
Fast BWT in Small Space

by Blockwise Suffix Sorting

Juha Kärkkäinen

Department of Computer Science, P.O.Box 68

FI-00014 University of Helsinki, Finland

Abstract

We present a new space and time efficient algorithm for computing the Burrow–
Wheeler transform (BWT). For any choice of a parameter v ∈ [3, n2/3], the com-
putation of BWT for a text of length n takes O(n log n + vn) worst-case time and
O(n log n +

√
vn) average-case time using O(n log n/

√
v) bits of space in addition

to the text and the BWT. For example, if v = log2 n, the time is O(n log2 n) in
the worst case and O(n log n) on average with the additional space requirement of
O(n) bits. The algorithm is alphabet-independent: it uses only character compar-
isons, and the complexities do not depend on the alphabet size unless v does. A
practical implementation is 2–3 times slower than one of the fastest and most space
efficient previous algorithms while needing only one third of the main memory. The
algorithm is based on suffix arrays, but unlike any other algorithm, it can construct
the suffix array a small block at a time without storing the rest of the suffix array
anywhere.

1 Introduction

The Burrows–Wheeler transform (BWT) [3] of a text is a reversible transfor-
mation of the text that has a central role in some of the best data compression
methods. The transform does not compress the text but the transformed text
is easier to compress using simple and fast methods [24]. Computing the BWT
typically needs significantly more time and space than the other steps of the
compression [28].

A second important application of BWT is the construction of compressed full
text indexes, which support fast substring searching on the text while taking

Email address: juha.karkkainen@cs.helsinki.fi (Juha Kärkkäinen).

Preprint submitted to Elsevier Science 16 March 2007

little more space than the compressed text [21]. Some compressed indexes
are directly based on BWT (for example [6,7]) while others can be efficiently
constructed from the BWT [12]. Computing the BWT is the computational
bottleneck in compressed index construction, too.

Usually, the BWT is computed from the suffix array (SA), the lexicographi-
cally sorted array of all the suffixes of the text. Computing BWT from SA is
simple and fast, and a lot of effort has been spent in developing fast and space
efficient algorithms for constructing the suffix array, i.e., for sorting the set of
all suffixes [27]. However, all such algorithms need to store the suffix array,
which can be much larger than the text or the BWT. The suffix array needs
Ω(n log n) bits of space while the text and the BWT can be encoded using
O(n log σ) bits for an alphabet size σ. In practice, the size of the suffix array
is usually at least 4n bytes while the text and the BWT typically need only
n bytes each, and sometimes even less, for example 2n bits each for a DNA
sequence.

The large space requirement of the suffix array is a problem because it effec-
tively restricts the size of texts that one can process on a given computer.
In particular, the construction of a compressed index can require much more
space than the compressed index itself. For example, a computer with 1GB
of main memory may be able to handle compressed indexes for texts larger
than 1GB, but cannot construct one for texts of size 200MB.

Contribution In this paper, we get rid of the need to store the full suffix
array. The idea relies on an observation about the way BWT is computed from
the suffix array SA: to compute BWT[i] we only need SA[i], not the full suffix
array. Thus, if we can construct the suffix array a small piece or block at a
time, we can compute the corresponding block of BWT and then discard the
SA block. No space is needed for the full suffix array.

We present the first algorithm that can compute the suffix array efficiently in
smaller pieces. The basic idea is similar to sample sorting: choose a random
set of splitters, sort them, and then distribute all the elements into the buckets
delimited by the splitters. In our case, the distribution is done separately for
each bucket, which is then sorted, used for computing a part of the BWT, and
discarded before processing the next bucket.

A trivial implementation of this approach would require at least quadratic
time in the worst case due to potentially expensive suffix comparisons. We use
a combination of techniques to address this and other issues. These include
a new linear-time algorithm for finding all suffixes that are lexicographically
smaller than a given pattern, novel uses of the difference cover sample tech-
nique developed in [2] (see also [17]), and a deterministic method for choosing

2

the splitters.

The algorithm is space and time efficient both in theory and in practice, and
allows adjusting the space–time tradeoff. For any v ∈ [3, n2/3], the computation
of BWT for a text of length n takes O(n log n+vn) time using O(n log n/

√
v)

bits of space in addition to the text and the BWT. For random texts, the
expected running time is O(n log n +

√
vn).

The algorithm is alphabet-independent: it uses only character comparisons,
and the complexities do not depend on the alphabet size unless v does. For
example, if we choose v = log2 n, the time is O(n log2 n) in the worst case and
O(n log n) on average with the additional space requirement of O(n) bits. On
the other hand, for an alphabet of size σ, we can set v = log2

σ n. Then the
space complexity is O(n log σ) when including the text and the BWT while
the time complexity is O(n(log n + log2

σ n)) in the worst case and O(n log n)
on average.

The algorithm can be implemented space efficiently without any compressed
data structures and using a full machine word for each integer or pointer
(except possibly the characters in the text and the BWT). We have an imple-
mentation that computes the BWT of a text file of n bytes using less than 2n
bytes of main memory. This includes the text itself but not the BWT, which is
written directly to disk. In comparison with one of the fastest and most space-
efficient algorithms for suffix array construction [25], it is 2–3 times slower but
uses only one third of the memory. We have also implemented another version
for DNA sequences that needs less than one byte of memory per character but
is much slower.

Related Work There are numerous algorithms for constructing suffix ar-
rays [27]. The theoretically best ones work in linear time [17–19]. There are
several so-called lightweight algorithms that need little space in addition to
the text and the suffix array [28,25,2,13,23]. Some of these are also among the
fastest algorithms in practice [27]. All of them, though, need to have at least
the text and the full suffix array in memory.

When there is not enough main memory, one alternative is external memory
algorithms. For suffix array construction, there are several external memory
algorithms, see for example [17,16,4,15,5]. BWT can be easily computed from
a suffix array that is stored on disk without a lot of main memory. When
the size of the text significantly exceeds the main memory, external memory
algorithms are the only alternative, and the recent work in [5] has made them a
practical alternative in terms of running time, too. Their carefully engineered
implementation achieves a speed of about 300–400MB/hour on a PC with
multiple fast disks. The speed of our implementation is slightly over 1GB/hour

3

for typical files.

There are also space-efficient algorithms for directly constructing compressed
text indexes [12,20,10,26]. The best theoretical results are O(n log log σ) time
using O(n log σ) bits of space [12], and O(n) time using O(n log n logα

σ n) bits
of space [26], where σ is the size of the alphabet and α = log3 2. The only
implementation we are aware of is in [11] (based on the algorithm in [20]). It
works only for DNA, and its space requirement is between our general and
DNA specific implementations (10n vs. 14.5n and 7n bits). Estimated from
their results, its speed is similar to the DNA specific implementation and much
slower than the general implementation.

Organization of the Paper We start with basic definitions in Section 2
and an outline of the algorithm in Section 3. The details of various parts of
the algorithm are described in Sections 4–7, and all is drawn together in Sec-
tion 8. Finally, there are experimental results in Section 9 and some concluding
remarks in Section 10.

2 Preliminaries

Let the text T [0, n) = t0t1 · · · tn−1 be a string of length n over a general
alphabet, i.e., we assume that the characters can be compared and copied in
constant time but make no other assumptions on the alphabet. For i ∈ [0, n],
let Si denote the suffix T [i, n) = titi+1 · · · tn−1. We also extend the notation
to sets: for C ⊆ [0, n], SC = {Si | i ∈ C}. The suffix array SA[0, n] of T is a
permutation of [0, n] satisfying SSA[0] < SSA[1] < · · · < SSA[n].

The Burrows–Wheeler transform of T is the string BWT[0, n]:

BWT[i] =











T [SA[i] − 1] if SA[i] 6= 0

$ if SA[i] = 0
(1)

Here $ is a special character that is distinct from (and usually considered
to be smaller than) all other characters. This definition is equivalent to the
common description of BWT as the last column in a matrix, whose rows are
the rotations (cyclic shifts, conjugates) of T [0, n)$ in lexicographical order.

Example 1 Let T [0, 6) = BANANA. Then SA[0, 6] = (6, 5, 3, 1, 0, 4, 2) and
BWT[0, 6] = ANNB$AA.

4

3 Algorithm Outline

The usual way to compute the BWT is to first construct the suffix array SA
and then use Equation 1 to compute the BWT. Our algorithm uses Equation 1,
too, but the difference is that the SA is computed in smaller blocks. That is,
for some 0 = i0 < i1 < i2 < . . . < ir = n + 1, the algorithm first computes
SA[0, i1) and uses it to compute BWT[0, i1), then it computes SA[i1, i2) and
BWT[i1, i2), and so on. The division of SA into blocks is determined by using
a sample of suffixes as splitters.

Here is the algorithm in more detail:

(1) Choose a random sample C of size r − 1 from [0, n).
(2) Sort the set SC of splitter suffixes. Let j1, j2, . . . , jr−1 be the elements of C

ordered such that Sj1 < Sj2 < · · · < Sjr−1
. For convenience, let Sj0 = Sn

be the empty suffix, i.e., the smallest of the suffixes, and let Sjr
denote a

string that is larger than any suffix.
(3) For each k ∈ [0, r):

(a) For each j ∈ [0, n], determine whether Sjk
≤ Sj < Sjk+1

is true or
not. If it is, store j in Bk

(b) Compute SA[ik, ik+1) by sorting the suffixes SBk
.

(c) Compute BWT[ik, ik+1) from SA[ik, ik+1) using Equation 1.

To make the algorithm concrete, we need to specify further details, in partic-
ular, how to sort suffixes in Steps 2 and 3b (Section 4), and how to compute
the blocks in Step 3a (Section 5).

The space-time tradeoff of the algorithm is controlled by two parameters, v
and bmax. For the moment, we assume that the following conditions hold:

No long repetitions. The text has no repetitions longer than v, i.e., any
two suffixes can be compared in time O(v).

No large blocks. No block Bk is larger than bmax.

We will later see how to deal with the cases when the conditions are not
satisfied (Sections 6 and 7).

4 Sorting Suffixes

Under the no-long-repetitions assumption, we can sort a set of suffixes effi-
ciently using a simple string sorting. The difficulty of sorting strings depends
on the lengths of common prefixes among the strings. We formalize this as
follows:

5

Definition 2 Let M be a set of m strings. The distinguishing prefix of a
string S in M is the shortest prefix of S that is not a prefix of any other
string in M . Let DPM(S) denote the length of the distinguishing prefix, and
let DP(M) denote the sum of the lengths in M , i.e., DP(M) =

∑

S∈M DPM(S).
The v-restricted distinguishing prefix measures are defined as DPv

M(S) =
min(v, DPM(S)) and DPv(M) =

∑

S∈M DPv
M(S).

When M is a set of text suffixes, DP(M) = O(vm) under the no-long-
repetitions assumption, and DPv(M) = O(vm) even without the assumption.
For random texts, DP(M) = DPv(M) = O(m log m) on average (see [14]).

We will use the multikey quicksort algorithm of Bentley and Sedgewick [1] for
string sorting:

Lemma 3 ([1]) Using the multikey quicksort algorithm, a set M of m strings
can be sorted in O(m log m + DP(M)) time using O(log m) extra space. 1

Step 2 involves sorting a set of r − 1 suffixes and Step 3b r sets containing
a total of n suffixes. None of the sets is larger than r + bmax. This gives the
following result.

Lemma 4 The total time complexity of the sorting steps (Steps 2 and 3b) is
O(n log n+DP(S[0,n])). The space complexity (excluding the text) is O(r+bmax)
(under the no-large-blocks assumption).

The time is O(n log n + vn) under the no-long-repetitions assumption and
O(n log n) on average for random texts. Note that r + bmax = Ω(

√
n).

5 Building the Blocks

Next, we consider Step 3a of the algorithm: finding all suffixes Sj that are
between the block boundaries Sjk

and Sjk+1
.

The trivial method is to compare each suffix to the boundaries. Under the
no-long-repetitions assumption, this can be done in O(vn) time. However, the
procedure is repeated O(r) times leading to the total time of O(rvn). We will
next present a faster method.

The method is based on a linear-time algorithm for finding all suffixes of a text
T that are lexicographically smaller than a query string P . A pseudocode for
the algorithm is given in Figure 1. The idea is simple: compute the length of the

1 Throughout the paper, the space requirement is reported in machine words (or
O(log n) bit integers) unless another unit (bits) is explicitly specified.

6

SmallerSuffixes (T [0, n), P [0, m)) // Report all suffixes of T that are
// lexicographically smaller than P

Precompute lcp(P, P [i, m)) for all i ∈ [1, m]
i := 0; j := −1; k := −1
while i ≤ n do

// T [i, n) is the suffix being compared to P
// T [j, k) is a previously found prefix of P with maximal k
// Precondition: k − j = lcp(T [j, n), P)
if i > k then k := i; ℓ := 0
else ℓ := lcp(P, P [i− j, m))
if i + ℓ = k then

while ℓ < m and k < n and P [ℓ] = T [k] do
k := k + 1; ℓ = ℓ + 1

j := i
else if i + ℓ > k then

ℓ := k − i
j := i

// Postcondition: ℓ = lcp(T [i, n), P)
if ℓ 6= m and (i + ℓ = n or T [i + ℓ] < P [ℓ]) then

report that T [i, n) < P
i := i + 1

Fig. 1. An algorithm for computing suffixes smaller than a given string.

longest common prefix (lcp) between P and each suffix of T (see Postcondition
in the pseudocode), and compare the mismatching characters to determine the
order. The lcp-computation takes advantage of previously computed lcp-values
between P and an earlier suffix of T (see Precondition), and between P and
its own suffix (a precomputed table).

If done naively, the precomputation needs O(m2) time but this can be reduced
to O(m) in several ways. Probably the simplest way is to call a modified
version of SmallerSuffixes with T = P [1, m). Clearly, the lcp-values ℓ
computed in each round (see Postcondition) are then exactly what is needed,
and one of the modifications is to store them instead of using them in order
comparisons. The only other modification is to remove the precomputation.
When a precomputed lcp-value is needed, it has already been computed in
an earlier round of the algorithm: When processing T [i, n) = P [i + 1, m), the
precomputed value that may be needed is lcp(P, P [i − j, m)) = lcp(P, T [i −
j − 1, n)) for some j ≥ 0.

Lemma 5 The SmallerSuffixes algorithm reports all suffixes of text T [0, n)
that are lexicographically smaller than the string P [0, m) in O(n + m) time
and in O(m) additional space.

7

PROOF. The correctness of the algorithm can be easily checked by verifying
that the pre- and postcondition remain satisfied during the whole execution.
The algorithm runs clearly in linear time except for the precomputation and
the inner while-loop. Each round of the inner while-loop increments k, and
since its value never decreases, the while-loop is executed at most n times.
The precomputation with the modified algorithm needs O(m) time. 2

Now we can build a block in O(n) time by running SmallerSuffixes (T ,
Sjk

) and SmallerSuffixes (T , Sjk+1
) in parallel 2 . A suffix belongs to the

block if and only if it is reported by the latter but not by the former. Under the
no-long-repetitions assumption, it is sufficient to store only O(v) precomputed
lcp’s.

Lemma 6 The total time complexity of the block building steps (Step 3a) is
O(rn). The space complexity (excluding the text) is O(bmax + v) (under the
no-long-repetitions and no-large-blocks assumptions).

6 Handling Long Repetitions

So far we have assumed, that there are no repetitions longer than v in the
text. If this assumption does not hold, there are two problems:

(1) The worst case sorting time increases to Θ(n2), because DP(SBk
) can be

Θ(n|Bk|). This happens, for example, if the text is periodic.
(2) The precomputed lcp-table in the SmallerSuffixes algorithm may

need to grow up to size Θ(n).

We address both problems using a difference cover sample (DCS) [2,17].

A difference cover sample DCSv(T) of a text T is a data structure introduced
in [2] that enables efficient comparison of suffixes. The following lemma sum-
marizes the key features of DCSv(T).

Lemma 7 ([2]) The difference cover sample DCSv(T) of text T with period
v ∈ [3, n] can be constructed in O(|D| log |D|+DPv(D)) time and in O(v+|D|)
space (excluding the text), where D is a set of Θ(n/

√
v) suffixes. Let Si and Sj

be two suffixes of T with a common prefix of length v−1, i.e., T [i, i+v−1) =
T [j, j + v − 1). Given DCSv(T) the lexicographical order of Si and Sj can be
determined in constant time.

2 The parallel running requires a special implementation but does not affect the
complexity.

8

The BWT-algorithm constructs DCSv(T) in the beginning and then uses it as
follows:

(1) Sort a set of suffixes using the multikey quicksort but using only prefixes
of length v− 1. Any group of k suffixes that remains unsorted because of
a common prefix, can be sorted in O(k log k) time using DCSv(T). Thus,
a set M of m suffixes can be sorted in O(m log m+DPv(M)) time, which
is O(m log m + vm) in the worst case.

(2) Modify the SmallerSuffixes algorithm so that it computes lcp’s only
up to the length v−1 and uses DCSv(T) to determine the ordering when
necessary. Now only O(v) space is needed for the precomputed lcp’s.

With these techniques we can improve our earlier results.

Lemma 8 Using DCSv(T) (but not counting the time and space complexity
of building and storing it), the time complexity of sorting in Lemma 4 is re-
duced to O(n log n + DPv(S[0,n])), and the no-long-repetitions assumption can
be removed from Lemma 6.

The time and space complexity of DCSv(T) itself must be accounted, too.

Lemma 9 DCSv(T) can be constructed in O((n/
√

v) log(n/
√

v)+DPv(S[0,n]))
time and O(v + n/

√
v) space (excluding the text).

7 Choosing Splitters

Finally, let us take a closer look at the how the splitter suffixes are chosen.
No block should be larger than bmax, a parameter determined by the available
memory. At the same time, we want to keep the number r of blocks small
because processing each block takes at least Ω(n) time (Lemma 6). We will
next describe a deterministic procedure that makes all block sizes between
bmax/2 and bmax achieving the asymptotically optimal number r = O(n/bmax)
of blocks.

The idea is to modify the block building Step 3a. When processing a block
larger than bmax, the modified Step 3a starts as before by scanning the text
and collecting suffixes belonging to the block. When bmax suffixes have been
collected, the scan is suspended, and the suffixes are sorted. The median is
chosen as a new splitter, and the second half of the collected suffixes is dis-
carded. The collecting scan then resumes (but with the new splitter as the
upper boundary). The procedure is repeated whenever the number of col-
lected suffixes reaches bmax. When the collecting scan is complete, between
bmax/2 and bmax of the smallest suffixes of the original oversized block have

9

been collected and are processed as a block in Steps 3b and 3c.

The algorithm can start with no splitters at all, i.e., with one block containing
the whole suffix array. Splitters are created during the modified Step 3a as
described above. All the splitters are kept, not just the last one of each scan.
Since each splitter is at least bmax/2 elements away from other splitters, the
resulting blocks are never smaller than bmax/2. Thus the total number of blocks
and splitters at the end is O(n/bmax).

Lemma 10 The total time complexity of the modified Step 3a is O(n2/bmax +
n log n+DPv(S[0,n])). The space complexity (excluding the text and DCSv(T))
is O(bmax + v + n/bmax).

PROOF. The space complexity is the same as before (Lemma 6) except that
now up to O(n/bmax) splitters can be created and stored during a single scan.
As before, each call to Step 3a spends O(n) time in scanning the text for a
total time of O(rn) = O(n2/bmax). Resuming the scan after a suspension may
cause an additional delay of O(v), but this does not increase the total time.
The time complexity of the splitter computation is dominated by the sorting.
Since there is O(n/bmax) sortings of O(bmax) suffixes, the total time complexity
is no more than for sorting the blocks in Step 3b (Lemma 4). 2

The modification of Step 3a did not change the asymptotic time complexity of
the whole algorithm. In practice, though, the extra time spent in computing
the splitters matters. It is better to start with some set of splitters and cre-
ate new ones during Step 3a only when needed. In fact, our implementation
initially chooses more random splitters than necessary, and then combines ad-
jacent small blocks whenever the combined size does not exceed bmax. This
leads to at most 2n/bmax + 1 blocks (since the size of two adjacent blocks
exceeds bmax), very few of which are larger than bmax.

To be able to combine small blocks we need to know the sizes of the blocks.
We compute the sizes by using the string binary searching technique that
Manber and Myers [22] developed for binary searching on suffix arrays. A
generalization of the technique for other search data structures is described
in [9]. The key result is the following:

Lemma 11 Let M be a sorted set of m strings. The set M can be preprocessed
in O(DP(M)) time and in O(m) space so that a binary search on M using a
query string S can be accomplished in O(log m + DPM(S)) time.

When the strings are suffixes of T and the difference cover sample DCSv(T)
is available, the preprocessing time can be reduced to O(DPv(M)) and the
binary search time to O(log m + DPv

M(S)). Then the time for computing the

10

block sizes is at most O(n log m + DPv(S[0,n])) for m initial splitters, which
does not increase the total time complexity of the algorithm. Thus, the number
of initial splitters can be as high as the space complexity O(m) allows.

8 The Final Algorithm

We are now ready to summarize the properties of the BWT algorithm. The al-
gorithm is controlled by two parameters: v, the difference cover sample period,
and bmax, the maximum block size. Summing up the space complexities from
Lemmas 4, 9, and 10 (with r = O(n/bmax)) gives O(v+n/

√
v+bmax+n/bmax).

By setting bmax = n/
√

v and making the restriction v ≤ n2/3, this is simplified
to O(n/

√
v). Summing the time complexities similarly leads to the following

result.

Theorem 12 The BWT of a text of length n can be computed in O(n log n+√
vn + DPv(S[0,n])) time and O(n/

√
v) space (in addition to the text and the

BWT), for any v ∈ [3, n2/3].

Remark 13

(1) DPv(S[0,n]) is O(vn) in the worst case but for large v it can be much
smaller. In particular, for random texts the expected value is O(n log n)
(see [14]).

(2) The algorithm is alphabet independent. The encoding of the text and the
BWT is free as long as the characters can be accessed, compared and
copied in constant time. The complexities do not depend on the alphabet
size (unless v does).

(3) For an alphabet of size σ, the text and the BWT can be encoded us-
ing O(n log σ) bits. Measured in bits, the additional space complexity is
O(n log n/

√
v) since everything can be encoded with O(log n)-bit integers.

If v = O(log2
σ n), the total space complexity is O(n log σ) bits.

Interesting choices of the parameter v include v = log2 n and v = log2
σ n

leading to the following results.

Corollary 14 The BWT of a text of length n can be computed in O(n log2 n)
worst case time and in O(n log n) average case time using O(n) bits of space
in addition to the text and the BWT.

Corollary 15 The BWT of a text of length n over an alphabet of size σ can
be computed in O(n(log n + log2

σ n)) worst case time, in O(n log n) average
case time, and in O(n log σ) bits of space.

11

9 Experiments

The algorithm has been implemented as a program bwt that reads the text
from a file and writes the BWT to another file. BWT is never stored in memory
but is written directly to disk. There is also a second program dnabwt for the
four letter DNA alphabet that stores the text using just two bits per character.

The implementation allows a choice of the parameter v. The following table
gives the memory consumption in bits (not including the text and some minor
data structures):

v 16 32 64 128 256 512 1024 2048

bits 20n 14n 9n 6.5n 5n 3.5n 2.5n 1.8n

For bwt we chose v = 128, which makes the total space consumption less than
2n bytes. Similarly, for dnabwt we chose v = 256 to get under n bytes.

For comparison, we used two programs that are based on fast and space-
efficient algorithms for constructing the full suffix array. The first one (MF) is
the deep-shallow algorithm of Manzini and Ferragina [25]. The implementation
is available at http://www.mfn.unipmn.it/∼manzini/lightweight/index.
html. This is typically one of the fastest and most space-efficient algorithms
available [27] but it does slow down on highly repetitive texts.

The second one (BK) is the algorithm of Burkhardt and Kärkkäinen [2]. The
implementation is available at http://www.cs.helsinki.fi/u/tpkarkka/

publications/CPM03.tar.gz. BK uses essentially the same DCS-based sort-
ing code for the full suffix array that bwt uses for blocks (but with v = 32).

The programs are written in C++ and were compiled with g++ -O3 except
MF is written in C and was compiled with gcc -O3. The gcc/g++ version
was 4.0.2. The tests were run on a PC with 2.6GHz Intel Pentium 4 processor
and 4GB of main memory running Linux. The running times were measured
using the unix time command. We report the CPU time, i.e., the sum of user
and sys time. The memory consumption is the total size of the process at its
maximum as reported by the unix top command.

We used six kinds of texts:

english Concatenation of English text files from the Gutenberg project pro-
vided by the Pizza&Chili Corpus http://pizzachili.di.unipi.it/texts.
html. The test files are prefixes of the original.

random-64 Random text where each character is drawn independently and
uniformly from an alphabet of size 64.

12

Table 1
Runtime (in seconds) and memory footprint (in GBytes) of BWT construction
algorithms.

text size = 256 MB text size = 1 GB

text bwt dnabwt MF BK bwt dnabwt

english 546 – 287 573 2746 –

random-64 511 – 241 605 2566 –

repeat-64 2994 – 43751 1372 13082 –

DNA 585 1974 223 589 – –

random-DNA 574 1876 237 582 2898 8250

repeat-DNA 2986 12619 70125 1323 12555 52668

memory 0.46 0.23 1.3 1.5 1.8 0.90

repeat-64 A string of length 1024 and of type random-64 repeated until the
required length.

DNA Concatenation of DNA sequences provided by the Pizza&Chili Cor-
pus http://pizzachili.di.unipi.it/texts.html. The small fraction of
characters other than A, C, G or T was removed. The size of the file is about
400MB so there is no 1GB DNA file in the experiments.

random-DNA Random text where each character is drawn independently
and uniformly from the alphabet {A, C, G, T}.

repeat-DNA A string of length 1024 and of type random-DNA repeated
until the required length.

The results are reported in Table 1. The 1GB files are too large for MF and
BK. The results show that bwt is quite competitive in speed. It is 2–3 times
slower than MF for most texts but much faster on repetitive data while taking
barely over one third of the space. The times for bwt and BK are very similar,
because both spend most of their time in string sorting. The larger slow-down
of bwt for repetitive data is probably due to the larger value of the parameter v.

dnabwt is significantly slower than bwt but still fast enough for overnight com-
putation of BWT for multi-gigabyte texts. The slowness is probably primarily
due to slow processing of characters packed in two bits, and significant speedup
may be possible using techniques such as those described in [8].

10 Concluding Remarks

We have presented an algorithm that can compute the Burrows–Wheeler
transform of a text using very little space, both in theory and in practice,

13

and is still quite fast, again both in theory and in practice.

The underlying technique of blockwise suffix sorting is a versatile tool with
many possibilities including:

• It can be used for fast semi-external suffix array construction, i.e., computing
the suffix array onto disk quickly while keeping only the text completely in
main memory.

• The blocks can be computed in sequential order making it possible to
pipeline the BWT to another process such as the compression stage of a
BWT-based compressor while storing no more than a small piece of the
BWT at any time.

• Each block can be computed independently, allowing a parallel or dis-
tributed computation of the BWT or the suffix array.

References

[1] J. L. Bentley, R. Sedgewick, Fast algorithms for sorting and searching strings,
in: Proc. 8th Annual Symposium on Discrete Algorithms, ACM, 1997.

[2] S. Burkhardt, J. Kärkkäinen, Fast lightweight suffix array construction
and checking, in: Proc. 14th Annual Symposium on Combinatorial Pattern
Matching, vol. 2676 of LNCS, Springer, 2003.

[3] M. Burrows, D. J. Wheeler, A block-sorting lossless data compression algorithm,
Technical Report 124, SRC (digital, Palo Alto) (May 1994).

[4] A. Crauser, P. Ferragina, Theoretical and experimental study on the
construction of suffix arrays in external memory, Algorithmica 32 (1) (2002)
1–35.

[5] R. Dementiev, J. Kärkkäinen, J. Mehnert, P. Sanders, Better external memory
suffix array construction, ACM Journal of Experimental Algorithmics. To
appear.

[6] P. Ferragina, G. Manzini, Indexing compressed text, J. ACM 52 (4) (2005)
552–581.

[7] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representations
of sequences and full-text indexes, ACM Transactions on Algorithms. To appear.

[8] K. Fredriksson, Faster string matching with super–alphabets, in: Proc. 9th
Symposium on String Processing and Information Retrieval, vol. 2476 of LNCS,
Springer, 2002.

[9] R. Grossi, G. F. Italiano, Efficient techniques for maintaining multidimensional
keys in linked data structures (extended abstract), in: Proc. 26th International
Conference on Automata, Languages and Programming, vol. 1644 of LNCS,
Springer, 1999.

14

[10] W.-K. Hon, T.-W. Lam, K. Sadakane, W.-K. Sung, Constructing compressed
suffix arrays with large alphabets, in: Proc. 14th International Symposium on
Algorithms and Computation, vol. 2906 of LNCS, Springer, 2003.

[11] W.-K. Hon, T.-W. Lam, W.-K. Sung, W.-L. Tse, C.-K. Wong, S.-M. Yiu,
Practical aspects of compressed suffix arrays and FM-index in searching DNA
sequences, in: Proc. 6th Workshop on Algorithm Engineering and Experiments
(ALENEX ’04), 2004.

[12] W.-K. Hon, K. Sadakane, W.-K. Sung, Breaking a time-and-space barrier in
constructing full-text indices, in: Proc. 44th Annual Symposium on Foundations
of Computer Science, IEEE, 2003.

[13] H. Itoh, H. Tanaka, An efficient method for in memory construction of
suffix arrays, in: Proc. 6th Symposium on String Processing and Information
Retrieval, IEEE, 1999.

[14] P. Jacquet, W. Szpankowski, Autocorrelation on words and its applications -
analysis of suffix trees by string-ruler approach, J. Comb. Theory, Ser. A 66 (2)
(1994) 237–269.

[15] J. Kärkkäinen, S. S. Rao, Full-text indexes in external memory, in: U. Meyer,
P. Sanders, J. Sibeyn (eds.), Algorithms for Memory Hierarchies (Advanced
Lectures), vol. 2625 of LNCS, chap. 7, Springer, 2003, pp. 149–170.

[16] J. Kärkkäinen, P. Sanders, Simple linear work suffix array construction, in: Proc.
30th International Conference on Automata, Languages and Programming, vol.
2719 of LNCS, Springer, 2003.

[17] J. Kärkkäinen, P. Sanders, S. Burkhardt, Linear work suffix array construction,
J. ACM 53 (6) (2006) 918–936.

[18] D. K. Kim, J. S. Sim, H. Park, K. Park, Constructing suffix arrays in linear
time, J. Discrete Algorithms 3 (2–4) (2005) 126–142.

[19] P. Ko, S. Aluru, Space efficient linear time construction of suffix arrays, J.
Discrete Algorithms 3 (2–4) (2005) 143–156.

[20] T.-W. Lam, K. Sadakane, W.-K. Sung, S.-M. Yiu, A space and time efficient
algorithm for constructing compressed suffix arrays, in: Proc. 8th Annual
International Conference on Computing and Combinatorics, vol. 2387 of LNCS,
Springer, 2002.

[21] V. Mäkinen, G. Navarro, Compressed full text indexes, ACM Computing
Surveys. To appear.

[22] U. Manber, G. Myers, Suffix arrays: A new method for on-line string searches,
SIAM J. Comput. 22 (5) (1993) 935–948.

[23] M. A. Maniscalco, S. J. Puglisi, Faster lightweight suffix array construction, in:
Proc. 17th Australasian Workshop on Combinatorial Algorithms, 2006.

15

[24] G. Manzini, An analysis of the Burrows–Wheeler transform, J. ACM 48 (3)
(2001) 407–430.

[25] G. Manzini, P. Ferragina, Engineering a lightweight suffix array construction
algorithm, Algorithmica 40 (1) (2004) 33–50.

[26] J. C. Na, Linear-time construction of compressed suffix arrays using o(n log n)-
bit working space for large alphabets, in: Proc. 16th Annual Symposium on
Combinatorial Pattern Matching, vol. 3537 of LNCS, Springer, 2005.

[27] S. Puglisi, W. Smyth, A. Turpin, A taxonomy of suffix array construction
algorithms, ACM Computing Surveys. To appear.

[28] J. Seward, On the performance of BWT sorting algorithms, in: Proc. Data
Compression Conference, IEEE, 2000.

16

