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Abstract

We propose an information-theoretic ap-
proach for predictive modeling with Bayesian
networks. Our approach is based on the min-
imax optimal Normalized Maximum Likeli-
hood (NML) distribution, motivated by the
MDL principle. In particular, we present a
parameter learning method which, together
with a previously introduced NML-based
model selection criterion, provides a way to
construct highly predictive Bayesian network
models from data. The method is parameter-
free and robust, unlike the currently pop-
ular Bayesian marginal likelihood approach
which has been shown to be sensitive to the
choice of prior hyperparameters. Empirical
tests show that the proposed method com-
pares favorably with the Bayesian approach
in predictive tasks.

1 INTRODUCTION

Bayesian networks (Pearl, 1988) are one of the
most popular model classes for discrete vector-valued
iid. data. The popular Bayesian BDeu crite-
rion (Heckerman, Geiger, & Chickering, 1995) for
learning Bayesian network structures has recently
been reported to be very sensitive to the choice
of prior hyper-parameters (Silander, Kontkanen, &
Myllyméki, 2007). On the other hand, the gen-
eral model selection criteria, AIC (Akaike, 1973) and
BIC (Schwarz, 1978), are derived through asymptotics
and their behavior is suboptimal for small sample sizes.
Furthermore, it is not clear how to set the parameters
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for the structures selected with AIC or BIC, so that
the resulting model would yield a good predictive dis-
tribution.

Silander et al. (2008) have recently proposed a new
effective scoring criterion for learning Bayesian net-
work structures, the factorized normalized maximum
likelihood (fNML). This score has no tunable parame-
ters thus avoiding the mentioned sensitivity problems
of Bayesian scores. However, the question of learning
the parameters for the selected model structure has
not been previously addressed. The currently pop-
ular choice within the Bayesian paradigm is to use
the expected parameter values since this choice yields
the same predictive distribution as model averaging,
i.e., integrating the parameters out using the posterior
distribution of the parameters. Free from sensitivity
problem of the Bayesian model selection criterion, it
would be very disappointing to adhere to a Bayesian
way to learn the parameters of Bayesian networks —
this would bring us back to the question of the choice
of prior hyperparameters.

In this paper we propose a novel method for learning
the parameters for Bayesian networks, based on the se-
quential normalized maximum likelihood (sNML) cri-
terion. The combination of the fNML model selection
criterion and the new sNML-based parameter learn-
ing method yields a complete non-Bayesian method
for learning Bayesian networks. Computationally, the
new method is as efficient as its Bayesian counterparts.
It has already been shown to perform well in structure
learning task, and in this paper we will show that it
performs well in the predictive sense as well.

In the following, we will first introduce the notation
needed for learning Bayesian networks. We will then
briefly review the currently popular Bayesian scor-
ing criterion and its sensitivity problem. To set the
stage for our method for learning the network param-
eters, we will explain the fNML criterion for learning
Bayesian network structures, after which we introduce
our sNML-based methods for setting the parameters
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for predictive purposes. The performance of the pro-
posed method is be demonstrated by experiments.

2 BAYESIAN NETWORKS

A Bayesian network defines a joint probability distri-
bution for an m-dimensional multivariate data vector
X = (Xy,...,X,,), where each X; may have r; dif-
ferent values which, without loss of generality, can be
denoted as {1,...,7;}.

2.1 MODEL CLASS

A Bayesian network consists of a directed acyclic
graph (DAG) G and a set of conditional probabil-
ity distributions. We specify the DAG with a vec-
tor G = (G1,...,Gy,) of parent sets so that G; C
{X1,..., X} denotes the parents of variable X;, i.e.,
the variables from which there is an arc to X;. Each
parent set G; has ¢; (¢; = HXpeGi ) possible values
that are the possible value combinations of the vari-
ables belonging to G;. We assume an enumeration of
these values and denote the fact that G; holds the jt*
value combination simply by G; = j.

The conditional probability distributions P(X; | G;)
are determined by a set of parameters, ©, via the equa-
tion

PX;=k|G;,=4,0)=0;.

We denote the set of parameters associated with vari-
able X; by 0,. Given a Bayesian network (G, ©), the
joint distribution can be factorized as

P(z|G,0) =[] P(xi| Gi ©). (1)

i=1

This factorization induces a so called parental Markov
condition: all the parametrizations of the structure
G produce a joint distribution in which the variable
X is independent of all its non-descendants given the
values of its parents G;. (Descendants of X; are those
variables that can be reached from node X; in network
G by following directed arcs.)

2.2 DATA

To learn Bayesian network structures, we assume a
data set D with N i.i.d instantiations (D), ..., DUV))
of the vector X, i.e., an N X m data matrix without
missing values. We select columns of the data matrix
D by subscripting it with a corresponding variable in-
dex or variable set; D;, for instance, denotes the data
corresponding to variable Xj.

Since the rows of D are assumed to be i.i.d, the proba-
bility of a data matrix can be calculated by just taking

the product of the row probabilities. Combining equal
terms yields

m qi T

P |0 =[TTIII o5 (2)

i=1j=1k=1

where N;;;, denotes number of rows in which X; = £
and its parents contain the j** value combination.

For a given structure G, the maximum likelihood pa-
rameters O(D) are simply the relative frequencies
found in data: éijk = Niji/> s Nijir. Setting param-
eters éz’jk to their maximum likelihood values for data
D gives the predictive distribution P(z | G, @(D)) In
the following, we denote the value P(D | G,0(D))
by ﬁ(D | G)'. We also use a shorthand notation
P(A|B) = P(A| B,6(A, B)).

3 MODEL SELECTION

The number of possible Bayesian network models is
super exponential with respect to the number of vari-
ables, and the model selection task has been shown to
be NP-hard for practically all model selection criteria
such as AIC, BIC and marginal likelihood (Chicker-
ing, 1996). However, all popular Bayesian network
selection criteria S(G, D) feature a convenient decom-
posability property,

m

S(G,D) = S(Di,Dg,), (3)

i=1

which makes implementing a heuristic search for mod-
els easier (Heckerman et al., 1995).

Many popular scoring functions avoid overfitting by
balancing the fit to the data against the complexity
of the model. A common form of this idea can be
expressed as

S(G,D) =1log P(D | G) — A(D,G), (4)

where A(D, @) is a complexity penalty. For example,
ABIC = > 7%(75;—1) In N, and AMC = > qi(ri — 1),
where ¢;(r; — 1) is the number of free parameters
needed to specify the local distribution of variable X;.

3.1 BAYESIAN DIRICHLET SCORES

The current state-of-the art is to use the marginal like-
lihood scoring criterion

S&(DivDGi) = log/ P(Dl | DG”@Z)W(& | O[Z'). (5)
0;

"We often drop the dependency on G when the depen-

dency is clear from the context.
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The most convenient form of this, the Bayesian Dirich-
let (BD) score, uses conjugate priors in which the pa-
rameter vectors ©;; are assumed independent of each
other and follow Dirichlet distributions so that

W(0; | o) = ﬂp(%‘ | i), (6)
i=1

where 6;; ~ Dir(ai,...,q;,). With a choice of
a5 = o/ (g;r;) we get a popular family of BDeu scores
that give equal scores for different Bayesian network
structures encoding same independence assumptions.

The BDeu score depends only on a single parameter
a, but the outcome of model selection is very sensitive
to it: it has been previously shown (Steck & Jaakkola,
2002) that the extreme values of « strongly affect the
model selected by the BDeu score, and moreover, re-
cent empirical studies have demonstrated great sensi-
tivity to this parameter even within a completely nor-
mal range of values (Silander et al., 2007).

3.2 INFORMATION THEORY SCORES

Our preferred model selection criterion would be to
use the normalized maximum likelihood (NML) distri-
bution (Shtarkov, 1987; Rissanen, 1996):

P(D | M)

Pymw(D | M) = m’ (7)

where the normalization is over all data sets D’ of a
fixed size N. The log of the normalizing factor is called
the parametric complexity. NML is the unique mini-
max regret optimal model, i.e., the unique minimizer
in R
P(D" | M)

Q)
where @ is allowed to be any distribution. The log-
likelihood ratio is called the regret of distribution @ for
data D’ (wrt. model class M). It can be interpreted
as the excess logarithmic loss over the minimum loss
achievable with model class M.

min max log
Q D

However, there is no known method to compute the
parametric complexity or the NML distribution for
Bayesian networks efficiently (in less than exponen-
tial time). Therefore, in accordance with Sgp above,
Silander et al. (2008) have proposed the following local
score

Senmr (Di; Da;) = log Pami(D; | De;)
P(D; | D¢.
—lo (Al | Gz) ’ (8)
0, P(D!| Das)

where the normalizing sum goes over all the possible
D;-column vectors of length N, i.e., D} € {1,...,r;}V;

the structure G is implicit in the notation. The factor-
ized NML criterion is obtained as a sum of such local
scores:

S (G, D) =Y Seowin(Di, Da, ). 9)

i=1

Even though the normalizing sum in (8) is has an ex-
ponential number of terms, it can be evaluated effi-
ciently using the recently discovered linear time algo-
rithm for calculating the parametric complexity for a
single r-ary multinomial variable (Kontkanen & Myl-
lyméki, 2007).

It is immediate from the construction that fNML is
decomposable. Thus it can be used efficiently in
heuristic local search. Empirical tests show that se-
lecting the network structure with fNML compares
favourably to the state-of-the art model selection us-
ing BDeu scores even when the prior hyperparameter
is optimized (with “hindsight”) to maximize the per-
formance (Silander, Roos, Kontkanen, & Myllymé&ki,
2008).

4 PREDICTION

The scoring methods described in the previous sec-
tion can be used for selecting the best Bayesian net-
work structure. However, much of the appeal of the
Bayesian networks rests on the fact that with the pa-
rameter values instantiated, they define a joint prob-
ability distribution that can be used for probabilistic
inference. For that reason, the structure selection is
usually followed by a parameter learning phase. Next
we will first review the standard Bayesian solution,
and then in Section 4.2 introduce our new information-
theoretic parameter learning scheme.

4.1 BAYESIAN PARAMETERS

In general, the Bayesian answer for learning the pa-
rameters amounts to inferring their posterior proba-
bility distribution. Consequently, the answer to deter-
mining the predictive probability

P(d|D,G) = /P(d 10,G)P(0 | D,G)do

avoids selecting any particular parameter values. The
actual calculation of the integral can be hard, but with
the assumptions behind the BDeu score, the task be-
comes trivial since the predictive probability coincides
with the joint probability of the data vector calculated
using the expected parameter values

GEP = T.Nijk+aijk '

o wi—1 [NVijhr + aijr]

(10)
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This choice of parameters can be further backed up by
a prequential model selection principle (Dawid, 1984).
Since the BDeu score is just a marginal likelihood
P(D | G,a), it can be expressed as a product of pre-
dictive distributions

N

P(D|G,a) = [[PMD™ DM, )
n=1
N ~
= [[ PO [6(D=",a)), (11)
n=1

where D(<?) = (DM ... D®=1) denotes the first
n —1 rows of D. Since we have selected the struc-
ture that has the strongest predictive record when us-
ing the expected parameter values, it is very natural
to continue using the expected parameter values after
the selection.

4.2 SEQUENTIAL NML PARAMETERS

Having proposed a non-Bayesian method for structure
learning, it would be intellectually dissatisfactory to
fall back to the Bayesian solution in the parameter
learning task — in particular, as the Bayesian solu-
tion again depends on the hyperparameters. Hence,
in accordance with the information-theoretic approach
we introduce a solution to the parameter learning task
based on minimax rules.

The so called sequential NML model (Rissanen &
Roos, 2007; Roos & Rissanen, 2008) is similar in spirit
to the factorized NML model in the sense that the
idea is to obtain a joint likelihood as a product of lo-
cally minimax (regret) optimal models. In sNML, the
normalization is done separately for each observation
(vector) in a sequence.

N

P(D™_ p(<n)
Pon(0) = [ £ 520
n=1 d’ (d )

(12)

One advantage of a row-by-row normalization is that
it immediately leads to a natural prediction method:
having seen a data-matrix of size (N — 1) X m, we can
use the locally minimax optimal model for the N’th
observation vector, obtained from (12), as a predictive
distribution. The joint distribution (12) depends on
the order of the data. However, we will later use it
only for finding a parametrization that gives a good
predictive distribution, and the Psxmr(d | D) does not
depend on the order of data D.

That sNML defines a good predictive method can be
demonstrated by showing that predicting with it never
yields much worse a result than predicting the data
while taking advantage of knowledge of the post-hoc
optimal parameter value(s).

For a simple Bernoulli model, a result by Takimoto and
Warmuth (2000) implies a neat bound on the regret of
sNML.

Proposition 1 (Takimoto and Warmuth (2000))
For the Bernoulli model, the worst-case regret
Renumr (N, 2) over all binary sequence D of length N
is upper-bounded by

Ranar.(N, 2) := max [log Pouir (D) — log P(DIO(D))]

1
< ilog(N—i— 1)+

1

5

This is better than, for instance, what can be obtained
by either the Laplace predictor, i.e., mixture with uni-
form prior, or the Krichevsky-Trofimov prediction, i.e.,
mixture with Dirichlet(1/2,...,1/2) prior, see (Taki-
moto & Warmuth, 2000).

For a categorical datum with K different values, the
following bound can be obtained.

Proposition 2 For categorical (discrete) data, the
worst-case regret of the sSNML model is upper-bounded

by

N+Ek

K—
R, (N,K) < — N1 klog
NML hS kzzj Og N + 3

We give an elementary proof of this statement in Ap-
pendix B. A relaxed version of the bound is as follows:

N +1)+1 ;
-1 2]’

5 K-1
Ronmr (N, K) < (K-1) [ e log(K

for K = 2, this agrees with the binary case above.

In theory, using SNML for determining a predictive dis-
tribution P(d | D, G) would be straightforward. Fur-
thermore, since the fNML was introduced as a com-
putationally feasible version of the NML, we would
still want to use a prediction scheme based on NML,
thus the sNML would be a natural choice. In prac-
tice, however, using sSNML for Bayesian networks faces
two major problems. Firstly, it is not computation-
ally feasible to calculate the normalizing term, since
the number of possible values of a single data vector
may be prohibitively large. Secondly, we set ourselves
to learn the parameters for the selected Bayesian net-
work, and it turns out that the predictive distribution
Pamw(d | D, G) cannot necessarily be obtained with
any parametrization of the structure G (see Appendix
A for an example). In the Bayesian case, the pre-
dictive probability can be obtained with the expected
parameter values, but for NML we have no such luck.
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Figure 1: A schematic illustration of alternative ways to obtain minimax optimal models by normalizing the
maximized likelihood P(D | G). Left to right: In NML, the normalization is done over the whole data matrix
in one go. In factorized NML (fNML), each column is normalized separately. In sequential NML (sNML), each
row is normalized separately. In factorized-sequential NML (fsNML), the normalization is done entry-by-entry,
in either the row or column order (the result is the same either way).

On the other hand, the Bayesian expected parameters
can be interpreted as predictive probabilities for a one-
dimensional categorical datum:

91]1@ = (dl =k | DiGi:j,G,Olij).

In analogy to this, we propose to use the correspond-
ing SNML predictive probability distribution to set the
parameters, i.e,

OMY = P (ds = k | D, @),

We call this approach factorized sequential NML. For
categorical data this yields a spiced-up version of the
Laplace’s rule of succession

0, — e(Nijr) (Nijr +1)
T k= e(Nijrr ) (Nigrr + 1)

where e(n) = ()7 (e(0) = 1).

n

(13)

This selection of parameters also defines a joint prob-
ability distribution

m

Panun(D | G) = HPSNML(Di|DG1,) (14)
i=1

imiact Y Pk, D<<" | D<<">>
Comparing Pgnmr (14) with the equations (9) and (8)
for the logarithmic version of the Penymr (D | G) reveals
their similar spirit. In contrast with NML, where nor-
malization is done over the whole data matrix in a sin-
gle, huge summation, or SNML, where normalization
is done over data vectors of length m, the normaliza-
tion in fSNML is very simple since it only involves a
single entry at a time (see Figure 1).

Proposition 3 Given a Bayesian network structure
G, the regret of the fsNML distribution is upper-
bounded by

Resnmn (N, G) < Z qiRexmr, (N/gis i) s
i=1

where q; and r; denote the number of parent con-
figurations and the arity of variable X;, respectively,
and Rgxvr(N/qi,ri) is the univariate bound given in
Prop. 2.

The proof is rather straightforward by using the de-
composition of the likelihood function according to
the network structure, and the concavity of the regret
functions with respect to the counts N;;. We omit the
details.

5 EXPERIMENTS

To empirically test our method, we selected 20 UCI
data sets? with fewer than 20 variables, so that we
can use exact structure learning algorithms (Silander
& Myllymaéki, 2006) that eliminate the uncertainty
due to the heuristic search for the best structure. We
then compared our method, the fNML-based structure
learning + fsNML parametrization, with the state-
of-the-art Bayesian method, the BDeu score with ex-
pected parameters. The equivalent sample size hyper-
parameter « for the Bayesian learning was set to 1.0,
a common and convenient “non-informative” choice.

The comparison was done by creating 100 random
train and test splits (50%-50%) of each data set,

2Continuous values in these data sets were discretized
into three equal width bins.
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and then using each training data set for learning
two Bayesian networks, one with each method. The
Bayesian networks were then used to determine the
predictive probability P(d | G,0) for each vector in
the test data.

Table 1: Summary of the prediction experiment.

Data N m #vals %
iris 150 5 3.0 0.968
thyroid 215 6 3.0 0.996
shuttle 58000 10 3.0 0.998
page blocks 5473 11 3.2 1.001
yeast 1484 9 3.7 1.027
abalone 4177 9 3.0 1.029
liver 345 7 2.9 1.050
diabetes 768 9 2.9 1.070
adult 32561 15 7.9 1.088
ecoli 336 8 3.4 1.094
balance 625 5 4.6 1.100
glass 214 11 3.3 1.139
tic tac toe 958 10 2.9 1.246
heart hungarian 294 14 2.6 1.316
breast cancer 286 10 4.3 1.519
bc wisconsin 699 11 2.9 1.550
wine 178 14 3.0 1.665
heart statlog 270 14 2.9 1.888
heart cleveland 303 14 3.1 2.587
post operative 90 9 2.9 2.621

The results of the predictive experiment are presented
in Table 1. For each data set, the table lists the num-
ber of data vectors N, the number of variables m, the
average number of values per variable (#vals), and the
ratio of average predictive probabilities obtained with
our method and the Bayesian method. In 17 data sets
(out of 20) the NML-based method predicted better,
and never did it predict significantly worse. From the
graphical illustration in Figure 2 we can see that the
difference in favor of the NML-based approach is es-
pecially large with the more difficult data sets where
the predictive probabilities are small.

6 CONCLUSION

We have presented a sequential NML-based method
for learning Bayesian network parameters. Combined
with the previously presented NMIL-based structure
learning method, this work provides a parameter-free
non-Bayesian way to automatically construct Bayesian
networks from the data. Empirical tests show the fea-
sibility of the proposed method.

Plenty of questions remain. Both the structure learn-

2+ ’.‘-i‘, .
o Ar “‘/# .
2 o
% |—1—| >
T -6 p —
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& *FH
-10 - ¥ .
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Figure 2: Visualization of the results summarized in
Table 1. Each point gives the predictive accuracies
obtained with the two methods, in terms of average
log-likelihood per data vector (greater values are bet-
ter). Error-bars show £1.96x standard deviation over
100 random train-test splits. Point above the diagonal
line represent cases where the fNML+fsNML method
performs better than the Bayesian approach.

ing and the parameter learning may be seen as prac-
tical approximations to the theoretically more desir-
able methods of NML and sNML. While the empiri-
cal tests demonstrate the computational efficiency and
good performance of the proposed method, theoreti-
cal results about the accuracy of these approximations
would definitely be welcome.

The parameter learning procedure proposed in this pa-
per can be used regardless of the structure selection
method. While we have here only compared the MDL-
based and Bayesian approaches, it would be possible
to also study mixed methods like the combination of
BDeu or BIC model selection and fsSNML parametriza-
tion. While one can be sceptical about the perfor-
mance of such mixes, these kind of additional exper-
iments could clarify the role the different methods of
structure and parameter learning play in predictive
performance.
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Appendix A

The following example shows that the joint probabil-
ity distribution Psxumr(d | D, G) cannot necessarily be
presented with any parametrization of the network G.

Let G be a simple v-structure G = ({},{X1, X3}, {}),
and let the data D consist of just a single 3-
dimensional binary-vector [(0,0,0)].

A direct calculation of

P(d,D | G,0(D,d))
>4 P(d,D | G,0(D,d))
yields a probability distribution

Paun(d | D,G) =

8 2 2 2 2 1 2 1
})(d |1)) ‘ 19 19 19 19 19 38 19 38
d ‘ 000 001 010 011 100 101 110 111

In this joint probability distribution X; and X3
are not marginally independent, i.e. P(Xi,X3) #
P(X,)P(X3). However, all the parametrizations of
the structure v-structure G yield distributions where
X1 and X3 are independent.

After marginalizing out X5, we get P(X1, X3 | D,G)

19 19 719 19
00 01 10 11 °

PK$1,I3 |l))‘ 10 4 4 L
|

r1x3
However, the product of marginals P(X1) = (i3, %)
and P(X3) = (13, 35) yields a different distribution

P(x1 | D)P(z3 | D) % % % 32651

r123 00 01 10 11
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Appendix B: Proof of Proposition 2

N (n—1)""1 K n-1 n—1
We derive a regret bound for the categorical data of QD) < H o Z( K + 1)e( K )
size N with K categories. We start by reviewing the n=1 k=1
probability distribution of interest N (n— 1)1 n—1
= nl;ll s (n+ K —1)e( I )
N 3 N
P(D(”) D(<")) (n—1)n1 n+K—1 na
P D , = +K-1)(———)F
B U TR Vi
where we have denoted with D(<™) theAﬁrst n—1 data ne1 n"
items c.)f t.he sequence D, and with P(X) the maxi- N (n— 1)( 1y(n—1) (n+K— 1)n+§(<71
mum likelihood of the data X, P(X) = P(X|0(X)). = H re =
We denote with k.,, the number of times the value k n=1 nox e
appears in D(<"), 1 kK_l(N + k)R
Io anticipate thg\ comparison of the Py with the B NN f 11 k%
P, we write the P in the form K-l vog v Ntk
= IR0k
k=1
50 N P(D™), D<)
(D) = n];[l ﬁ(D(<n)) ’ By taking the logarithm we get a bound for the regret
R(N,K) = rqulHOQ(IU)
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where we have used the function e(z) = (££1)” that
approaches the real number e from below (e(0) = 1)
when x grows. The sum within the product obtains it
largest when all the k,, are equal. Therefore we can
bound the ratio by



