
Let us return to the first phase of the prefix doubling algorithm: assigning
names N1

i to individual characters. This is done by sorting the characters,
which is easily within the time bound O(n logn), but sometimes we can do
it faster:

• On an ordered alphabet, we can use ternary quicksort for time
complexity O(n logσT) where σT is the number of distinct symbols in T .

• On an integer alphabet of size nc for any constant c, we can use LSD
radix sort with radix n for time complexity O(n).

After this, we can replace each character T [i] with N1
i to obtain a new

string T ′:

• The characters of T ′ are integers in the range [0..n].

• The character T ′[n] = 0 is the unique, smallest symbol, i.e., $.

• The suffix arrays of T and T ′ are exactly the same.

Thus we can construct the suffix array using T ′ as the text instead of T .

As we will see next, the suffix array of T ′ can be constructed in linear time.
Then sorting the characters of T to obtain T ′ is the asymptotically most
expensive operation in the suffix array construction of T for any alphabet.

201

Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We
assume that the alphabet of the text T [0..n) is [1..n] and that T [n] = 0 (=$
in the examples).

The outline of the algorithms is:

0. Choose a subset C ⊂ [0..n].

1. Sort the set TC. This is done by a reduction to the suffix array
construction of a string of length |C|, which is done recursively.

2. Sort the set T[0..n] using the order of TC.

The set C can be chosen so that

• |C| ≤ αn for a constant α < 1.

• Excluding the recursive call, all steps can be done in linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(αn), whose solution is t(n) = O(n).

202

The set C must be chosen so that:

1. Sorting TC can be reduced to suffix array construction on a text of
length |C|.

2. Given sorted TC the suffix array of T is easy to construct.

We look at two different ways of choosing C leading to two different
algorithms:

• DC3 uses difference cover sampling

• SAIS uses induced sorting

203

Difference Cover Sampling

A difference cover Dq modulo q is a subset of [0..q) such that all values in
[0..q) can be expressed as a difference of two elements in Dq modulo q. In
other words:

[0..q) = {i− j mod q | i, j ∈ Dq} .

Example 4.20: D7 = {1,2,4}
1− 1 = 0 1− 4 = −3 ≡ 4 (mod q)
2− 1 = 1 2− 4 = −2 ≡ 5 (mod q)
4− 2 = 2 1− 2 = −1 ≡ 6 (mod q)
4− 1 = 3

In general, we want the smallest possible difference cover for a given q.

• For any q, there exist a difference cover Dq of size O(
√
q).

• The DC3 algorithm uses the simplest non-trivial difference cover
D3 = {1,2}.

204

A difference cover sample is a set TC of suffixes, where

C = {i ∈ [0..n] | (i mod q) ∈ Dq} .

Example 4.21: If T = banana$ and D3 = {1,2},
then C = {1,2,4,5} and TC = {anana$, nana$, na$, a$}.
Once we have sorted the difference cover sample TC, we can compare any
two suffixes in O(q) time. To compare suffixes Ti and Tj:

• If i ∈ C and j ∈ C, then we already know their order from TC.

• Otherwise, find ` such that i+ ` ∈ C and j + ` ∈ C. There always exists
such ` ∈ [0..q). Then compare:

Ti = T [i..i+ `)Ti+`

Tj = T [j..j + `)Tj+`

That is, compare first T [i..i+ `) to T [j..j + `), and if they are the same,
then Ti+` to Tj+` using the sorted TC.

Example 4.22: D3 = {1,2} and C = {1,2,4,5, . . . }
T0 = T [0]T1

T1 = T [1]T2

T0 = T [0]T [1]T2

T2 = T [2]T [3]T4

T0 = T [0]T1

T3 = T [3]T4

205

Algorithm 4.23: DC3

Step 0: Choose C.

• Use difference cover D3 = {1,2}.

• For k ∈ {0,1,2}, define Ck = {i ∈ [0..n] | i mod 3 = k}.

• Let C = C1 ∪ C2 and C̄ = C0.

Example 4.24: i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $

C̄ = C0 = {0,3,6,9,12}, C1 = {1,4,7,10}, C2 = {2,5,8,11} and
C = {1,2,4,5,7,8,10,11}.

206

Step 1: Sort TC.

• For k ∈ {1,2}, Construct the strings Rk = (T 3
k , T

3
k+3, T

3
k+6, . . . , T

3
maxCk

)
whose characters are 3-factors of the text, and let R = R1R2.

• Replace each factor T 3
i in R with an order preserving name N3

i ∈ [1..|R|].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R′ be the result appended with 0.

• Construct the inverse suffix array SA−1
R′ of R′. This is done recursively

using DC3 unless all symbols in R′ are unique, in which case SA−1
R′ = R′.

• From SA−1
R′ , we get order preserving names for suffixes in TC.

For i ∈ C, let Ni = SA−1
R′ [j], where j is the position of T 3

i in R.
For i ∈ C̄, let Ni = ⊥. Also let Nn+1 = Nn+2 = 0.

Example 4.25: R abb ada bba do$ bba dab bad o$
R′ 1 2 4 7 4 6 3 8 0

SA−1
R′ 1 2 5 7 4 6 3 8 0

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0

207

Step 2(a): Sort TC̄.

• For each i ∈ C̄, we represent Ti with the pair (T [i], Ni+1). Then

Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1) .

Note that Ni+1 6= ⊥ for all i ∈ C̄.

• The pairs (T [i], Ni+1) are sorted by LSD radix sort in O(n) time.

Example 4.26:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T12 < T6 < T9 < T3 < T0 because ($,0) < (a,5) < (a,7) < (b,2) < (y,1).

208

Step 2(b): Merge TC and TC̄.

• Use comparison based merging algorithm needing O(n) comparisons.

• To compare Ti ∈ TC and Tj ∈ TC̄, we have two cases:

i ∈ C1 : Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1)

i ∈ C2 : Ti ≤ Tj ⇐⇒ (T [i], T [i+ 1], Ni+2) ≤ (T [j], T [j + 1], Nj+2)

Note that none of the N-values is ⊥.

Example 4.27:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T1 < T6 because (a,4) < (a,5).
T3 < T8 because (b, a,6) < (b, a,7).

209

Theorem 4.28: Algorithm DC3 constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

There are many variants:

• DC3 is an optimal algorithm under several parallel and external memory
computation models, too. There exists both parallel and external
memory implementations of DC3.

• Using a larger value of q, we obtain more space efficient algorithms. For
example, using q = logn, the time complexity is O(n logn) and the
space needed in addition to the text and the suffix array is O(n/

√
logn).

210

Induced Sorting

Define three type of suffixes −, + and ∗ as follows:

C− = {i ∈ [0..n) | Ti > Ti+1}
C+ = {i ∈ [0..n) | Ti < Ti+1}
C∗ = {i ∈ C+ | i− 1 ∈ C−}

Example 4.29:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

For every a ∈ Σ and x ∈ {−,+.∗} define

Ca = {i ∈ [0..n] | T [i] = a}
Cx
a = Ca ∩ Cx

Then
C−a = {i ∈ Ca | Ti < a∞}
C+
a = {i ∈ Ca | Ti > a∞}

and thus, if i ∈ C−a and j ∈ C+
a , then Ti < Tj. Hence the suffix array is

nC1C2 . . . Cσ−1 = nC−1 C
+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

211

The basic idea of induced sorting is to use information about the order of Ti
to induce the order of the suffix Ti−1 = T [i− 1]Ti. The main steps are:

1. Sort the sets C∗a, a ∈ [1..σ).

2. Use C∗a, a ∈ [1..σ), to induce the order of the sets C−a , a ∈ [1..σ).

3. Use C−a , a ∈ [1..σ), to induce the order of the sets C+
a , a ∈ [1..σ).

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 4.30: For all a ∈ [1..σ)

(a) i− 1 ∈ C−a iff i > 0 and T [i− 1] = a and one of the following holds
1. i = n

2. i ∈ C∗
3. i ∈ C− and T [i− 1] ≥ T [i].

(b) i− 1 ∈ C+
a iff i > 0 and T [i− 1] = a and one of the following holds

1. i ∈ C− and T [i− 1] < T [i]
2. i ∈ C+ and T [i− 1] ≤ T [i].

212

To induce C− suffixes:

1. Set C−a empty for all a ∈ [1..σ).

2. For all suffixes Ti such that i− 1 ∈ C− in lexicographical order,
append i− 1 into C−

T [i−1].

By Lemma 4.30(a), Step 2 can be done by checking the relevant conditions
for all i ∈ nC−1 C∗1C−2 C∗2
Algorithm 4.31: InduceMinusSuffixes
Input: Lexicographically sorted lists C∗a, a ∈ Σ
Output: Lexicographically sorted lists C−a , a ∈ Σ

(1) for a ∈ Σ do C−a ← ∅
(2) pushback(n− 1, C−

T [n−1])

(3) for a← 1 to σ − 1 do
(4) for i ∈ C−a do // include elements added during the loop
(5) if i > 0 and T [i− 1] ≥ a then pushback(i− 1, C−

T [i−1])

(6) for i ∈ C∗a do pushback(i− 1, C−
T [i−1])

Note that since Ti−1 > Ti by definition of C−, we always have i inserted
before i− 1.

213

Inducing +-type suffixes goes similarly but in reverse order so that again i is
always inserted before i− 1:

1. Set C+
a empty for all a ∈ [1..σ).

2. For all suffixes Ti such that i− 1 ∈ C+ in descending lexicographical
order, append i− 1 into C+

T [i−1].

Algorithm 4.32: InducePlusSuffixes
Input: Lexicographically sorted lists C−a , a ∈ Σ
Output: Lexicographically sorted lists C+

a , a ∈ Σ
(1) for a ∈ Σ do C+

a ← ∅
(2) for a← σ − 1 downto 1 do
(3) for i ∈ C+

a in reverse order do // include elements added during loop
(4) if i > 0 and T [i− 1] ≤ a then pushfront(i− 1, C+

T [i−1])

(5) for i ∈ C−a in reverse order do
(6) if i > 0 and T [i− 1] < a then pushfront(i− 1, C+

T [i−1])

214

We still need to explain how to sort the ∗-type suffixes. Define

F [i] = min{k ∈ [i+ 1..n] | k ∈ C∗ or k = n}
Si = T [i..F [i]]

S′i = Siσ

where σ is a special symbol larger than any other symbol.

Lemma 4.33: For any i, j ∈ [0..n), Ti < Tj iff S′i < S′j or S′i = S′j and
TF [i] < TF [j].

Proof. The claim is trivially true except in the case that Sj is a proper
prefix of Si (or vice versa). In that case, Si > Sj but S′i < S′j and thus Ti < Tj
by the claim. We will show that this is correct.

Let ` = F [j] and k = i+ `− j. Then

• ` ∈ C∗ and thus `− 1 ∈ C−. By Lemma 4.30, T [`] < T [`− 1].

• T [k − 1..k] = T [`− 1..`] and thus T [k] < T [k − 1]. If we had k ∈ C+, we
would have k ∈ C∗. Since this is not the case, we must have k ∈ C−.

• Let a = T [`]. Since ` ∈ C+
a and k ∈ C−a , we must have Tk < an+1 < T`.

• Since T [i..k) = T [j..`) and Tk < T`, we have Ti < Tj.

�
215

Algorithm 4.34: SAIS

Step 0: Choose C.

• Compute the types of suffixes. This can be done in O(n) time based on
Lemma 4.30.

• Set C = ∪a∈[1..σ)C
∗
a ∪ {n}. Note that |C| ≤ n/2, since for all i ∈ C,

i− 1 ∈ C− ⊆ C̄.

Example 4.35:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

C∗i = {2,5,8}, C∗m = C∗p = C∗s = ∅, C = {2,5,8,14}.

216

Step 1: Sort TC.

• Sort the strings S′i, i ∈ C∗. Since the total length of the strings S′i is
O(n), the sorting can be done in O(n) time using LSD radix sort.

• Assign order preserving names Ni ∈ [1..|C| − 1] to the string S′i so that
Ni ≤ Nj iff S′i ≤ S′j.

• Construct the sequence R = Ni1Ni2 . . . Nk0, where i1 < i3 < · · · < ik are
the *-type positions.

• Construct the suffix array SAR of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

• The order of the suffixes of R corresponds to the order of ∗-type
suffixes of T . Thus we can construct the lexicographically ordered lists
C∗a, a ∈ [1..σ).

Example 4.36:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
Ni 2 2 1 0

R = [issiz][issiz][iippii$z]$ = 2210, SAR = (3,2,1,0), C∗i = (8,5,2)

217

Step 2: Sort T[0..n].

• Run InduceMinusSuffixes to construct the sorted lists C−a , a ∈ [1..σ).

• Run InducePlusSuffixes to construct the sorted lists C+
a , a ∈ [1..σ).

• The suffix array is SA = nC−1 C
+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

Example 4.37:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

n = 14 ⇒ C−i = (13,12)
C−i C

∗
i = (13,12,8,5,2) ⇒ C−m = (1,0), C−p = (11,10), C−s = (7,4,6,3)

⇒ C+
i = (8,9,5,2)

⇒ SA = C$C
−
i C

+
i C

−
m C
−
p C
−
s = (14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)

218

Theorem 4.38: Algorithm SAIS constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

• In Step 1, to sort the strings S′i, i ∈ C∗, SAIS does not actually use LSD
radix sort but the following procedure:
1. Construct the sets C∗a, a ∈ [1..σ) in arbitrary order.
2. Run InduceMinusSuffixes to construct the lists C−a , a ∈ [1..σ).
3. Run InducePlusSuffixes to construct the lists C−a , a ∈ [1..σ).

4. Remove non-*-type positions from C+
1 C

+
2 . . . C+

σ−1.

With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists Cx

a are accessed
sequentially during the procedures.

• The currently fastest suffix sorting implementation in practice is
probably divsufsort by Yuta Mori. It sorts the *-type suffixes
non-recursively in O(n logn) time and then continues as SAIS.

219

Summary: Suffix Trees and Arrays

The most important data structures for string processing:

• Designed for indexed exact string matching.

• Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string
processing:

• Linear time for constant and integer alphabet.

Often augmented with additional data structures:

• suffix links, LCA preprocessing

• LCP array, RMQ preprocessing, BWT, ...

220

