMinusSuffixes to construct the lists C;, a € [1..0).
3. Run InducePlusSuffixes to construct the lists C,, a € [1..0).

4. Remove non-*-type positions from ;¢ ...CF .
With this change, most of the work is done in the induction procedures.

This is very fast in practice, because all the lists C7 are accessed
sequentially during the procedures.

e The currently fastest suffix sorting implementation in practice is
probably divsufsort by Yuta Mori. It sorts the *-type suffixes
non-recursively in O(nlogn) time and then continues as SAIS.

219

Step 2: Sort Tig. -
e Run InduceMinusSuffixes to construct the sorted lists C, a € [1..0).
e Run InducePlusSuffixes to construct the sorted lists C, a € [1..0).
e The suffix array is SA=nC;CTC;CF...C; ,CF .
Example 4.37:
¢ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

TlE] m m i s s i s s i p p i i 3
typeof T, — — % — — % — — % + - - - =

[

n=14 = O =(13,12)

C;C:=(13,12,8,5,2) = C, =(1,0), C; =(11,10), C5 = (7,4,6,3)
= C}=(8,9,5,2)
= SA=C3CCfCrC;C; = (14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)

218

Summary: Suffix Trees and Arrays

The most important data structures for string processing:
e Designed for indexed exact string matching.

e Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string
processing:

e Linear time for constant and integer alphabet.

Often augmented with additional data structures:
e suffix links, LCA preprocessing

e LCP array, RMQ preprocessing, BWT, ...

220

