58093 String Processing Algorithms (Autumn 2013)

Exercises 5 (26 November)

- 1. Show that edit distance is a *metric*, i.e., that it satisfies the metric axioms:
 - $ed(A,B) \ge 0$
 - ed(A, B) = 0 if and only if A = B
 - ed(A, B) = ed(B, A) (symmetry)
 - $ed(A, C) \le ed(A, B) + ed(B, C)$ (triangle inequality)
- 2. Let $\Sigma = \{a, b, c\}$. Define the function $\gamma : \Sigma \times \Sigma \to \mathbb{R}_{\geq 0}$ as follows

$$\begin{aligned} \gamma(\mathbf{a},\mathbf{a}) &= \gamma(\mathbf{b},\mathbf{b}) = \gamma(\mathbf{c},\mathbf{c}) = 0\\ \gamma(\mathbf{a},\mathbf{b}) &= \gamma(\mathbf{b},\mathbf{c}) = \gamma(\mathbf{c},\mathbf{a}) = 0.5\\ \gamma(\mathbf{b},\mathbf{a}) &= \gamma(\mathbf{c},\mathbf{b}) = \gamma(\mathbf{a},\mathbf{c}) = 1.5 \end{aligned}$$

Let ed_{γ} be a *weighted edit distance*, where the cost of substituting a character x with a character y is $\gamma(x, y)$. The cost of insertions and deletions is 1.

- (a) It might seem that we can compute $ed_{\gamma}(A, B)$ using the recurrence for the standard edit distance (page 112 on the lecture notes) except δ is replaced by γ . Show that this is not the case by providing an example for which the recurrence produces an incorrect distance.
- (b) Is ed_{γ} a metric?
- 3. Describe a family of string pairs (A_i, B_i) , $i \in \mathbb{N}$, such that $|A_i| = |B_i| \ge i$ and there is at least *i* different optimal edit sequences corresponding to $ed(A_i, B_i)$. Can you find a family, where the number of edit sequences grows much faster than the lengths of the strings?
- 4. A string S is a subsequence of a string T if we can construct S by deleting characters from T. Let lcss(A, B) denote the length of the longest common subsequence of the strings A and B. For example, lcss(berlin, helsinki) = 4 since elin is a subsequence of both strings.
 - (a) Let $ed_{indel}(A, B)$ be a variant of the edit distance, where insertions and deletions (indels) are the only edit operations allowed (i.e., no substitutions). Show that

$$ed_{indel}(A,B) = |A| + |B| - 2 \cdot lcss(A,B)$$

- (b) Give an algorithm for computing lcss(A, B) in time $\mathcal{O}(|A||B|)$.
- 5. Give a proof for Lemma 3.15 in the lecture notes.
- 6. Let P = evete and T = neeteneeveteen.
 - (a) Use Ukkonen's cut-off algorithm to find the occurrences of P in T for k = 1.
 - (b) Simulate the operation of Myers' bitparallel algorithm when it computes column 5 for P and T.