
Grammar Precompression

Speeds Up Burrows–Wheeler Compression�

Juha Kärkkäinen, Pekka Mikkola, and Dominik Kempa

Department of Computer Science, University of Helsinki, Finland
{juha.karkkainen,pekka.mikkola,dominik.kempa}@cs.helsinki.fi

Abstract. Text compression algorithms based on the Burrows–Wheeler
transform (BWT) typically achieve a good compression ratio but are
slow compared to Lempel–Ziv type compression algorithms. The main
culprit is the time needed to compute the BWT during compression and
its inverse during decompression. We propose to speed up BWT-based
compression by performing a grammar-based precompression before the
transform. The idea is to reduce the amount of data that BWT and
its inverse have to process. We have developed a very fast grammar
precompressor using pair replacement. Experiments show a substantial
speed up in practice without a significant effect on compression ratio.

1 Introduction

Burrows–Wheeler compression is a popular text compression method consisting
of two main phases, the Burrows–Wheeler transform (BWT), which produces a
permutation of the text, and entropy coding, which performs the actual com-
pression. There are very fast entropy coders [1,2], but the computation of the
BWT during compression and the inverse BWT during decompression take too
much time for Burrows–Wheeler compression to compete against the fastest text
compression methods (usually based on Lempel-Ziv compression) in speed [10].

One way to speed up the computation of BWT and its inverse is to divide the
text into smaller blocks and compress each block separately. However, this can
impair compression ratio as the compressor cannot take advantage of redundan-
cies that cross the block boundaries [7].

In this paper, we propose a method for speeding up Burrows–Wheeler com-
pression and decompression without a significant effect on the compression ratio.
The basic idea is to perform grammar compression of the text before the BWT;
this is called precompression. The goal is to reduce the size of the text, which
naturally reduces the time for the BWT and its inverse.

Grammar compression is similar to Lempel–Ziv compression in that it is based
on replacing repeated substrings with references, but it is better suited for pre-
compression because of the consistency of references. In Lempel–Ziv compres-
sion, each reference is usually unique, while in grammar compression, different

� Supported by Academy of Finland grant 118653 (ALGODAN).

L. Calderón-Benavides et al. (Eds.): SPIRE 2012, LNCS 7608, pp. 330–335, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Grammar Precompression Speeds Up Burrows–Wheeler Compression 331

occurrences of the same substring are replaced by the same reference, a new non-
terminal symbol. Thus grammar compression leaves the door open for further
compression involving the new symbols, which makes it ideal for precompression.
Indeed, some grammar compression algorithms operate in iterations, with each
iteration compressing the text further.

We have developed a grammar precompressor based on replacing frequent
pairs of symbols with non-terminals. It is very fast because it makes only a few
sequential passes over the text during compression, and only one pass during de-
compression. Experiments show that the time spent in precompression is usually
much less than the time gained in faster BWT. A similar speed up is obtained
for decompression even with the recent improvements in the speed of inverse
BWT [8]. The effect of the precompression on the compressibility of the data is
insignificant according to our experiments.

Precompression is not a new idea, but usually the goal is to improve compres-
sion ratio for special types of data. For example, there has been a lot of work
on grammar precompression of natural language texts; see [12] and the refer-
ences therein. Another type of universal precompressor, replacing long repeats
by Lempel–Ziv style references, is described in [3].

Replacing frequent pairs has been used in standalone compressors. Re-Pair [9]
is perhaps the best-known of them but it is too slow to be used as a precom-
pressor. The compressors proposed in [11] and in [4] are similar to ours but not
identical (see Section 2 for details). Similar techniques for pairs of words instead
of symbols are used in [6].

2 Grammar Precompression

In grammar-based text compression, the goal is to construct a small context-free
grammar that generates the text to be encoded and no other strings. Finding
the smallest grammar is a hard problem even to approximate well [5]. How-
ever, in precompression, fast execution is more important than the best possible
compression rate.

Our grammar compression was inspired by Re-Pair [9], which repeatedly re-
places the most frequent pair of symbols until no pair occurs more than once.
Using sophisticated data structures, the whole procedure runs in linear time,
but it is too slow for precompression.

To speed it up, we repeat the following a few times (see Fig. 1 for an example):

1. Compute the frequencies of symbol pairs by scanning the text.
2. Choose a set of frequent pairs that cannot overlap (see below).
3. For each chosen pair AB, add the rule X → AB, where X is a new

non-terminal symbol.
4. Replace all occurrences of all chosen pairs with the corresponding

non-terminal symbols using a single sequential pass over the text.

Decompression is performed by computing the full expansions of all rules and
replacing them with a single pass over the text. The speed of the precompressor

332 J. Kärkkäinen, P. Mikkola, and D. Kempa

Text Rules added

singing do wah diddy diddy dum diddy do A → d, B → id, C → in

sCgCgAo wahABdyABdyAumABdyAo D → AB, E → dy, F → Ao, G → Cg

sGGF wahDEDEAumDEF

Expanded rules: A → d, B → id, C → in, D → did, E → dy, F → do, G → ing

Fig. 1. Example of the grammar precompression with two rounds and the expansion
of rules during decompression

is based on the fact that the sequential passes over the text are very fast in
practice. Cannane and Williams [4] proposed a similar algorithm as a standalone
compressor, but they choose the pairs differently.

Choosing the pairs. To maximize the compression, we want to choose as many
pairs as possible in each round. A simple option would be to choose all pairs with
a frequency above a threshold. However, if occurrences of two pairs overlap,
we cannot replace both occurrences. This can lead to inoptimal encoding as
illustrated in the following example.

Example 1. Let T = abcabca be the text. The pairs ab, bc and ca occur twice
each, so we create the rulesX → ab, Y → bc and Z → ca. A greedy replacement
produces the text XZY a, and we ended up using each rule just once. No further
compression of the text is possible, since each symbol occurs just once.

On the other hand, if we choose just the pair ab and the rule X → ab at
first, the replacement produces the text XcXca. Then a second round with the
rule W → Xc results the text WWa. Thus, instead of three rules and a text of
length four, we have two rules and a text of length three.

Cannane and Williams used an extra scan of the text to estimate the pair fre-
quencies when taking overlaps into account. Our approach is to choose, in each
round, only pairs that cannot overlap. Formally, pairs A1B1 and A2B2 can over-
lap if and only if A1 = B2 or B1 = A2. This was already proposed by Manber [11]
(but doing only one round and no further compression). Manber used an iterated
local search heuristic to find a good set of pairs. We use a simpler approach that
scans the pairs in a descending order of frequency and selects greedily each pair
that cannot overlap any already selected pair until the frequencies drop too low.

Encoding symbols. Re-Pair uses zero-order entropy coding for the text and a
sophisticated method for encoding the rules. In our case, the entropy coding
happens later, so we simply append the rules to the text. One potential problem,
though, is the size of the alphabet. Most BWT implementations are specialized
for sequences of bytes limiting the alphabet size to 256, but with the addition of
new non-terminal symbols the alphabet can grow bigger. We could simply add
only as many rules as there are unused byte values, as Manber does [11], but
with the multiple rounds of our precompressor, this is not sufficient for us.

We address this problem by encoding frequent symbols with a single byte and
rare symbols with two bytes. Let B = {0, 1, . . . , 255} be the byte alphabet. We

Grammar Precompression Speeds Up Burrows–Wheeler Compression 333

Table 1. Files used in the experiments. The files are from (L) the Large Text Com-
pression Benchmark (http://mattmahoney.net/dc/text.html), (S) the Pizza & Chili
standard corpus (http://pizzachili.dcc.uchile.cl/texts.html), and (R) the Pizza
& Chili repetitive corpus (http://pizzachili.dcc.uchile.cl/repcorpus.html).
n = text length, σ = alphabet size.

Name σ n/220 Source Description

kernel 160 247 R 36 versions of Linux Kernel sources
enwik9 206 954 L Wikipedia XML
dna 16 386 S part of Human genome

divide B into two disjoint sets B1 and B2. A symbol can be encoded either by
a single byte value from B1 or by a pair of byte values from B2. This encoding
supports alphabet sizes up to |B1|+ |B2|2.

3 Experimental Results

We implemented the precompressor described in Section 2 and performed ex-
periments to test three hypotheses:

1. The grammar precompression improves the compression time.
2. The grammar precompression improves the decompression time.
3. The grammar precompression does not hurt the final compressibility of the

data significantly.

In the compressibility experiments, we use a very good (but slow) entropy coder,
which is competitive with the best compressors of any type (see Table 2). This
way any harmful effects of the precompression are exposed.1 Otherwise, we have
excluded results on entropy coders. Such results would not be representative as
there are a wide variety of entropy coders and we are in the process of developing
our own. Excluding the entropy coder times is not a serious shortcoming as the
total times are typically dominated by the BTW stage when using a fast entropy
coder. Besides, precompression speeds up entropy coding too.

The text files used in the experiments are described in Table 1. All
files were processed as a single block. We have tried a few other files
from the Pizza & Chili corpora with similar results (omitted due to lack
of space). We use Yuta Mori’s divsufsort algorithm and implementation
(http://code.google.com/p/libdivsufsort/) to compute the BWT and the
mtl-sa-8 algorithm in [8] to compute the inverse. The entropy coder is our own
experimental coder designed for maximum compression.

The experiments were run on a PC with a 4.2GHz Intel 2600K CPU and
16GiB of 1.6GHz RAM running Linux version 3.0.0-19 (64-bit). The compiler
was g++ (gcc version 4.4.3) executed with the -O3 option. The execution times
are the sum of user and sys times.

1 In fact, with less effective entropy coders, the precompression tends to improve com-
pression ratio as it can remove some redundancy that the entropy coder cannot.

http://mattmahoney.net/dc/text.html
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://code.google.com/p/libdivsufsort/

334 J. Kärkkäinen, P. Mikkola, and D. Kempa

kernel enwik9 dna
C
o
m
p
re
ss
io
n
[s
e
c
/
G
B
]

0 1 2 3 4 5 6

0
2
5

5
0

7
5

1
0
0

1
2
5

BWT
grammar precompr.

0 1 2 3 4 5 6

0
2
5

5
0

7
5

1
0
0

1
2
5

0 1 2 3 4 5 6

0
2
5

5
0

7
5

1
0
0

1
2
5

D
e
c
o
m
p
re
ss
io
n
[s
e
c
/
G
B
]

0 1 2 3 4 5 6

0
5

1
0

1
5

2
0

2
5

inverse BWT
grammar decompr.

0 1 2 3 4 5 6

0
5

1
0

1
5

2
0

2
5

0 1 2 3 4 5 6

0
5

1
0

1
5

2
0

2
5

Fig. 2. Times for precompression and BWT stages during compression and decompres-
sion. The x-axis labels from 0 to 6 are the number of precompression rounds.

Fig. 2 shows the compression and decompression times. In all cases, at least the
first two rounds of precompression improve the combined time. For compression,
further rounds can bring a further speed up or a marginal slow down; decom-
pression is never harmed by further rounds. The reduction with four rounds, for
example, is more than 17 % in all cases, and more than 50 % for dna.

The compressibility results are shown in Table 2. The effect of the precom-
pression on the compression rate is always less than half a percent of the original
file size.

Table 2. Compression rates (bits/char). To demonstrate the effectiveness of the en-
tropy coder, we have included the compression rates for the 7-Zip compressor using two
high compression parameter settings (7z -m0=PPMd:mem=4000m:o32 and 7z -m0=lzma

-mx=9 -mfb=273 -md=273 -md=4000m -ms=on).

Number of precompression rounds Other
Testfile 0 1 2 3 4 5 6 ppmd lzma

kernel 0.1041 0.1025 0.1018 0.1022 0.1022 0.1022 0.1022 0.0803 0.0643
enwik9 1.3493 1.3617 1.3686 1.3707 1.3712 1.3726 1.3731 1.4288 1.5841
dna 1.7481 1.7444 1.7456 1.7475 1.7498 1.7507 1.7527 1.8418 1.7655

4 Concluding Remarks

In some cases, we have observed improvements in the compression rate too when
using the precompressor. First, the precompressor can sometimes remove redun-
dancies that the entropy coder cannot. Second, if the text is processed in smaller

Grammar Precompression Speeds Up Burrows–Wheeler Compression 335

blocks (to speed up the BWT computation or to reduce its memory usage), this
can leave redundancies crossing block boundaries undetected. The precompres-
sor with its smaller resource requirements can process the text before the split
into blocks and thus remove such redundancies. Furthermore, the precompressor
can pack more data into a single block.

The grammar precompressor could be a useful preprocessing stage for other
compression methods too. Both the effect of speeding up by reducing the size
of the text before executing slower stages of the compression, and improving
compression by being able to handle larger portions of the text at a time, are
potentially applicable to many compressors.

We have also tried a variant of the Bentley–McIlroy precompression [3]. We
did obtain some speed up over no precompression but not as much as with the
pair replacement precompressor.

References

1. Abel, J.: Post BWT stages of the Burrows-Wheeler compression algorithm. Softw.,
Pract. Exper. 40(9), 751–777 (2010)

2. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows–Wheeler Transform: Data Com-
pression Suffix Arrays, and Pattern Matching. Springer (2008)

3. Bentley, J.L., McIlroy, M.D.: Data compression with long repeated strings. Inf.
Sci. 135(1-2), 1–11 (2001)

4. Cannane, A., Williams, H.E.: General-purpose compression for efficient retrieval.
JASIST 52(5), 430–437 (2001)

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–
2576 (2005)

6. Fariña, A., Brisaboa, N.R., Navarro, G., Claude, F., Places, Á.S., Rodŕıguez, E.:
Word-based self-indexes for natural language text. ACM Trans. Inf. Syst. 30(1), 1
(2012)

7. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proc. 3rd Confer-
ence on Web Search and Web Data Mining (WSMD), pp. 391–400. ACM (2010)

8. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Slashing the time for BWT inversion. In:
Proc. Data Compression Conference, pp. 99–108. IEEE CS (2012)

9. Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88,
1722–1732 (2000)

10. Mahoney, M.: Large text compression benchmark (July 10, 2012),
http://mattmahoney.net/dc/text.html

11. Manber, U.: A text compression scheme that allows fast searching directly in the
compressed file. ACM Trans. Inf. Syst. 15(2), 124–136 (1997)

12. Skibinski, P., Grabowski, S., Deorowicz, S.: Revisiting dictionary-based compres-
sion. Softw., Pract. Exper. 35(15), 1455–1476 (2005)

http://mattmahoney.net/dc/text.html

	Grammar Precompression Speeds Up Burrows–Wheeler Compression*

	Introduction
	Grammar Precompression
	Experimental Results
	Concluding Remarks
	References

