
Slashing the Time for BWT Inversion

Juha Kärkkäinen1,∗ Dominik Kempa1,∗ Simon J. Puglisi2,†

1 Department of Computer Science, University of Helsinki, Finland
{juha.karkkainen,dominik.kempa}@cs.helsinki.fi

2 Department of Informatics, King’s College London, London, United Kingdom
simon.puglisi@kcl.ac.uk

Abstract

Inverting the Burrows-Wheeler transform (BWT) is a bottleneck in BWT-
based decompressors. The state-of-the-art inversion algorithm runs in linear
time but is slow in practice due to CPU-cache misses. For more than a decade
these cache misses have been thought to be inherent to BWT inversion. We
show how to reduce the number of cache misses by a factor of nearly two, and
simultaneously the cost of cache misses by another factor of two, obtaining a
consistent speed up by a factor of 2.3–4. We can do even better if the data
is highly repetitive. We describe an algorithm that achieves an asymptotic
reduction in cache misses in theory and is the fastest algorithm in practice for
such data.

1 Introduction

The Burrows-Wheeler transform (BWT) [2] is a lossless, invertible transform of a
string which makes the string easy to compress using textbook techniques [11]. Since
its discovery in 1994 the BWT has been the subject of heavy research both for com-
pression, and in the field of pattern matching, where it has been deeply linked with
the suffix array [10], to produce fast compressed indexes [12].

Early work on the BWT focussed on how to best compress the transformed string
(see [1]) and this work has matured to the point that BWT-based compressors are
now state-of-the-art [4]. Another heavily researched aspect is how to perform the
transform itself, also known as the suffix sorting problem [13, 6, 3].

An aspect of the BWT that has received relatively little attention is the efficient
inversion of the transformed string, which is the final step in any BWT-based de-
compressor. The basic inversion algorithm [2] is simple (roughly 10 neat lines of C
code) and works in linear time, but in practice is slow due to a non-local memory
access pattern which causes at least one CPU-cache miss for each letter decoded. This

∗Supported by Academy of Finland grant 118653 (ALGODAN).
†Supported by Newton Fellowship.

1

property of the basic algorithm was first elucidated by Seward [14], and in the same
paper he gave an algorithm requiring at most n cache misses, which he conjectured
“represent[ed] a realistic upper bound on inversion performance”. For more than a
decade these CPU-cache misses have been thought to be inherent to BWT inversion.

Our contribution. In this paper we describe ways to avoid cache misses and speed
inversion. Our first technique is based on a super-alphabet, effectively decoding
two characters at a time. A detailed theoretical analysis proves that it reduces the
number of cache misses by nearly a factor of two, and extensive experiments show
a corresponding speed up in practice. An improvement of similar size is obtained
by starting the inversion simultaneously at multiple positions. This technique does
not reduce the number of cache misses but does reduce the cost of cache misses by
taking advantage of the out-of-order execution capabilities of modern CPUs. The
combination of these techniques gives an algorithm that is consistently 2.3–4 times
faster than Seward’s algorithm in practice.

Our second technique takes advantage of repeated factors in the original string.
Such repetitions manifest as runs of equal characters in the inverted string [15]. We
recover repetition information from the runs and then, during inversion, we copy
repeated factors in a cache-friendly way. For highly repetitive strings — those with a
sublinear number of runs — the algorithm achieves an asymptotic reduction in cache
misses, and can reach optimality in the cache-oblivious model. Experiments show
that the algorithm is the fastest in practice for highly repetitive data.

Related work. Two previous works study fast inversion of the BWT. The first,
due to Seward [14], highlights the presence of cache-misses in the original inversion
algorithm of [2]. Seward describes a simple trick to reduce these cache-misses by
half, but argues that any further reduction is unlikely. Recently, Kärkkäinen and
Puglisi [8] did manage to reduce cache-misses further by a factor of up to two for
repetitive strings. Their copy algorithm is the inspiration for some of the techniques
described in this paper. Both [14] and [8], as well as this paper, study “large-space”
algorithms, which invert fast, but use at least n log n bits of working memory. The
literature on compressed indexing (see [12, 9]) contains several techniques for inverting
in “small-space”, at the cost of runtime. Finally, Kärkkäinen and Puglisi [7], describe
several “medium-space” inversion algorithms which occupy the area of the space-time
spectrum inbetween the two extremes.

2 Preliminaries

A string T[0..n − 1] = T[0]T[1] . . .T[n − 1] is a finite sequence of characters from
alphabet Σ = {0, 1, . . . , σ − 1}. We assume that σ = O(n) and use σT to denote the
number of distinct characters occurring in T. We assume that T[n − 1] = 0 and 0
does not appear elsewhere in T. We use $ to denote 0 and letters for other symbols.
A prefix of T is a string of the form T[0..i], for i ∈ 0..n−1. Analogously, T[i..n−1] is
called a suffix of T. By TR we denote the reverse of string T, i.e., TR[i] = T[n−1− i]
for i ∈ 0..n− 1.

We define the rotation of T as a string T(i) = T[i..n− 1]T[0..i− 1], for i ∈ 0..n−1.

2

F L
$ B A N A N A

A $ B A N A N

A N A $ B A N

A N A N A $ B

B A N A N A $

N A $ B A N A

N A N A $ B A

A

N

N

B

$

A

A

F
$

A

A

A

B

N

N

L

Figure 1: BWT matrix M and LF mapping for T = BANANA$

For i < 0 or i ≥ n we set T(i) = T(i mod n) . Let M be the n × n matrix, whose
rows are all the rotations of T in lexicographical order. We denote the rows by
M[i], i ∈ 0..n − 1. Let F and L be the strings formed by characters from first and
(respectively) last column of M. The string L is the Burrows-Wheeler transform
of T (BWT). We define the LF mapping LF[0..n − 1] as the permutation satisfying
M[LF[i]] =M[i](−1) for i ∈ 0..n− 1. An example is shown in Figure 1.

BWT inversion, i.e., reconstructing T from L, is based on the following result.

Theorem 1 ([2]). For each i ∈ 0..n− 1,

• LF[i] = C[L[i]]+rankL(i), where C[k] is the number of characters {0, . . . , k−1}
occurring in L and rankL(i) is the number of times L[i] occurs in L[0..i− 1]

• TR[i] = L[LFi[p0]], where L[p0] = $.

Cache Oblivious Model. We analyze the cache complexity of our algorithms
under the Cache Oblivious model [5], where we have a fully associative cache of M
words, cache lines of B words and an optimal replacement policy. The parameters
M and B are not known to the algorithms. The analysis is based on identifying the
following kinds of memory access sequences:

Sequential accesses: A sequence of accesses to k consecutive memory words in a
sequential order causes at most 1 + d(k− 1)/Be cache misses and consumes one
cache line.

Small data structure accesses: A sequence of accesses to a data structure of size
K < M words causes at most 1 + d(K − 1)/Be cache misses and consumes at
most 1 + d(K − 1)/Be cache lines.

Multiple access sequences may be interleaved as long as the total number of cache
lines consumed by them at any point in time is less than M/B.

3 Constant Factor Speedup

In this section, we take Seward’s fastest algorithm Mtl (mergedTL in [14]) as a
starting point. It is based directly on Theorem 1 and is shown in Figure 2. We first

3

Mtl(L) Mtl-sa(L)
1: LF←ComputeLF(L) 1: LF←ComputeLF(L)
2: p← locate(L, $); l← 0 2: LL←ComputeLL(L,LF)
3: while l < n do 3: LF2 ←ComputeLF2(LF)

4: TR[l]← L[p] 4: p← locate(L, $); l← 0
5: p← LF[p]; l← l + 1 5: while l + 1 < n do

6: return TR 6: TR[l..l + 1]← LL[2p..2p+ 1]
7: p← LF2[p]; l← l + 2

ComputeCounts(L) 8: if l = n− 1 then

1: for i← 0 to σ do 9: TR[l]← LL[2p]

2: C[i]← 0 10: return TR

3: for i← 0 to n− 1 do
4: C[L[i] + 1]← C[L[i] + 1] + 1 ComputeLL(L,LF)
5: for i← 1 to σ − 1 do 1: for i← 0 to n− 1 do
6: C[i]← C[i] + C[i− 1] 2: LL[2i]← L[i]
7: return C 3: LL[2i+ 1]← L[LF[i]]

4: return LL
ComputeLF(L)
1: C←ComputeCounts(L) ComputeLF2(LF)
2: for i← 0 to n− 1 do 1: for i← 0 to n− 1 do
3: LF[i]← C[L[i]] 2: LF2[i]← LF[LF[i]]
4: C[L[i]]← C[L[i]] + 1 3: return LF2

5: return LF

Figure 2: Basic and super-alphabet BWT inversion.

show how to nearly half the number of cache misses, and then how to reduce the cost
of cache misses by another factor of about two.

Reducing number of cache misses. To half the number of cache misses, we
employ a technique called super-alphabet : We process two characters at a time in
the main loop. We precompute an array LL of size 2n, where LL[2i] = L[i] and
LL[2i+ 1] = L[LF[i]]. Note that L[LF[i]] is the successor of L[i] in TR. We also need
the array LF2, where LF2[i] = LF[LF[i]]. The algorithm, which we call Mtl-sa, is
shown in Figure 2.

A key detail omitted in the pseudocode of Mtl is that the arrays L and LF are
stored interleaved so that L[p] and LF[p] are next to each other and the accesses to
them on lines 4 and 5 cause only one cache miss instead of two. Similar interleaving
is applied to the arrays LL and LF2 in Mtl-sa.

Theorem 2. Algorithm Mtl runs in O(n) time and causes at most n+O(n
B

) cache
misses provided that σ+O(B) ≤M . Algorithm Mtl-sa runs in O(n) time and causes
at most dn/2e+O(σT + n

B
) cache misses provided that max(σ, σTB) +O(B) ≤M .

Proof. The linear time complexity of both algorithms is trivial.
ComputeCounts and ComputeLF make sequential accesses to L and LF caus-

ing O(n/B) cache misses, and non-sequential accesses to C causing O(σ/B) cache

4

misses provided that σ ≤M −O(B).
The same analysis applies to ComputeLL and ComputeLF2 except for the

accesses that use LF[i] as an address. It is easy to see from ComputeLF that LF
contains σT interleaved increasing sequences. Thus the number of cache misses caused
by using LF[i] as an address is O(σT +n/B) provided that the cache is large enough.
The number of cache lines consumed is σT +O(1).

In the main algorithms, the only non-sequential accesses are those using p as an
address. Due to the interleaving of the arrays, they cause at most n cache misses in
Mtl and at most dn/2e cache misses in Mtl-sa.

Reducing cost of cache misses. For a further speedup, we divide the text into
p parts: T[0 . . . n

p
− 1], T[n

p
. . . 2n

p
− 1], . . . , T[(p−1)n

p
. . . n − 1] and reconstruct each

part separately.1 The reconstructions are independent of each other and could be
performed in parallel. However, we use just one thread of execution that switches
between the parts and still obtain a speedup by a factor of about two using p = 8.
The explanation is out-of-order execution: While one instruction has to wait for a
cache miss, the CPU can execute subsequent instructions that are independent of the
waiting instruction.

Reducing space. Our implementation of ComputeLL and ComputeLF2 differs
from the one given in Figure 2. The purpose is to reduce space by avoiding the storage
of the LF array. ComputeLL computes LF[i] on demand the same way it is done
in ComputeLF. ComputeLF2 is the same as ComputeLF but with L replaced
by LL and C replaced by CC, which stores the counts for pairs of characters. This
increases the preprocessing cache complexity to O(σT + (n + σ2)/B) cache misses
using max{σT + σ/B, σ2/B}+O(1) cache lines.

4 Asymptotic Speedup for Repetitive Data

In this section, we describe an algorithm called Precopy that takes advantage of
repetitions in the data.

A maximal sequence of consecutive equal characters in L is called a run. It is well
known that repetitions in T manifest as runs in L [15]. Kärkkäinen and Puglisi [8]
used runs to speed up BWT inversion based on the following property.

Lemma 3 ([8]). For any i ∈ 1..n− 1 such that L[i] = L[i− 1], LF[i] = LF[i− 1] + 1.

Here we generalize the concept of runs by defining an s-run as a maximal range
b..e such that all rows inM[b..e] have a common suffix of length s. Thus runs in L are
1-runs by our definition. An s-run of length k means that the same string of length s
occurs at least k times in T. Precopy takes advantage of this by copying an earlier
occurrence when possible and thus avoiding the cache misses of normal decoding.

1We assume that the L positions corresponding to the end positions of the parts are stored in
the compressed file.

5

Computing s-runs. The lcs array LCS = LCS[0..n− 1] is an array defined byM.
Let lcs(x, y) denote the length of the longest common suffix of strings x and y. For
every j ∈ 1..n− 1,

LCS[j] = lcs(M[j − 1],M[j]).

We define LCS[0] = LCS[n] = 0 so we can concisely characterize maximal s-runs in
terms of the LCS array.

Observation 4. The range b..e is an s-run if and only if LCS[b] < s, LCS[e+ 1] < s
and for every k ∈ b+ 1..e, LCS[k] ≥ s.

Define Qs = {i ∈ 0..n− 1 | LCS[i] = s} and Rs = ∪j∈0..s−1Qj. Then Rs is exactly the
set of starting positions of s-runs.

A key to fast computation of s-runs is the following property, which is a direct
consequence of the definitions of the LCS array and the LF mapping, and Lemma 3.

Lemma 5. For any i ∈ 0..n− 1,

LCS[i] =

{
0 if i = 0 or L[i] 6= L[i− 1]
LCS[LF[i]] + 1 otherwise

Thus the set Qs can be efficiently computed, given the values of Qs−1, as presented
below (the proof can be derived from Lemma 5).

Corollary 6. For any s > 0, Qs = {LF−1[i] | i ∈ Qs−1 and LF−1[i] /∈ Q0}.

Let rs = |Rs| be the number of s-runs and let r = r1 = |Q0|. From the above we see
that |Qi+1| ≤ |Qi|, which implies rs ≤ |Q0|s = rs.

Theorem 7. The set Rs can be computed in O(n) time causing O(rs + n
B

) cache
misses provided that σ + σTB +O(B) ≤M .

Proof. The values of LF−1 can be computed by changing the line 3 of ComputeLF to
LF−1[C[L[i]]]← i. An analysis similar to Theorem 2 shows that the cache complexity
is O(σT + (n + σ)/B) cache misses using σ/B + σT + O(1) cache lines. Note that
σT ≤ r ≤ rs. The set Q0 can be computed by one pass over the input causing O(n/B)
cache misses. Computing Qj for j > 0 takes O(|Qj−1|) time and cache misses. The
set Rs, represented as a bit vector of size n, can be computed in O(n) time causing
O(n/B + rs) cache misses.

Inverting BWT. The Precopy algorithm for inverting BWT is listed in Figure 3.
Like the other algorithms, it maintains the invariant p = LFl[p0], where L[p0] = $,
but additionally it stores the value LFl[p0] into powLF[l]. When it visits an s-run for
the first time (lines 14–17), it operates as Mtl but additionally records the output
position l in an array LTs. On a later visit to the same s-run (lines 18–26), it copies
the next s characters TR[l..l + s− 1] from the position recorded at the first visit. In
addition, the algorithm needs to fill powLF[l..l + s− 1] and to perform the operation
p← LFs[p]. This is done using the following generalization of Lemma 3.

6

Precopy(L, s) 14: if visited[i] = false then
1: LF←ComputeLF(L) 15: LTs[i]← l; visited[i]← true

2: Rs ←ComputeRs(L, s) 16: TR[l]← L[p]; powLF[l]← p
3: for i← 0 to |Rs| − 1 do 17: p← LF[p]; l← l + 1
4: visited[i]← false 18: else
5: runid[0]← 0 19: lf ← LTs[i]
6: for i← 1 to n− 1 do 20: pf ← powLF[lf]
7: runid[i]← runid[i− 1] 21: s′ ← min(n− l, s)
8: if i ∈ Rs then 22: for k ← 0 to s′ − 1 do

9: runid[i]← runid[i] + 1 23: TR[l + k]← TR[lf + k]
10: p← locate(L, $) 24: powLF[l + k]← powLF[lf + k] + (p− pf)
11: l← 0 25: p← powLF[lf + s′] + (p− pf)
12: while l < n do 26: l← l + s′

13: i← runid[p] 27: return TR

Figure 3: Precopy algorithm. We assume that ComputeRs was implemented as ex-
plained in Theorem 7.

Lemma 8. For any s-run b..e, and any i, j ∈ b..e, k ∈ 0..s, LFk[j] = LFk[i] + (j− i).

Theorem 9. Precopy runs in O(n) time and causes O(n
s

+ rs + n
B

) cache misses
provided that σ + σTB +O(B) ≤M .

Proof. The proof of linear time complexity is trivial.
ComputeLF was analyzed in Theorem 2 and ComputeRs in Theorem 7. The

instructions in lines 3–11 are sequential accesses causing O(n/B) cache misses. The
main loop executes lines 15–17 only when the s-run is visited for the first time,
causing O(rs) cache misses in total. The other case (lines 19–26) increases l by s,
and hence will happen at most dn

s
e times. Each execution performs O(s/B) cache

misses, causing O(n
B

+ n
s
) cache misses overall.

Setting s =
√

n
r
, we have n

s
= O(

√
rn) and rs ≤ rs = O(

√
rn).

Corollary 10. Precopy with s =
√

n
r

causes O(
√
rn+ n

B
) cache misses.

Note that if r = o(n), then
√
rn = o(n). Thus we achieve an asymptotic reduction

in cache misses for highly repetitive strings. If r = O(n/B2), the number of cache
misses is O(n/B), which is optimal.

Implementations. To save space, the information about an s-run b..e, that is
stored in Rs, runid, visited, and LTs in the pseudocode, is encoded within the LF[b..e]
in the actual implementation of Precopy. The encoding uses the fact that the
LF values within the s-run form an increasing sequence (Lemma 3) and do not all
need to be stored explicitly. Another implementation Precopy-LCS computes and
stores information about some LCS values larger than s in the same space, and can
sometimes copy more than s characters at a time. We omit further details due to lack
of space, but Theorem 9 and Corollary 10 hold for these implementations too.

7

Name σT n/r n/220 Source Description

dna 16 1.59 100 S Human genome
english 239 2.93 100 S Gutenberg Project
dblp.xml 97 6.84 100 S DBLP bibliography

dna.001.1 5 61.10 100 R/PR 100 × 1MB dna
english.001.2 106 72.99 100 R/PR 100 × 1MB english
dblp.xml.0001.1 89 436.23 100 R/PR 100 × 1MB dblp.xml

kernel 160 92.79 246 R/R 36 × Linux Kernel sources
world leaders 89 80.51 44 R/R 84 × CIA World Leaders
influenza 15 51.28 147 R/R 78041 × virus genome

rs.13 2 2889963 206 R/A Run-Rich String Sequence

Table 1: Files used in the experiments. The files are from the Pizza & Chili standard
corpus2 (S) and the repetitive corpus3 (R). The repetitive corpus contains artificially gen-
erated sequences (A), files with several variants of the same data (R), and files created
from standard corpus files by concatenating 100 copies of a 1MB prefix and mutating them
randomly (PR). The value n/r, the average length of a run in the BWT, is a good measure
of repetitiveness for our purposes.

Algorithm Space (bytes) Description

mtl 5n+ n mergedTL from [14]
mtl-sa 6n+ n mtl with super-alphabet technique
mtl-8 5n+ n mtl starting from 8 positions simultaneously
mtl-sa-8 6n+ n combination of the two preceding versions
copy 6n detect and copy repetitions in output, from [7]

precopy 10n find and use s-runs for s =
√
n/r

precopy-lcs 10n utilize LCS values in precopy

Table 2: Algorithms and their memory requirements. We assume that an integer/pointer
requires 4 bytes and character requires 1 byte for storage. The “+n” means that the memory
requirement could be reduced by n bytes by reading the input from disk and/or writing the
output to disk.

5 Experiments

We performed experiments with the algorithms listed in Table 2 using the files listed
in Table 1. All tests were conducted on a 2.66GHz Intel Core2 Duo CPU with 4GB
main memory and 4096K L2 Cache. The machine had no other significant CPU tasks
running. The operating system was Linux (Ubuntu 10.04) running kernel 2.6.38. The
compiler was g++ (gcc version 4.4.3) executed with the -O3 option. The times given
are the minima of three runs and were recorded with the C getrusage function.

The runtimes are reported in Table 3. They show the effectiveness of the super-
alphabet technique and multiple starting points. Each one, alone, gives a significant
time reduction, super-alphabet: 38–47 %, multiple starting points: 31–60 %. The

2http://pizzachili.dcc.uchile.cl/texts.html
3http://pizzachili.dcc.uchile.cl/repcorpus.html

8

Testfile mtl mtl-sa mtl-8 mtl-sa-8 copy precopy precopy-lcs

dna 125.98 71.71 62.84 39.76 136.37 170.89 183.48
english 117.30 67.90 61.89 39.10 105.76 148.96 160.78
dblp.xml 91.83 56.17 56.74 36.33 80.58 81.72 83.35

dna.001.1 128.93 73.24 51.30 32.23 93.84 43.01 33.28
english.001.2 125.98 71.71 54.07 34.14 95.74 49.87 36.43
dblp.xml.0001.1 124.93 71.04 50.64 32.32 89.55 27.94 22.12

kernel 124.21 72.95 68.07 43.61 86.17 39.58 25.70
world leaders 112.20 64.72 50.24 32.36 81.33 40.87 30.87
influenza 97.28 59.88 66.92 41.72 80.87 50.32 41.66

rs.13 156.49 83.46 69.71 49.04 102.97 15.96 14.57

Table 3: Times for inverting the BWT. The times are nanoseconds per character and do
not include any reading from or writing to disk.

Testfile copy precopy precopy-lcs

dna 7.45 11.01 11.01
english 24.73 26.98 26.98
dblp.xml 28.56 51.05 57.76

dna.001.1 36.05 84.65 94.86
english.001.2 33.10 84.99 94.40
dblp.xml.0001.1 36.68 94.10 98.22

kernel 33.12 87.19 97.57
world leaders 34.60 85.44 95.15
influenza 34.63 81.20 91.60

rs.13 42.91 99.91 99.97

Table 4: The percentage of data that is sequentially copied (i.e., was processed “as fast
as possible”, causing O(1) cache misses per every B symbols decoded) for repetitive-input-
driven algorithms.

combination of both achieves 57–75 % (68 % on average) time reduction. The smallest
time reduction was observed on the testfiles that mtl processed exceptionally fast
(dblp.xml and influenza).

On repetitive data, the algorithms designed for repetitive input easily beat mtl
and hence clearly take advantage of the text structure. The precopy-lcs is the fastest,
achieving a time reduction of 57–91 % (75 % on average) against mtl and clearly beat-
ing even mtl-sa-8 on the most repetitive files. The advantage of the precopy algorithms
over the copy algorithm (the previous champion on repetitive input) is largely due
to the amount of data that is sequentially copied from the already generated part of
the output. The copy algorithm can never copy more than a half of the data. The
details are outlined in Table 4.

9

References

[1] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays, and Pattern Matching. Springer, 2008.

[2] M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

[3] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and compression
in external memory. In Proc. 9th Latin American Theoretical Informatics Symposium,
volume 6034 of LNCS, pages 697–710. Springer, 2010.

[4] P. Ferragina and G. Manzini. On compressing the textual web. In Proc. 3rd ACM
International Conference on Web Search and Data Mining, pages 391–400. ACM, 2010.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-
rithms. In Proc. 40th Annual Symposium on Foundations of Computer Science, pages
285–298, 1999.

[6] J. Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. Theoretical
Comput. Sci., 387(3):249–257, 2007.

[7] J. Kärkkäinen and S. J. Puglisi. Medium-space algorithms for inverse BWT. In
Proc. 18th European Symposium on Algorithms, volume 6346 of LNCS, pages 451–
462. Springer-Verlag, 2010.

[8] J. Kärkkäinen and S. J. Puglisi. Cache-friendly Burrows-Wheeler inversion. In Proc.
1st International Conference on Data Compression, Communication and Processing,
pages 38–42, 2011.

[9] J. Kärkkäinen and S. J. Puglisi. Fixed block compression boosting in FM-indexes. In
Proc. 18th Symposium on String Processing and Information Retrieval, volume 7024
of LNCS, pages 174–184. Springer-Verlag, 2011.

[10] U. Manber and G. W. Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

[11] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430,
2001.

[12] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), 2007.

[13] S. J. Puglisi, W. F. Smyth, and A. Turpin. A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39(2):1–31, 2007.

[14] J. Seward. Space-time tradeoffs in the inverse B-W transform. In Proc. IEEE Data
Compression Conference, pages 439–448. IEEE Computer Society, 2001.

[15] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed indexes
are superior for highly repetitive sequence collections. In Proc. 15th Symposium on
String Processing and Information Retrieval, volume 5280 of LNCS, pages 164–175.
Springer, 2008.

10

