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Abstract—The Burrows-Wheeler transform permutes the
symbols of a string such that the permuted string can be
compressed effectively with fast, simple techniques. Inversion of
the transform is a bottleneck in practice. Inversion takes linear
time, but, for each symbol decoded, folklore says that a random
access into the transformed string (and so a CPU cache-miss) is
necessary. In this paper we show how to mitigate cache misses
and so speed inversion. Our main idea is to modify the standard
inversion algorithm to detect and record repeated substrings in
the original string as it is recovered. Subsequent occurrences of
these repetitions are then copied in a cache friendly way from
the already recovered portion of the string, short cutting a
series of random accesses by the standard inversion algorithm.
We show experimentally that this approach leads to faster
runtimes in general, and can drastically reduce inversion time
for highly repetitive data.

Keywords-Burrows-Wheeler transform; BWT; suffix array;
data compression; cache misses;

I. INTRODUCTION

In the last decade the Burrows-Wheeler transform
(BWT) [1] has been the focus of intense research, first
as a tool for lossless data compression, and more recently
as a tool for pattern matching and string processing. The
transform alone provides no compression: it only permutes
the symbols of a string in an invertible way. However, the
transformed (permuted) string can be compressed effectively
with fast, simple techniques [2]. The way to best exploit
the structure of the transformed string for compression has
been widely studied [3] and today compression performance
offered by BWT compressors is state-of-the-art [4]. The
focus of this paper is on the lightly studied inverse transform,
which is the computational bottleneck at decompression time
in practical BWT compression tools.

The basic algorithm for the inverse transform, already
described in [1], is simple and runs in linear time, but its
performance is hampered by an essentially random memory
access pattern causing a large number of cache misses.
Seward [5] gives an algorithm doing only n random accesses
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and conjectures that it “represents a realistic upper bound on
inversion performance”.

Our contribution: We introduce a new technique that
can reduce the number of random accesses further by taking
advantage of certain regularities that arise in the access
pattern for typical texts. Our main idea is to modify the
standard inversion algorithm to detect and record repeated
substrings in the original string as it is recovered. Subsequent
occurrences of these repetitions are then copied in a cache
friendly way from the already inverted part of the original
string, short-cutting a series of random accesses by the
standard inversion algorithm. The resulting algorithm is
faster than any previous algorithm – up to twice as fast for
very repetitive texts.

Related work: Work on the inverse BWT has been
sparse (at least relative to the work on the forward trans-
form [6]). The known algorithms can be broadly classi-
fied by their space usage. The first study of the inverse
transform by Seward [5], focussed mostly on fast, large
space algorithms — requiring at least n log n bits. The
algorithms we describe in this paper are also large space
algorithms, and so we review Seward’s work in more detail
in Section III. At the other extreme, small space algorithms
for BWT inversion are derived from the literature on com-
pressed full-text indexes [7]. These algorithms require at
most n log σ + o(n log σ) bits, and while their practical
performance continues to be improved [8], small space
algorithms are typically much slower than their large space
counterparts. Recently, Kärkkäinen and Puglisi [9] explored
medium space algorithms, which lie in between small and
large space algorithms. They show that a variety of different
approaches lead to a smooth space-time trade-off between
the two extremes.

Road Map: The paper proceeds as follows. In Sec-
tion II we set notation and revisit basic concepts required
to understand BWT inversion. Section III reviews the large-
space algorithms of Seward [5] and provides some details
of our modern implementations of his work. Section IV
describes our new cache-friendly inversion algorithm, which
we call copy. Section V details our experiments and the
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Figure 1. Matrix M for text S = KALALAVA$

practical performance of the large-space algorithms, and is
followed by some possible directions for future research.

II. PRELIMINARIES

Let S = S[0..n] = S[0]S[1] . . . S[n] be a string (or text)
of n + 1 symbols or characters. The first n symbols of S
are drawn from an ordered alphabet, Σ, of |Σ| = σ distinct
symbols. The final character S[n] is a special “end of string”
character, $, distinct from and lexicographically smaller than
all the other characters in Σ.

For any i ∈ 0..n, the string S[i..n]S[0..i−1] is a rotation
of S. Let M be the (n + 1) × (n + 1) matrix whose rows
are all the rotations of S in lexicographic order. Let F be
the first and L the last column of M , both taken to be
strings of length n+1. The string L is the Burrows–Wheeler
transform of S. An example is given in Figure 1. Note that
F and L (and all other columns in M ) are permutations of
S.

Inverse Transform.: We will not describe here, how L
can be computed from S (the forward trasform), or how L
can be compressed. We will also give the algorithms for
the inverse transform, i.e., the reconstruction of S from L,
without a proof or explanation — these can be found in any
of the large number of descriptions of the Burrows–Wheeler
transform.

For any string X , define the following functions:

charX(j) = X[j]

rankcX(j) = |{i | i < j and X[i] = c}|
rankX(j) = rankX[j]

X (j)

selectX(c, r) = j : charX(j) = c and rankX(j) = r

The notation charX is used instead of X[j] when X might
be stored in a compressed form that does not support trivial
character access.

Two abstract inversion algorithms are given in Figure 2.
The algorithm on the left-hand side reconstructs S from first
symbol to last symbol, and the one on the right reconstructs
S in reverse order. It turns out that the operations used in
the second (reverse order) algorithm are easier and faster to
implement and all the algorithms that follow are variations
of it. Note that the reverse order algorithm will output
the original text left-to-right provided the original text is

reversed prior to applying the forward BWT — an approach
often adopted in practice.

Compact representation of F .: The string F contains
the characters of S in sorted order and all copies of the
same symbol are grouped together allowing a simple and
very compact representation of F . For any symbol c, let
startF (c) be the position of the first occurrence of c in F .
The function startF is clearly a full representation of F . In
practice, operation startF can be implemented as a lookup
table of size σ+1. It can be easily computed by scanning L
to count the number of occurrences of each symbol and then
computing the cumulative sums of the occurrence counts.

Given this representation, selectF is easy to implement:

selectF (c, r) = startF (c) + r.

charF and rankF can be implemented by a binary search
in time O(log σ). All the algorithms that follow use this
representation of F .

III. FOUR EASY PIECES

Figure 3 shows four simple algorithms described by
Seward [5]. All except indexF need 5n bytes of space
and run in linear time.

Algorithm bw94: is from the seminal paper by Burrows
and Wheeler [1]. Let us consider the abstract algorithm on
the right in Figure 2. Three operations are repeatedly called
in the main loop. We have already seen how to implement
selectF , and charL[j] has the trivial implementation as L[j].
This leaves rankL.

Computing the value of rankL(j) based on L alone takes
O(j) time. However, all the values rankL(j), j = 0..n, can
be easily computed in O(n) time in sequential order by
scanning L while keeping account of the number of occur-
rence of each symbol. Algorithm bw94 takes advantage of
this by computing the rank-values in advance and storing
them in an array R. The details can be found, for example,
in [5].

Algorithm basis: is the similar to bw94 but moves
some of the work from the main loop to the preprocessing
loop. This turns out to be a little faster in practice in our
experiments while Seward’s results were the opposite.

Algorithms mergedRL and mergedTL: are variations
of bw94 and basis, respectively. They are the same
algorithms except the array L is merged with the other
main array, R or T , to form a single array, RL or TL.
The rationale for this is that, in the main loop, the sequence
of accesses to L, R or T is essentially random with a high
likelihood of a cache miss for each access. Merging two
arrays can reduce the number of cache misses to a half,
leading to a significant improvement in speed.

In his implementation1, Seward places the restriction n <
224 which allows R[j] and L[j] to be packed into a single 32-

1Seward calls his algorithm mergedTL but it is mergedRL using our
notation. Our implementation is a proper mergedTL.



1: construct F from L
2: j ← selectL($, 0)
3: for i← 0 to n do
4: S[i]← c← charF (j)
5: r ← rankF (j)
6: j ← selectL(c, r)

1: construct F from L
2: j ← selectL($, 0)
3: for i← n downto 0 do
4: S[i]← c← charL(j)
5: r ← rankL(j)
6: j ← selectF (c, r)

Figure 2. Two abstract algorithms for the inverse Burrows–Wheeler transform, reproduced from [9].

Algorithm bw94
1: Compute startF from L
2: for j ← 0 to n do
3: R[j]← rankL(j)
4: j ← selectL($, 0)
5: for i← n downto 0 do
6: S[i]← c← L[j]
7: r ← R[j]
8: j ← selectF (c, r)

Algorithm basis
1: Compute startF from L
2: for j ← 0 to n do
3: T [j]← selectF (L[j], rankL(j))
4: j ← selectL($, 0)
5: for i← n downto 0 do
6: S[i]← L[j]
7: j ← T [j]

Algorithm mergeRL
1: Compute startF from L
2: for j ← 0 to n do
3: RL[j]← 〈rankL(j), L[j]〉
4: j ← selectL($, 0)
5: for i← n downto 0 do
6: 〈r, c〉 ← RL[j]
7: S[i]← c
8: j ← selectF (c, r)

Algorithm indexF
1: Compute startF from L
2: for j ← 0 to n do
3: T [j]← selectF (L[j], rankL(j))
4: j ← selectF ($, 0)
5: for i← n downto 0 do
6: S[i]← charF (j)
7: j ← T [j]

Figure 3. Four algorithms by Seward [5]

bit word. Because we are interested in larger n in this paper,
we adopt the following variant of mergedTL. Allocate an
array U of n+ dn/4e words. U [j] for j 6= 4( mod 5) stores
a T [j] value, while U [j] for j = 4( mod 5) holds four
symbols (bytes) from L. Although L[j] and T [j] are not
directly adjacent in this arrangement, L[j] is never more
than 12 bytes (three words) away from T [j]: close enough
to be in cache when it is required.

Algorithm indexF: is similar to basis but it replaces
charL in the main loop with charF (which requires mov-
ing the starting point from selectL($, 0) to selectF ($, 0)).
The time complexity becomes O(n log σ) since charF is
implemented by a binary search over startF , but it is fast
in practice as startF fits in the cache. The advantage is
that L is no more needed in the main loop. Thus the space
requirement can be reduced to 4n bytes.

IV. FASTER INVERSION

The fastest of the algorithms we have seen so far is
mergedTL. Experiments by Seward [5] and by us indicate
that its running time is dominated by the cache misses
caused by the accesses to the array TL. Since the accesses
are essentially random, each access is likely to cause a
cache miss, and there does not seem to be a way to avoid

at least one cache miss on most rounds of the main loop.
Indeed, Seward argues that “the maximum speed of BWT
decompression is unavoidably constrained by the rate at
which cache misses are serviced” [5]. In this section, we
show that there is a way to reduce the number of cache
misses.

Let j be a position in L such that L[j] = L[j + 1].
By definition of rank, we have that rankL(j + 1) =
rankL(j) + 1. Let next(j) denote the position accessed after
j in the main loop of the basic algorithms. Then next(j) =
selectF (L[j], rankL(j)) = startF (L[j]) + rankL(j). There-
fore, next(j+1) = next(j)+1. Furthermore, if L[next(j)] =
L[next(j+1)], we will have that next2(j+1) = next2(j)+1,
and so on. In other words, two access paths sometimes stay
together for a while; we call this a chain. The traversal of the
two paths of a chain will reconstruct the same substring into
two different places in the text. Thus a chain corresponds
to a repetition in the text. Highly repetitive texts have many
and/or long chains.

Our new algorithm copy is a modification of mergedTL
and does what mergedTL does most of the time. However,
it will watch for chains by comparing L[j] and L[j + 1] at
each step. When the algorithm finds a chain longer than one,
say starting from j and j + 1 and ending at k and k + 1, it



Table I
DATA SETS USED FOR EMPIRICAL TESTS. FOR EACH TYPE OF DATA

(DNA, XML, ENGLISH, PROT, SOURCE) A 50MB, 100MB AND 200MB
FILE WAS USED. THE STATISTICS ARE FOR THE 50MB FILE, BUT ARE

INDICATIVE FOR THE LARGER FILES TOO.

Data set name Sizes (Mb) |Σ| H0 mean LCP
XML 50,100,200 97 5.23 44
DNA 50,100,200 4 1.98 31
ENGLISH 50,100,200 239 4.53 2,221
SOURCE 50,100,200 230 5.54 168
PROT 50,100,200 27 4.20 166

performs the following procedure to store the chain. Let i
be the text position to where L[j] was copied and let ` be
the length of the chain. The values k, i and ` are written
to T [j], T [j+ 1] and T [k], respectively, (the original values
are not needed any more), and the position j+ 1 is marked.
When the algorithm later arrives to position j + 1 and finds
it marked, the algorithm recovers k, i and ` by accessing
T [j], T [j + 1] and T [k], and jumps directly to k + 1 thus
avoiding the random accesses that normally would occur
between j + 1 and k + 1. The corresponding symbols are
found in S[i..i+`−1] and copied to the current text position.
copy runs in linear time and needs 6n bytes of space;

the additional n bytes is needed for the text S, which needs
to be kept in memory due to the copying.

As described, copy only follows one chain at a time. If a
triple (or longer run) of symbols appears in the BWT, there
is an opportunity to follow three (or more) chains simultane-
ously. Intuitively, following multiple chains simultaneously
seems likely to be beneficial, but makes implementation
more difficult. We will explore this idea further in the full
paper.

V. EXPERIMENTAL RESULTS

For testing we used the files listed in Table I 2. All tests
were conducted on a 3.0 GHz Intel Xeon CPU with 4Gb
main memory and 1024K L2 Cache. The machine had no
other significant CPU tasks running. The operating system
was Fedora Linux running kernel 2.6.9. The compiler was
g++ (gcc version 3.4.4) executed with the -O3 option. Times
given are the minima of three runs and were recorded with
the standard C getrusage function.

Experiments measured the time to invert the BWT. Fol-
lowing previous experimental methodology [5], [9] we did
not count the time to read the transformed text in from file
and the inverted text was written to an array, held in memory.
The algorithms and their space requirements are summarized
in Table II. The runtimes are shown in Table III.

To avoid clutter we measured only large space inversion
algorithms. However, the implementation of mtl is identical
to that used in [9], allowing a comparison to the more space-
efficient approaches of that paper to be made.

2Available from http://pizzachili.dcc.uchile.cl/.

Table II
ALGORITHMS AND THEIR SPACE REQUIREMENTS. THE SPACE

REQUIREMENTS DO NOT INCLUDE THE OUTPUT ARRAY, EXCEPT FOR
THE copy ALGORITHM, WHICH MAKES USE OF IT DURING INVERSION.
SPACE FOR wtree METHOD INCLUDES n log σ WORKING SPACE USED

TO HOLD L DURING TREE CONSTRUCTION.

Alg. Space Description
basis 5n bytes Seward’s basic inversion algorithm [5]
bw94 5n bytes Original algorithm from [1]
mtl 5n bytes Large n version of mergedTL in [5]
indexF 4n bytes Large n version of indexF in [5]
copy 6n bytes Detect and copy repetitions in the output string

Table III
RUNTIMES (IN SECONDS) FOR THE VARIOUS INVERSION ALGORITHMS.

Dataset basis bw94 mtl indexF copy
XML-50 9.42 10.49 8.61 9.78 6.94
XML-100 21.34 23.02 18.59 21.43 14.84
XML-200 47.01 49.63 39.24 46.32 31.08

DNA-50 10.80 11.83 9.91 9.67 9.66
DNA-100 25.52 26.30 22.30 22.44 21.92
DNA-200 57.46 58.95 48.48 48.82 46.92

ENGLISH-50 10.55 11.50 9.60 11.22 7.43
ENGLISH-100 24.42 25.67 21.43 24.83 17.67
ENGLISH-200 55.11 57.43 46.24 53.64 38.43

PROT-50 9.78 10.65 8.78 9.59 8.40
PROT-100 23.58 24.74 20.65 22.63 18.87
PROT-200 51.19 54.69 42.96 46.78 38.37

SOURCE-50 7.50 8.41 6.67 8.99 6.07
SOURCE-100 16.57 18.29 14.43 19.10 12.85
SOURCE-200 37.23 40.20 31.44 41.03 27.84

VI. DISCUSSION

copy is consistently the fastest algorithm, indicating that
the extra complexity of identifying chains pays off. To test
the idea that copy benefits from repetitions in the text, we
created a highly repetitive 100Mb file by concatenating two
copies of ENGLISH-50. mtl required 24.72 seconds, while
copy took just 13.58 seconds: the entire second half of the
string being copied from the first half.

We found indexF to be substantially more competitive
than Seward did in his experiments. Particularly on small
alphabets (DNA, PROT), the binary searches over the symbol
count array are relatively cheap, and indexF approaches
(and once beats) the speed of mtl, while using 1 byte per
symbol less.

VII. FUTURE DIRECTIONS

As already mentioned in Section IV, following multiple
chains (corresponding to runs of the same symbol in L) at
the same time would seem beneficial, and we are currently
pursuing such an implementation.

We believe that there are further possibilities to im-
prove BWT inversion algorithms, through new techniques,
through improvement of the techniques described here, but
particularly by combining different techniques in the same



algorithm, and we will continue our investigations in this
direction.

An interesting avenue for future work is parallel inversion.
The idea is to reconstruct the text S at several places
simultaneously. The parallelism can be explicit, with threads,
enabling BWT inversion algorithms to benefit from modern,
multicore CPU architectures; or implicit, by programming
to the out-of-order execution of the CPU, which has proved
successful for string sorting and LCP array construction [10],
[11].

Finally, we note that the manner in which algorithm
copy copies substrings from the already decoded parts
of the string to form new output is reminiscent of the
famous LZ77 dictionary compression algorithm. It would be
interesting if this apparent relationship between BWT and
LZ77 could be formalized — doing so may reveal a deep
connection between these two fundamental compression and
string processing tools.
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