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Abstract. A suffix array represents the suffixes of a string in sorted
order. Being a simpler and more compact alternative to suffix trees, it
is an important tool for full text indexing and other string processing
tasks. We introduce the skew algorithm for suffix array construction over
integer alphabets that can be implemented to run in linear time using
integer sorting as its only nontrivial subroutine:
1. recursively sort suffixes beginning at positions i mod 3 �= 0.
2. sort the remaining suffixes using the information obtained in step one.
3. merge the two sorted sequences obtained in steps one and two.
The algorithm is much simpler than previous linear time algorithms
that are all based on the more complicated suffix tree data structure.
Since sorting is a well studied problem, we obtain optimal algorithms
for several other models of computation, e.g. external memory with par-
allel disks, cache oblivious, and parallel. The adaptations for BSP and
EREW-PRAM are asymptotically faster than the best previously known
algorithms.

1 Introduction

The suffix tree [39] of a string is a compact trie of all the suffixes of the string. It
is a powerful data structure with numerous applications in computational biol-
ogy [21] and elsewhere [20]. One of the important properties of the suffix tree is
that it can be constructed in linear time in the length of the string. The classical
linear time algorithms [32,36,39] require a constant alphabet size, but Farach’s
algorithm [11,14] works also for integer alphabets, i.e., when characters are poly-
nomially bounded integers. There are also efficient construction algorithms for
many advanced models of computation (see Table 1).

The suffix array [18,31] is a lexicographically sorted array of the suffixes of a
string. For several applications, the suffix array is a simpler and more compact
alternative to the suffix tree [2,6,18,31]. The suffix array can be constructed in
linear time by a lexicographic traversal of the suffix tree, but such a construction
loses some of the advantage that the suffix array has over the suffix tree. The
fastest direct suffix array construction algorithms that do not use suffix trees
require O(n log n) time [5,30,31]. Also under other models of computation, direct
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algorithms cannot match suffix tree based algorithms [9,16]. The existence of an
I/O-optimal direct algorithm is mentioned as an important open problem in [9].

We introduce the skew algorithm, the first linear-time direct suffix array
construction algorithm for integer alphabets. The skew algorithm is simpler than
any suffix tree construction algorithm. (In the appendix, we give a 50 line C++
implementation.) In particular, it is much simpler than linear time suffix tree
construction for integer alphabets.

Independently of and in parallel with the present work, two other direct
linear time suffix array construction algorithms have been introduced by Kim et
al. [28], and Ko and Aluru [29]. The two algorithms are quite different from ours
(and each other).

The skew algorithm. Farach’s linear-time suffix tree construction algo-
rithm [11] as well as some parallel and external algorithms [12,13,14] are based
on the following divide-and-conquer approach:

1. Construct the suffix tree of the suffixes starting at odd positions. This is
done by reduction to the suffix tree construction of a string of half the
length, which is solved recursively.

2. Construct the suffix tree of the remaining suffixes using the result of the first
step.

3. Merge the two suffix trees into one.

The crux of the algorithm is the last step, merging, which is a complicated pro-
cedure and relies on structural properties of suffix trees that are not available
in suffix arrays. In their recent direct linear time suffix array construction algo-
rithm, Kim et al. [28] managed to perform the merging using suffix arrays, but
the procedure is still very complicated.

The skew algorithm has a similar structure:

1. Construct the suffix array of the suffixes starting at positions i mod 3 �= 0.
This is done by reduction to the suffix array construction of a string of two
thirds the length, which is solved recursively.

2. Construct the suffix array of the remaining suffixes using the result of the
first step.

3. Merge the two suffix arrays into one.

Surprisingly, the use of two thirds instead of half of the suffixes in the first
step makes the last step almost trivial: a simple comparison-based merging is
sufficient. For example, to compare suffixes starting at i and j with i mod 3 = 0
and j mod 3 = 1, we first compare the initial characters, and if they are the
same, we compare the suffixes starting at i + 1 and j + 1 whose relative order is
already known from the first step.

Results. The simplicity of the skew algorithm makes it easy to adapt to other
models of computation. Table 1 summarizes our results together with the best
previously known algorithms for a number of important models of computation.
The column “alphabet” in Table 1 identifies the model for the alphabet Σ.
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In a constant alphabet, we have |Σ| = O(1), an integer alphabet means that
characters are integers in a range of size nO(1), and general alphabet only assumes
that characters can be compared in constant time.

Table 1. Suffix array construction algorithms. The algorithms in [11,12,13,14] are
indirect, i.e., they actually construct a suffix tree, which can be then be transformed
into a suffix array

model of computation complexity alphabet source
RAM O(n logn) time general [31,30,5]

O(n) time integer [11,28,29],skew

External Memory [38]
D disks, block size B,
fast memory of size M

O
(

n
DB

logM
B

n
B
log2 n

)
I/Os

O
(
n logM

B

n
B
log2 n

)
internal work

integer [9]

O
(

n
DB

logM
B

n
B

)
I/Os

O
(
n logM

B

n
B

)
internal work

integer [14],skew

Cache Oblivious [15]
M/B cache blocks of size B

O
(

n
B
logM

B

n
B
log2 n

)
cache faults general [9]

O
(

n
B
logM

B

n
B

)
cache faults general [14],skew

BSP [37]
P processors

h-relation in time L + gh

O
(

n log n
P

+ (L + gn
P
) log3 n log P

log(n/P )

)
time general [12]

O
(

n log n
P

+ L log2 P + gn log n
P log(n/P )

)
time general skew

P = O(
n1−ε

)
processors O(

n/P + L log2 P + gn/P
)
time integer skew

EREW-PRAM [25] O(
log4 n

)
time, O(n logn) work general [12]

O(
log2 n

)
time, O(n logn) work general skew

arbitrary-CRCW-PRAM [25] O(logn) time, O(n) work (rand.) constant [13]

priority-CRCW-PRAM [25] O(
log2 n

)
time, O(n) work (rand.) constant skew

The skew algorithm for RAM, external memory and cache oblivious models
is the first optimal direct algorithm. For BSP and EREW-PRAM models, we
obtain an improvement over all previous results, including the first linear work
BSP algorithm. On all the models, the skew algorithm is much simpler than the
best previous algorithm.

In many applications, the suffix array needs to be augmented with additional
data, the most important being the longest common prefix (lcp) array [1,2,26,
27,31]. In particular, the suffix tree can be constructed easily from the suffix
and lcp arrays [11,13,14]. There is a linear time algorithm for computing the lcp
array from the suffix array [27], but it does not appear to be suitable for parallel
or external computation. We extend our algorithm to compute also the lcp array
while retaining the complexities of Table 1. Hence, we also obtain improved suffix
tree construction algorithms for the BSP and EREW-PRAM models.

The paper is organized as follows. In Section 2, we describe the basic skew
algorithm, which is then adapted to different models of computation in Section 3.
The algorithm is extended to compute the longest common prefixes in Section 4.
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2 The Skew Algorithm

For compatibility with C and because we use many modulo operations we start
arrays at position 0. We use the abbreviations [a, b] = {a, . . . , b} and s[a, b] =
[s[a], . . . , s[b]] for a string or array s. Similarly, [a, b) = [a, b − 1] and s[a, b) =
s[a, b − 1]. The operator ◦ is used for the concatenation of strings. Consider a
string s = s[0, n) over the alphabet Σ = [1, n]. The suffix array SA contains
the suffixes Si = s[i, n) in sorted order, i.e., if SA[i] = j then suffix Sj has rank
i + 1 among the set of strings {S0, . . . , Sn−1}. To avoid tedious special case
treatments, we describe the algorithm for the case that n is a multiple of 3 and
adopt the convention that all strings α considered have α[|α|] = α[|α| + 1] = 0.
The implementation in the Appendix fills in the remaining details. Figure 1 gives
an example.

4 1 8 5

suffixes mod 2

repr. for 0−1 compare
repr. for 0−2 compare

merge

suffix array SA

suffixes mod 1

SA

sorted suffixes mod 1, 2,

position

10 7 position in s

sorted suffixes mod 0

2

0 9 8 6 3 5 2

mi7 pi0 si5 si6
m4 p1 s2 s3 i0 i5 i6 i7

ss3ss2pp1

7 624 13

147

5

0

10

369

321

s

0

i

1

i ipp

06 7 84 9

12

SA12

SA12

5

s

33 45 512

3 2 1 0 6 5 4

call
12

m i s s si s i p p i

i s s si s i p p i 0 0 s s s

recursive

triple names
triples

input s

3 2 1 5 453

Fig. 1. The skew algorithm applied to s = mississippi.

The first and most time consuming step of the skew algorithm sorts the
suffixes Si with i mod 3 �= 0 among themselves. To this end, it first finds lexi-
cographic names s′

i ∈ [1, 2n/3] for the triples s[i, i + 2] with i mod 3 �= 0, i.e.,
numbers with the property that s′

i ≤ s′
j if and only if s[i, i + 2] ≤ s[j, j + 2].

This can be done in linear time by radix sort and scanning the sorted sequence
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of triples — if triple s[i, i + 2] is the k-th different triple appearing in the sorted
sequence, we set s′

i = k.
If all triples get different lexicographic names, we are done with step one.

Otherwise, the suffix array SA12 of the string

s12 = [s′
i : i mod 3 = 1] ◦ [s′

i : i mod 3 = 2]

is computed recursively. Note that there can be no more lexicographic names
than characters in s12 so that the alphabet size in a recursive call never exceeds
the size of the string. The recursively computed suffix array SA12 represents
the desired order of the suffixes Si with i mod 3 �= 0. To see this, note that
s12[ i−1

3 , n
3 ) for i mod 3 = 1 represents the suffix Si = s[i, n)◦[0] via lexicographic

naming. The 0 characters at the end of s make sure that s12[n/3 − 1] is unique
in s12 so that it does not matter that s12 has additional characters. Similarly,
s12[n+i−2

3 , 2n
3 ) for i mod 3 = 2 represents the suffix Si = s[i, n) ◦ [0, 0].

The second step is easy. The suffixes Si with i mod 3 = 0 are sorted by sorting
the pairs (s[i], Si+1). Since the order of the suffixes Si+1 is already implicit in
SA12, it suffices to stably sort those entries SA12[j] that represent suffixes Si+1,
i mod 3 = 0, with respect to s[i]. This is possible in linear time by a single pass
of radix sort.

The skew algorithm is so simple because also the third step is quite easy.
We have to merge the two suffix arrays to obtain the complete suffix array SA.
To compare a suffix Sj with j mod 3 = 0 with a suffix Si with i mod 3 �= 0, we
distinguish two cases:
If i mod 3 = 1, we write Si as (s[i], Si+1) and Sj as (s[j], Sj+1). Since i +
1 mod 3 = 2 and j + 1 mod 3 = 1, the relative order of Sj+1 and Si+1 can
be determinded from their position in SA12. This position can be determined in
constant time by precomputing an array SA

12
with SA

12
[i] = j+1 if SA12[j] = i.

This is nothing but a special case of lexicographic naming.1

Similarly, if i mod 3 = 2, we compare the triples (s[i], s[i + 1], Si+2) and
(s[j], s[j + 1], Sj+2) replacing Si+2 and Sj+2 by their lexicographic names in
SA

12
.

The running time of the skew algorithm is easy to establish.

Theorem 1. The skew algorithm can be implemented to run in time O(n).

Proof. The execution time obeys the recurrence T (n) = O(n) + T (
2n/3�),
T (n) = O(1) for n < 3. This recurrence has the solution T (n) = O(n). �

3 Other Models of Computation

Theorem 2. The skew algorithm can be implemented to achieve the following
performance guarantees on advanced models of computation:

1 SA
12 − 1 is also known as the inverse suffix array of SA12.
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model of computation complexity alphabet
External Memory [38]

D disks, block size B,
fast memory of size M

O
(

n
DB log M

B

n
B

)
I/Os

O
(
n log M

B

n
B

)
internal work

integer

Cache Oblivious [15] O
(

n
B log M

B

n
B

)
cache faults general

BSP [37]

P processors
h-relation in time L + gh

O
(

n log n
P + L log2 P + gn logn

P log(n/P )

)
time general

P = O(
n1−ε

)
processors O(

n/P + L log2 P + gn/P
)

time integer

EREW-PRAM [25] O(
log2 n

)
time and O(n log n) work general

priority-CRCW-PRAM [25] O(
log2 n

)
time and O(n) work (rand.) constant

Proof. External Memory: Sorting tuples and lexicographic naming is easily
reduced to external memory integer sorting. I/O optimal deterministic2 parallel
disk sorting algorithms are well known [34,33]. We have to make a few remarks
regarding internal work however. To achieve optimal internal work for all values
of n, M , and B, we can use radix sort where the most significant digit has
�log M� − 1 bits and the remaining digits have �log M/B� bits. Sorting then
starts with O

(
logM/B n/M

)
data distribution phases that need linear work each

and can be implemented using O(n/DB) I/Os using the same I/O strategy as in
[33]. It remains to stably sort the elements by their �log M� − 1 most significant
bits. For this we can use the distribution based algorithm from [33] directly. In
the distribution phases, elements can be put into a bucket using a full lookup
table mapping keys to buckets. Sorting buckets of size M can be done in linear
time using a linear time internal algorithm.

Cache Oblivious: We use the comparison based model here since it is not
known how to do cache oblivious integer sorting with O( n

B logM/B
n
B ) cache

faults and o(n log n) work. The result is an immediate corollary of the optimal
comparison based sorting algorithm [15].

EREW PRAM: We can use Cole’s merge sort [8] for sorting and merging.
Lexicographic naming can be implemented using linear work and O(log P ) time
using prefix sums. After Θ(log P ) levels of recursion, the problem size has reduced
so far that the remaining subproblem can be solved on a single processor. We
get an overall execution time of O(

n log n/P + log2 P
)
.

BSP: For the case of many processors, we proceed as for the EREW-PRAM
algorithm using the optimal comparison based sorting algorithm [19] that takes
time O(n log n/P + (gn/P + L) log n

log(n/P ) ).
For the case of few processors, we can use a linear work sorting algorithm

based on radix sort [7] and a linear work merging algorithm [17]. The integer
2 Simpler randomized algorithms with favorable constant factors are also available
[10].
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sorting algorithm remains applicable at least during the first Θ(log log n) levels
of recursion of the skew algorithm. Then we can afford to switch to a comparison
based algorithm without increasing the overall amount of internal work.

CRCW PRAM: We employ the stable integer sorting algorithm [35] that
works in O(log n) time using linear work for keys with O(log log n) bits. This
algorithm can be used for the first Θ(log log log n) iterations. Then we can af-
ford to switch to the algorithm [22] that works for polynomial size keys at the
price of being inefficient by a factor O(log log n). Lexicographic naming can be
implemented by computing prefix sums using linear work and logarithmic time.
Comparison based merging can be implemented with linear work and O(log n)
time using [23]. �

The resulting algorithms are simple except that they may use complicated
subroutines for sorting to obtain theoretically optimal results. There are usually
much simpler implementations of sorting that work well in practice although they
may sacrifice determinism or optimality for certain combinations of parameters.

4 Longest Common Prefixes

Let lcp(i, j) denote the length of the longest common prefix (lcp) of the suffixes
Si and Sj . The longest common prefix array LCP contains the lengths of the
longest common prefixes of suffixes that are adjacent in the suffix array, i.e.,
LCP[i] = lcp(SA[i], SA[i + 1]). A well-known property of lcps is that for any
0 ≤ i < j < n,

lcp(i, j) = min
i≤k<j

LCP[k] .

Thus, if we preprocess LCP in linear time to answer range minimum queries in
constant time [3,4,24], we can find the longest common prefix of any two suffixes
in constant time.

We will show how the LCP array can be computed from the LCP12 array
corresponding to SA12 in linear time. Let j = SA[i] and k = SA[i + 1]. We
explain two cases; the others are similar.

First, assume that j mod 3 = 1 and k mod 3 = 2, and let j′ = (j − 1)/3 and
k′ = (n+k−2)/3 be the corresponding positions in s12. Since j and k are adjacent
in SA, so are j′ and k′ in SA12, and thus � = lcp12(j′, k′) = LCP12[SA

12
[j′]− 1].

Then LCP[i] = lcp(j, k) = 3�+lcp(j +3�, k +3�), where the last term is at most
2 and can be computed in constant time by character comparisons.

As the second case, assume j mod 3 = 0 and k mod 3 = 1. If s[j] �= s[k],
LCP[i] = 0 and we are done. Otherwise, LCP[i] = 1 + lcp(j + 1, k + 1), and we
can compute lcp(j + 1, k + 1) as above as 3� + lcp(j + 1 + 3�, k + 1 + 3�), where
� = lcp12(j′, k′) with j′ = ((j +1)−1)/3, k′ = (n+(k +1)−2)/3. An additional
complication is that, unlike in the first case, j +1 and k+1 may not be adjacent
in SA, and consequently, j′ and k′ may not be adjacent in SA12. Thus we have
to compute � by performing a range minimum query in LCP12 instead of a direct
lookup. However, this is still constant time.



950 J. Kärkkäinen and P. Sanders

Theorem 3. The extended skew algorithm computing both SA and LCP can be
implemented to run in linear time.

To obtain the same extension for other models of computation, we need
to show how to answer O(n) range minimum queries on LCP12. We can take
advantage of the balanced distribution of the range minimum queries shown by
the following property.

Lemma 1. No suffix is involved in more than two lcp queries at the top level of
the extended skew algorithm.

Proof. Let Si and Sj be two suffixes whose lcp lcp(i, j) is computed to find the
lcp of the suffixes Si−1 and Sj−1. (The other case that lcp(i, j) is needed for
the lcp of Si−2 and Sj−2 is similar.) Then Si−1 and Sj−1 are lexicographically
adjacent suffixes and s[i−1] = s[j −1]. Thus, there cannot be another suffix Sk,
Si < Sk < Sj , with s[k − 1] = s[i − 1]. This shows that a suffix can be involved
in lcp queries only with its two lexicographically nearest neighbors that have the
same preceding character. �

We describe a simple algorithm for answering the range minimum queries
that can be easily adapted to the models of Theorem 2. It is based on the ideas
in [3,4] (which are themselves based on earlier results).

The LCP12 array is divided into blocks of size log n. For each block [a, b],
precompute and store the following data:

– For all i ∈ [a, b], a log n-bit vector Qi that identifies all j ∈ [a, i] such that
LCP12[j] < mink∈[j+1,i] LCP12[k].

– For all i ∈ [a, b], the minimum values over the ranges [a, i] and [i, b].
– The minimum for all ranges that end just before or begin just after [a, b] and

contain exactly a power of two full blocks.

If a range [i, j] is completely inside a block, its minimum can be found with the
help of Qj in constant time (see [3] for details). Otherwise, [i, j] can be covered
with at most four of the ranges whose minimum is stored, and its minimum is
the smallest of those minima.

Theorem 4. The extended skew algorithm computing both SA and LCP can be
implemented to achieve the complexities of Theorem 2.

Proof. (Outline) External Memory and Cache Oblivious: The range min-
imum algorithm can be implemented with sorting and scanning.

Parallel models: The blocks in the range minima data structure are dis-
tributed over the processors in the obvious way. Preprocessing range minima
data structures reduces to local operations and a straightforward computation
proceeding from shorter to longer ranges. Lemma 1 ensures that queries are
evenly balanced over the data structure. �
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5 Discussion

The skew algorithm is a simple and asymptotically efficient direct algorithm for
suffix array construction that is easy to adapt to various models of computa-
tion. We expect that it is a good starting point for actual implementations, in
particular on parallel machines and for external memory.

The key to the algorithm is the use of suffixes Si with i mod 3 ∈ {1, 2} in the
first, recursive step, which enables simple merging in the third step. There are
other choices of suffixes that would work. An interesting possibility, for example,
is to take suffixes Si with i mod 7 ∈ {3, 5, 6}. Some adjustments to the algorithm
are required (sorting the remaining suffixes in multiple groups and performing
a multiway merge in the third step) but the main ideas still work. In general, a
suitable choice is a periodic set of positions according to a difference cover. A
difference cover D modulo v is a set of integers in the range [0, v) such that, for
all i ∈ [0, v), there exist j, k ∈ D such that i ≡ k−j (mod v). For example {1, 2}
is a difference cover modulo 3 and {3, 5, 6} is a difference cover modulo 7, but
{1} is not a difference cover modulo 2. Any nontrivial difference cover modulo
a constant could be used to obtain a linear time algorithm. Difference covers
and their properties play a more central role in the suffix array construction
algorithm in [5], which runs in O(n log n) time using sublinear extra space in
addition to the string and the suffix array.

An interesting theoretical question is whether there are faster CRCW-PRAM
algorithms for direct suffix array construction. For example, there are very fast
algorithms for padded sorting, list sorting and approximate prefix sums [22] that
could be used for sorting and lexicographic naming in the recursive calls. The
result would be some kind of suffix list or padded suffix array that could be
converted into a suffix array in logarithmic time.
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A Source Code

The following C++ file contains a complete linear time implementation of suffix
array construction. This code strives for conciseness rather than for speed — it
has only 50 lines not counting comments, empty lines, and lines with a bracket
only. A driver program can be found at
http://www.mpi-sb.mpg.de/˜sanders/programs/suffix/.

inline bool leq(int a1, int a2, int b1, int b2) // lexicographic order
{ return(a1 < b1 || a1 == b1 && a2 <= b2); } // for pairs
inline bool leq(int a1, int a2, int a3, int b1, int b2, int b3)
{ return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3)); } // and triples

// stably sort a[0..n-1] to b[0..n-1] with keys in 0..K from r
static void radixPass(int* a, int* b, int* r, int n, int K)
{ // count occurrences
int* c = new int[K + 1]; // counter array
for (int i = 0; i <= K; i++) c[i] = 0; // reset counters
for (int i = 0; i < n; i++) c[r[a[i]]]++; // count occurrences
for (int i = 0, sum = 0; i <= K; i++) // exclusive prefix sums
{ int t = c[i]; c[i] = sum; sum += t; }

http://www.mpi-sb.mpg.de/~sanders/programs/suffix/


954 J. Kärkkäinen and P. Sanders

for (int i = 0; i < n; i++) b[c[r[a[i]]]++] = a[i]; // sort
delete [] c;

}

// find the suffix array SA of s[0..n-1] in {1..K}ˆn
// require s[n]=s[n+1]=s[n+2]=0, n>=2
void suffixArray(int* s, int* SA, int n, int K) {
int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
int* s12 = new int[n02 + 3]; s12[n02]= s12[n02+1]= s12[n02+2]=0;
int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
int* s0 = new int[n0];
int* SA0 = new int[n0];

// generate positions of mod 1 and mod 2 suffixes
// the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1
for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++] = i;

// lsb radix sort the mod 1 and mod 2 triples
radixPass(s12 , SA12, s+2, n02, K);
radixPass(SA12, s12 , s+1, n02, K);
radixPass(s12 , SA12, s , n02, K);

// find lexicographic names of triples
int name = 0, c0 = -1, c1 = -1, c2 = -1;
for (int i = 0; i < n02; i++) {
if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2)
{ name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2]; }
if (SA12[i] % 3 == 1) { s12[SA12[i]/3] = name; } // left half
else { s12[SA12[i]/3 + n0] = name; } // right half

}

// recurse if names are not yet unique
if (name < n02) {
suffixArray(s12, SA12, n02, name);
// store unique names in s12 using the suffix array
for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;

} else // generate the suffix array of s12 directly
for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;

// stably sort the mod 0 suffixes from SA12 by their first character
for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) s0[j++] = 3*SA12[i];
radixPass(s0, SA0, s, n0, K);

// merge sorted SA0 suffixes and sorted SA12 suffixes
for (int p=0, t=n0-n1, k=0; k < n; k++) {

#define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)
int i = GetI(); // pos of current offset 12 suffix
int j = SA0[p]; // pos of current offset 0 suffix
if (SA12[t] < n0 ? // different compares for mod 1 and mod 2 suffixes

leq(s[i], s12[SA12[t] + n0], s[j], s12[j/3]) :
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leq(s[i],s[i+1],s12[SA12[t]-n0+1], s[j],s[j+1],s12[j/3+n0]))
{ // suffix from SA12 is smaller
SA[k] = i; t++;
if (t == n02) // done --- only SA0 suffixes left
for (k++; p < n0; p++, k++) SA[k] = SA0[p];

} else { // suffix from SA0 is smaller
SA[k] = j; p++;
if (p == n0) // done --- only SA12 suffixes left
for (k++; t < n02; t++, k++) SA[k] = GetI();

}
}
delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;

}
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