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Abstract

Inhomogeneous parsimonious Markov models
have recently been introduced for modeling
symbolic sequences, with a main application
being DNA sequence analysis. Structure and
parameter learning of these models has been
proposed using a Bayesian approach, which
entails the practically challenging choice of
the prior distribution. Cross validation is a
possible way of tuning the prior hyperparam-
eters towards a specific task such as predic-
tion or classification, but it is overly time-
consuming. On this account, robust learning
methods, which do not require explicit prior
specification and – in the absence of prior
knowledge – no hyperparameter tuning, are
of interest. In this work, we empirically inves-
tigate the performance of robust alternatives
for structure and parameter learning that ex-
tend the practical applicability of inhomoge-
neous parsimonious Markov models to more
complex settings than before.

1 INTRODUCTION

Modeling statistical dependencies and independencies
among a set of random variables is a common task in
data analysis. Parsimonious Markov models (PMMs)
have been proposed by Bourguignon and Robelin
[2004] as an extension of variable order Markov models
[Rissanen, 1983] for effectively capturing dependencies
in sequential data. Recently, inhomogeneous PMMs
have been proposed for modeling short sequence pat-
terns by taking into account position-specific higher-
order dependencies, allowing a favorable tradeoff be-
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tween modeling dependencies and avoiding overfitting
[Eggeling et al., 2013].

Learning inhomogeneous PMMs, which involves struc-
ture and parameter learning, has been proposed using
a Bayesian approach, which allows taking into account
prior knowledge. In practice, however, there is often
either only vague prior knowledge available, or exist-
ing prior knowledge cannot be translated into a math-
ematically convenient form. As a consequence, the
functional form of the prior is often chosen based on
arithmetical convenience, and further restrictions fi-
nally reduce the prior choice to choosing the values of
one or two hyperparameters.

Since choosing appropriate values of prior hyperpa-
rameters is difficult, and since inappropriate values
may yield a significantly degraded performance, hy-
perparameters are commonly tuned based on, e.g., re-
peated hold-out or cross validation techniques. From
a practical perspective, cross validation or similar ap-
proaches are overly time-consuming in relation to a
single estimation step. While this procedure is cer-
tainly doable for a few highly relevant data sets, it
nevertheless limits large-scale applicability of inhomo-
geneous PMMs, especially in situations where struc-
ture and parameter learning are only subtasks in a
more complex learning procedure.

Alternative to the Bayesian approach, methods for
both structure and parameter learning that require no
prior specification have been proposed. One prominent
example is the Minimum Description Lengh (MDL)
principle [Rissanen, 1978], which is motivated by the
information theoretic argument that learning from
data is equivalent to compressing data [Grünwald,
2007]. Modern MDL is based on the minimax optimal
Normalized Maximum Likelihood (NML) distribution
[Shtarkov, 1987], which involves no prior distribution.
Since the NML can be computed exactly only for a few
simple models, approximations of it have been used for
learning complex models such as Bayesian networks
[Silander et al., 2010].
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The purpose of this work is (i) to apply different learn-
ing approaches to inhomogeneous PMMs and compare
their predictive power (Section 4) and (ii) to demon-
strate that extensive cross validation procedures for
hyperparameter tuning can be avoided when robust
learning methods are used (Section 5). To this end,
we first recap the definition of inhomogeneous PMMs
in the following section and specify the learning ap-
proaches that we investigate in Section 3.

2 MODEL DESCRIPTION

Here, we briefly recap inhomogeneous parsimonious
Markov models (PMMs) as proposed by Eggeling et al.
[2013]. We denote a single observation from the alpha-
bet by x ∈ A, a sequence of observations of length L
by ~x = (x1, . . . , xL), and a data set of N sequences of
length L by x = (~x1, . . . , ~xN ).

Parsimonious context trees (PCTs) as proposed by
Bourguignon and Robelin [2004] are the central data
structures in the model. A PCT partitions the set of
context words into subsets, called contexts. We denote
a single context, represented by a leaf in a PCT, by c.
An inhomogeneous PMM for sequences of length L is
based on L PCTs, which we denote by ~τ = (τ1, . . . , τL).

For each PCT, we associate a conditional probability
distribution over A to each of its contexts, and we
denote the conditional probability of observing sym-
bol a ∈ A at position ` given that the concatena-
tion of the preceding d symbols is in c by θ`ca. We
denote the model parameters of the `-th position by

Θ` =
(
τ`, (~θ`c)c∈τ`

)
, and all model parameters by

~Θ = (Θ1, . . . ,ΘL). The likelihood of an inhomoge-
neous parsimonious Markov model of order d is then
given by

P (x|~Θ) =

L∏
`=1

∏
c∈τ`

∏
a∈A

(θ`ca)
N`ca , (1)

where N`ca is the number of occurrences of symbol a
at position ` in all sequences in data set x where the
symbols from position ` − d to position ` − 1 are in c
[Eggeling et al., 2013].

An inhomogeneous PMM can be understood as a
Bayesian network (BN) of fixed structure (Fig. 1(a))
that uses a PCT for each random variable for reduc-
ing the parameter space of each conditional probabil-
ity table (Fig. 1(b)). Whereas in an inhomogeneous
PMM the parent nodes are fixed, the structural flexi-
bility and thus the model selection problem arises from
the choice of an appropriate PCT at each position.
Loosely speaking, the incentive of a PCT is to choose
the smallest possible set of contexts that capture rel-
evant dependencies in the data, yielding a statistical
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(b) Parsimonious context tree

Figure 1: The general dependency structure of a sec-
ond order inhomogeneous PMM for a sequence of
length 6 is shown in Fig. 1(a). PCTs are used for re-
ducing the number of conditional probability param-
eters. Figure 1(b) shows an example PCT for DNA
alphabet at position 4. The nodes are colored accord-
ing to the random variables they correspond to. Each
position in the model may have a different PCT.

model with only a few parameters that might be less
prone to overfitting than alternative models with a
higher number of parameters.

3 LEARNING APPROACHES

Learning inhomogeneous PMMs consists of structure
learning for each PCT in the model and estimation of
the corresponding conditional probability parameters.

3.1 Structure scores

Structure learning is algorithmically challenging, but
can be solved by the dynamic programming algorithm
of Bourguignon and Robelin [2004]. This algorithm
can be used for optimizing any score function satisfy-
ing the so called decomposability property [Heckerman
et al., 1995].

In the Bayesian setting, the structure score of the `-
th PCT τ` for data x is the local posterior probability
P (τ`|x). Using the prior specification of Eggeling et al.
[2013], we obtain

SBDeu(τ`|η, κ,x) =
∑
c∈τ`

log
κB
(
~N`c + (α, . . . , α)|A|

)
B
(
(α, . . . , α)|A|

) ,

(2)

with α = η|c|
|A|d+1 , where η is the equivalent sample

size (ESS), which is the sole hyperparameter of the
symmetric Dirichlet prior over the probability param-
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eters; see Buntine [1991] and Heckerman et al. [1995]
for an introduction into the ESS concept in graphi-
cal models. B denotes the multinomial beta function,
and (a, . . . , a)b denotes a b-dimensional vector filled
with constant a. This score is equivalent to the BDeu
score of BNs and we name it accordingly. The only
conceptual difference is the existence of a second hy-
perparameter, κ, which originates from the structure
prior and is as such a particularity of PMMs. Setting
κ = 1 corresponds to a uniform distribution over all
structures, yielding a BDeu score in its most widely
used form [Buntine, 1991].

Since the Bayesian scoring criterion is equivalent to
that of BNs, it is worthwile to consider applying other
scoring criteria for BNs to inhomogeneous PMMs as
well. A possible alternative is based on the Normalized
Maximum Likelihood (NML) distribution, motivated
by the information theoretical argument of minimizing
the worst case regret [Shtarkov, 1987]. However, exact
computation of the NML is difficult since it involves a
normalization of all possible data sets, which can only
be done for a few simple models. Silander et al. [2008]
have proposed the factorized NML (fNML) criterion
for learning BNs in order to approximate the NML
distribution of the full model by a product of indepen-
dently normalized terms. For inhomogeneous PMMs,
the fNML score can be written as

SfNML(τ`|x) =
∑
c∈τ`

log

((
N`ca
N`c·

)N`ca
)
− C |A|N`c·

, (3)

where Cab is the stochastic complexity of a multino-
mial distribution with a being the number of categories
and b being the sample size. Cba can be computed us-
ing the linear-time algorithm of Kontkanen and Myl-
lymäki [2007] or the so called Szpankowski approxi-
mation [Kontkanen et al., 2003]. The fNML score as
such does not require any explicit prior assumptions.
However, it is close to the Bayesian marginal likelihood
using a Jeffreys prior, which is a Dirichlet distribution
with hyperparameters 1

2 in this setting, thus violat-
ing the equivalent sample size condition. In such a
Bayesian interpretation, using fNML would also imply
using a uniform prior over all model structures. The
fNML score yields a consistent estimator of the model
structure [Silander et al., 2008].

A generally applicable score, which has an interpre-
tation both in Bayesian statistics and in information
theory, is the Bayesian Information Criterion (BIC) of
Schwarz [1978], which is also referred to as MDL score,
since it corresponds to a coarse minimum description
length approximation using a so called two-part en-
coding of model structure and data given the model

[Grünwald, 2007]. The BIC score can be written as

SBIC(τ`|x) =
∑
c∈τ`

2 log

((
N`ca
N`c·

)N`ca
)

(4)

−|τ`|(|A| − 1) log(N),

and it is known to penalize additional parameters
rather strictly, so it is typically more prone to under-
fitting than to overfitting. Furthermore, BIC can be
seen as an approximation of both the fNML score and
the Bayesian marginal likelihood.

For BNs, Silander et al. [2008] have shown that BIC is
inferior to BDeu and fNML, when attempting to find
the true model structure. However, dismissing BIC
for model selection in PMMs might not be justified,
especially when the task is not finding a true model
structure but rather a structure that is suitable for
prediction. Even though it has often been observed
that structures that are good for prediction are overly
rich and lack interpretability, this may not apply for
situations where there is only little training data in
relation to maximal model complexity.

3.2 Parameter estimates

Once the model structure is learned, we also need to
fix the model parameters in order to be able to use
the resulting fully specified model for tasks such as
prediction.

In the Bayesian setting, the parameters can be es-
timated according to the mean posterior principle
[Jaynes, 2003], yielding

θ̂MP
`ca(η,x) =

N`ca + η|c|
|A|d+1

N`c· +
η|c|
|A|d

(5)

when using the prior specification of Eggeling et al.
[2013]. For PMMs, mean posterior estimates directly
correspond to a prediction method integrating over the
parameter space, so they are in resonance to struc-
ture learning using the Bayesian marginal likelihood
of Eq. 2.

An alternative is here also offered by the NML distri-
bution. For parameter learning in BNs, factorized se-
quential NML (fsNML) estimates have been proposed
by Silander et al. [2009] to estimate probability param-
eters in accordance with the fNML structure learning
score. For inhomogeneous PMMs, the fsNML estimate
writes as

θ̂fsNML
`ca (x) =

e(N`ca)(N`ca + 1)∑
b∈A e(N`cb)(N`cb + 1)

, (6)

where e(N) = (N+1
N )N for N > 0 and e(0) = 1. Due to

its minimax optimality properties, using fsNML for se-
quential prediction, where the t-th prediction is based
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on the t − 1 previous observations, t ∈ {1, . . . , N},
yields a predictive performance almost as good as the
optimal parameter estimates, which are obtained using
the maximum likelihood estimator with full data [Si-
lander et al., 2009].

4 EMPIRICAL COMPARISON

In this section, we empirically compare the Bayesian
and MDL-based methods for structure learning and
parameter estimation. We study the behavior of the
aforementioned methods w.r.t. the choice of the prior
hyperparameter (Section 4.1) and the sample size (Sec-
tion 4.2) using the splice site data set of Yeo and Burge
[2004]. This data set is particularly suitable for com-
paring scoring criteria for PMMs since (i) it is known
that comparatively strong dependencies among adja-
cent sequence positions exist in relation to other types
of functional oligonucleotides and (ii) the large number
of data points originating from the same source offers
the possibility to study the influence of the sample size.

4.1 Influence of the ESS

In a first study, we compare the performance of
Bayesian and NML-approximating scoring criteria, us-
ing the data set of Yeo and Burge [2004] consisting
of 12,624 experimentally verified human splice donor
sites. The sequences in the data set have length L = 7
over the four letter alphabet A = {A,C,G,T}. They
have been split by Yeo and Burge [2004] into train-
ing data (xtrain) and test data (xtest) at a ratio of
2:1, and we rely on the same partion for the following
experiments.

We sample N = 500 sequences from xtrain,

learn structure ~̂τ and probability parameters ~̂θ~̂τ of
a third-order inhomogeneous PMM, and compute

logP (xtest|~̂Θ), where ~̂Θ = (~̂τ , ~̂θ~̂τ ). We repeat this
procedure 103 times, and average the resulting log pre-
dictive probabilities in order to let the standard error
caused by randomly selecting data points for the train-
ing data set become negligible.

Using this procedure, we compare the performance of
the NML-approximating method (using fNML struc-
ture score and fsNML parameter estimate) with the
Bayesian method (using BDeu structure score and MP
parameter estimate). The latter offers the possibility
to incorporate prior knowledge through the equivalent
sample size η and the structure prior hyperparameter
κ. Recall that setting the structure prior hyperparam-
eter κ = 1 results in a uniform structure prior, so that
we are able to separately investigate the influence of
the ESS. In addition, we perform cross-comparisons by
combining fNML structure score with MP parameter

estimate and BDeu structure score with fsNML pa-
rameter estimate. While theoretically difficult to jus-
tify, this cross-comparison might be helpful to evaluate
the influence of the ESS on structure and parameter
learning separately. In Figure 2, we plot the prediction
performance of the various combinations of structure
scores and parameter estimates against the ESS (rang-
ing from 10−1 to 103).

We observe that the performance of the Bayesian
method (BDeu-MP) depends strongly on the ESS,
with too large values leading to more dramatic degra-
dation in performance than too small values. More-
over, the NML-approximation yields a higher predic-
tion than the Bayesian method irrespective of the
chosen ESS. This is surprising, since intuitively the
Bayesian method should excel for at least some partic-
ular choices of the prior - even if those well-performing
choices are typically unknown.

We find a possible explanation of this observation by
investigating the cross-comparisons of Bayesian and
NML-approximating methods. Since the optimum of
the BDeu-fsNML curve (dashed, red) is located at a
smaller ESS value than the fNML-MP curve (solid,
blue), the optimal ESS for structure learning seems
to be not necessarily the optimal ESS for parameter
learning. With the comparatively small sample size
of N = 500, structure learning requires a small ESS,
whereas parameter learning requires a larger ESS for
better parameter-smoothing.

We also observe that non-optimal choices of the ESS
affect parameter learning more severely than struc-
ture learning. The error arising from a false model
structure is bounded by the prediction performance
of the most overfitted model structure, which corre-
sponds here to a third-order inhomogeneous Markov
model. However, the error that may arise from param-
eter learning is virtually unlimited, since the parame-
ter estimates may get dominated by the prior, either
yielding estimates close to maximum likelihood (very
small ESS) or blurred towards a uniform distribution
(very large ESS). We may thus conclude that fsNML
is here a safe choice for parameter learning that avoids
the explicit specification of any parameter prior.

4.2 Influence of the sample size

After having studied the effect of the ESS at one par-
ticular sample size, we now focus on the influence of
the sample size on structure learning and prediction.
We take a closer look at structure learning by investi-
gating the influence of different structure scores on the
complexity of the learned models. To this end, we use
a similar experimental setting as described in Section
4.1. We sample N sequences from xtrain, learn the
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Figure 2: Prediction performance versus ESS of different combinations of structure scores and parameter esti-
mates on the splice site data. The structure score is indicated by the color of each line, with BDeu displayed in
red and fNML displayed in blue. The parameter estimate is indicated by the shape of the line, with solid being
MP and dashed being fsNML. Hence, the solid red line displays the traditional Bayesian method, whereas the
dashed blue line displays the hyperparameter-free NML method. The other two lines are influenced by the ESS
either only in structure learning (dashed, red) or in parameter learning (solid, blue).

structures of third-order inhomogeneous PMMs with
different scoring criteria, and compute the total num-
ber of leaves of all PCTs, which is proportional to the
number of model parameters (with a factor of |A|) and
can thus be referred to as model complexity. We re-
peat this procedure 103 times and average the resulting
model complexities. We perform this procedure for dif-
ferent values of N (ranging from 50 to 5000) and plot
the model complexity against the sample size (Fig. 3).
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Figure 3: Complexity of the learned model structures
w.r.t. the sample size and different structure scores:
BIC, fNML, and BDeu (three different ESS values).

For the BDeu score, we observe that the model com-
plexity depends on the ESS: the larger ESS, the larger
the model; see the three BDeu curves in Fig. 3. This
effect is in agreement to a similar observation made for
BNs [Silander et al., 2007].

For all methods, there is a general trend that model
complexity increases with increasing sample size from
N = 500 onwards, but even when using 5000 data
points, we do not get close to the maximal model,
which has 277 leaves. However, for BDeu and also
fNML, the complexity also increases when the sam-
ple size becomes very small (N < 300). Whereas this
seems to be counter-intuitive at first glance, it can be
explained with an extreme case: when the sample size
decreases to zero, there is no observed data, all terms
originating from the parameter prior cancel out, and as
a consequence the structure prior dominates model se-
lection. If we assume that for identical optimal scores
one of the candidate structures is selected at random,
we obtain models of average complexity (w.r.t. the to-
tal space of candidate structures). When observing
few data points, BDeu collects evidence in favor of ei-
ther simple or complex models, but the starting point
is – in accordance with the uniform structure prior –
a model of average complexity. Since fNML implicitly
also assumes a uniform structure prior, a similar effect
appears for that score as well. Even if the data was ac-
tually generated by an independence model, and thus
contained no statistical dependencies at all, many data
points would be required to to consistently identify the
simple model as the correct one, because, unlike BIC,
neither of them has a built-in bias towards simple mod-
els. BIC, on the other hand, shows a different behav-
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ior, as it is known to penalize model complexity heavily
in general. But in contrast to BDeu(1E-1), which is
similar to BIC for large sample sizes, the model com-
plexity for BIC is monotically increasing, and for very
small sample sizes BIC almost selects an independence
model.

In a third study, we investigate how different structure
scores influence the prediction performance when the
sample size varies. We focus compare BIC and fNML
structure scores with the extreme cases of indepen-
dence model and third-order inhomogeneous Markov
model, using the fsNML parameter estimate in all four
cases. We also include the Bayesian method of BDeu
structure score and MP parameter estimate in the
comparison, using the same ESS values as in Fig. 3.
The experimental setup is here identical to that of the
previous experiment, but now we compute predictive
probabilities as for different sample sizes N (Fig. 4).

First, we observe that the minimal model (black),
which corresponds to an independence model, is op-
timal when the sample size is smaller than 100 data
points. This is intuitively clear since all more com-
plex models are overfitted when the sample size be-
comes very small. Conversely, the maximal model
(purple), which corresponds to a third-order inhomo-
geneous Markov model, is strongly overfitted when the
sample sizes are small, performing significantly worse
than the minimal model until the sample size increases
to more than approximately 500 data points. For
larger sample sizes, the maximal model clearly outper-
forms the minimal model, which shows that statistical
dependencies among adjacent sequence positions exist
in the splice site data set.

Using PMMs, we are capable of interpolating between
both special cases, if the structure score yields reason-
able models. BIC and fsNML scores perform well for
large sample sizes, as they are superior to the maximal
and to the minimal model.

There are differences for small sample sizes though,
which could be expected by merely considering the
model complexity for varying sample sizes (Fig. 3),
and by the hypothesis that small models might be good
for small sample sizes, as the comparison of the fixed
structure models illustrates. For small sample sizes,
BIC yields model structures that are only slightly more
complex than the minimal model, so they also come
close to it in terms of predictive probability. However,
with increasing sample size, BIC is still capable of cap-
turing dependencies, so it does not suffer from learn-
ing very sparse models. In comparison, fNML per-
forms significantly worse for small sample sizes, and
the method yields a similar prediction performance
compared to BIC only for more than 500 data points.
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Figure 4: Prediction performance versus sample size
for fNML, BIC and BDeu scores with different ESS.
In addition the prediction performance of the minimal
and the maximal model are shown.

We find that the Bayesian approaches are here inferior
to the other three methods that are capable of struc-
ture learning, irrespective of the chosen ESS. Whereas
η = 10−1 yields a model complexity that is rather close
to that of BIC, it nevertheless suffers from (i) the effect
of rising model complexity for small sample sizes and
(ii) unfavorable parameter estimates. An ESS value of
η = 103 yields for most sample sizes (i) too large model
structures and (ii) parameter estimates that are close
to a uniform distribution. A reasonable ESS value of
η = 10 performs similar to fNML, yet it suffers from
the problem of different ESS optima for structure and
parameter learning as discussed in Section 4.1.

In summary, we find that on this data set the mini-
mal model is optimal if there are less than 100 data
points available for estimating the distribution from.
For sample sizes between 100 and 500, BIC yields the
best tradeoff in finding a model structure that cap-
tures dependencies while avoiding overfitting, and even
for sample sizes below 100 the difference in prediction
compared to that of the minimal model is rather small.
For N > 500 most structure scores perform similar,
even though the learned model complexities still differ
to a large extent (Fig. 3). For large sample sizes, the
negative effect of some dispensable parameter sets may
be negligible, which is supported by the comparatively
good performance of the maximal model for N > 2000,
even though it never catches up to the parsimonious
models yet.
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5 AVOIDING CROSS VALIDATION

We have observed in the previous section that the
Bayesian methods for structure learning and parame-
ter estimation of inhomogeneous PMMs are hampered
by the influence of the ESS. Especially regarding the
cross comparison in Fig. 2, we speculate that it might
be impossible to find one ESS value that is optimal
for both structure and parameter learning. In prac-
tice, this can be dealt with by modifying the structure
prior hyperparameter κ, which then overshadows the
ESS influence on the model complexity. However, it is
intuitively neither clear which value κ has to be cho-
sen to obtain certain model complexities, nor which
combination of κ and η may be optimal for prediction.
To this end, an internal cross validation on the train-
ing data can be used for determining an optimal prior
choice [Eggeling et al., 2013]. However, this increases
the computational effort dramatically and may limit
the large-scale applicability of inhomogeneous PMMs.

5.1 Comparing prediction performances

We speculate that a prediction framework using BIC
or fNML structure score in combination with fsNML
parameter estimate could represent a reasonable alter-
native to the Bayesian approach with hyperparameters
optimized via internal cross validation. In order to
test this hypothesis, we perform a study on several real
world data sets. We focus on transcription factor bind-
ing sites (TFBS) from the publicly available database
Jaspar [Sandelin et al., 2004], since modeling TFBS
is the most important application of inhomogeneous
PMMs to date. We select all available data sets con-
taining more than 100 sequences, since we have seen
in Fig. 4 that below that size the independence model
can be expected to yield optimal predictions even if
strong dependencies exist in the data. We obtain 20
different data sets, which vary in sequence length from
8 to 21 and in sample size from 101 to 4311, covering
the whole range of complexity currently known to ap-
pear in TFBS biology. For all data sets, we evaluate
the prediction performance of the different methods by
cross validation.

For the Bayesian approach, we use an additional inter-
nal cross validation (leave-one-out cross validation for
all data sets with N < 1000, 10-fold cross validation
for the rest) for optimizing the hyperparameters. We
use three different values (1,10,100) for the ESS and 20
different values for the structure prior hyperparameter
κ, interpolating between minimal and maximal model.

The results are shown in Table 1. In most cases,
all three methods (BIC-fsNML, fNML-fsNML, and
BDeu-MP with double cross validation) show a similar
performance, implying that the hyperparameter-free

Table 1: Prediction performance of the three different
methods using 20 different TFBS data sets. BDeu uses
an internal cross validation on training data for tuning
hyperparameters κ and η.

data set L N BIC fNML BDeu

EWSR 18 101 -0.32 -0.40 -0.21
HIF1A 8 103 -4.51 -4.64 -4.50
NFYA 16 116 -13.39 -14.27 -13.55
Myc 10 227 -6.25 -6.29 -6.27
ESR2 18 357 -15.46 -15.62 -15.58
ESR1 20 475 -18.40 -18.52 -18.44
Zfx 14 481 -10.37 -10.41 -10.38
Stat3 10 613 -4.44 -4.42 -4.44
Sox2 15 669 -11.59 -11.67 -11.58
Foxa2 12 808 -7.35 -7.36 -7.32
PPARG 15 864 -12.58 -12.52 -12.54
FOXA1 11 897 -6.46 -6.53 -6.54
CTCF 19 908 -13.65 -13.72 -13.62
GABPA 11 993 -5.94 -5.96 -5.93
Pou5f1 15 1356 -10.44 -10.42 -10.44
REST 21 1607 -12.60 -12.63 -12.59
STAT1 15 2085 -11.97 -11.99 -11.99
Esrrb 12 3661 -7.44 -7.43 -7.45
Tcfcp2I1 14 4079 -11.06 -11.02 -11.01
Klf4 10 4311 -5.07 -5.07 -5.07

methods are indeed as good as the Bayesian method
that uses an exhaustive internal cross validation for
hyperparameter tuning.

One interesting example is NFYA, where BIC leads to
a clearly increased prediction performance compared
to fNML and where it also predicts better than the
Bayesian approach. This can be explained by the fact
that a small data set may require a rather simple model
despite containing strong statistical dependencies. So
NFYA is an example of a situation that we have sim-
ulated in Section 4.2 by subsampling (Fig. 4). As we
have seen before, fNML and also BDeu may have diffi-
culties learning simple models when there is not a suf-
ficient amount of data available to consistently identify
the simple model as the correct one.

Hence, BIC might be the best structure score if it is
combined with fsNML parameter estimates and if the
sample size is small (N < 500) in relation to the max-
imal model complexity and the total number of possi-
ble structures. However, it might be possible that BIC
underfits when there are strong and diverse statistical
dependencies, requiring large model structures. If the
optimal model complexity is above average or if sam-
ple size is comparatively large (N > 500), fNML might
be the more robust choice.
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These observations actually yield a vague prior knowl-
edge about model complexity for analyzing further
data sets, as we now expect comparatively sparse
models to perform well. However, since it is diffi-
cult to translate this vague knowledge into precise val-
ues for the structure prior hyperparameter κ, using
BIC constitutes a reliable method of obtaining rather
sparse model structures and thus expressing our re-
cently gained vague prior belief.

5.2 Runtime considerations

We have seen that BIC and fNML structure scores in
combination with fsNML parameter estimares might
be a alternative learning approach to Bayesian meth-
ods if there is no or only vague prior knowledge avail-
able, and the prior must be tuned by cross validation.
Cross validation multiplies the time complexity of the
entire learning algorithm by KC, where K is the num-
ber of holdouts, and C is the number of different prior
values to be tested. In Section 5.1, we used K = 10 for
the large data sets with more than 1000 data points,
and K = N − 1 for the remaining data sets. C is the
product of different ESS values η (3 in our studies)
and different structure prior hyperparameter values κ
(20 in our studies).

In practice, learning one third-order inhomogeneous
PMM (implemented in Java using Jstacs [Grau et al.,
2012]) from the Pou5f1 data set on a 2.5 GHz proces-
sor takes 1.8 seconds using BIC-fsNML and 1.6 sec-
onds using fNML-fsNML. The runtime is here domi-
nated by the dynamic programming algorithm for find-
ing the optimal model structures. Learning a similar
model with the Bayesian approach using cross vali-
dation takes 1036 seconds, which is indeed close to a
factor of 3 × 20 × 10 = 600 times slower. For other
large data sets, the runtime ratio is similar close to
the expectation. For smaller data sets, this is even
more unfavorable for the Bayesian method, since leave-
one-out cross validation must be used to obtain robust
hyperparameter estimates.

The runtime depends on the numbers K and C, but
without a doubt compromises w.r.t. both values, such
as reducing the number of tested candidates, might re-
duce the runtime difference between methods and yet
not decrease the performance significantly. However,
it entails the danger of obtaining unreliable estimates,
which is probably worse than needlessly investing more
time. In addition, transforming the problem of choos-
ing good hyperparameter values into choosing an ap-
propriate selection of hyperparameter candidate val-
ues for the internal cross validation is essentially not
avoiding user interference at all.

6 CONCLUSIONS

In this work, we have studied the empirical perfor-
mance of different learning approaches for inhomo-
geneous PMMs. The current state of the art is a
Bayesian approach, which may be problematic since
the prior choice can influence both structure learning
and parameter estimation dramatically. We examined
alternative learning methods, motivated by the MDL
principle, which were originally proposed for Bayesian
networks.

We found that the factorized sequential NML estimate
is a safe choice for obtaining probability parameters,
as it always provides a certain parameter smoothing
without dominating the data, whereas mean posterior
estimates perform poorly if the ESS parameter is cho-
sen inappropriately. For structure learning, BIC is a
surprisingly good choice, especially when sample sizes
are small or the expected optimal model complexity is
below average. In those cases, it outperforms all other
alternatives, which may be surprising at first glance,
since BIC can be thought of as a large sample ap-
proximation of more sophisticated scores. However,
whereas the Bayesian and the fNML score may be tai-
lored towards finding the true model structure, and
may outperform BIC in that respect, this true struc-
ture may not be optimal for prediction using limited
training data. Prediction on real-world data sets such
as DNA binding sites seems to favor comparatively
sparse model structures, which in turn favor BIC as
structure score for obtaining them.

The Bayesian approach for learning inhomogeneous
PMMs offers the possibility of tuning the hyperpa-
rameters of structure and parameter prior via cross
validation in case that no or only vague prior knowl-
edge is available. Whereas a generally robust behavior
of the MDL-techniques compared to the Bayesian ap-
proach was promised by theory, it was not clear how
these methods perform in comparison to an exhaustive
prior optimization. The results from this work sug-
gest that the extensive cross validation, which is used
to compensate the shortcomings of Bayesian methods,
may be unnessary since a similar – and sometimes even
better – performance can be achieved by using robust
methods for structure learning and parameter estima-
tion that avoid explicit prior specification.
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