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Abstract. Processes such as hybridization, horizontal gene transfer, and
recombination result in reticulation which can be modeled by phylogenetic
networks. Earlier likelihood-based methods for inferring phylogenetic
networks from sequence data have been encumbered by the computational
challenges related to likelihood evaluations. Consequently, they have
required that the possible network hypotheses be given explicitly or
implicitly in terms of a backbone tree to which reticulation edges are
added. To achieve speed required for unrestricted network search instead
of only adding reticulation edges to an initial tree structure, we employ
several fast approximate inference techniques. Preliminary numerical and
real data experiments demonstrate that the proposed method, PhyloDAG,
is able to learn accurate phylogenetic networks based on limited amounts
of data using moderate amounts of computational resources.

Keywords: phylogenetic networks, likelihood-based inference, phylogenetics,
probabilistic graphical models

1 Introduction

Phylogenetic trees are widely used for modeling the evolution of a group of
organisms. However, trees are not able to represent reticulation events due to
processes such as hybridization, horizontal gene transfer, and recombination. If
reticulation is thought to be present, a phylogenetic network is a more useful
model. For this reason, researchers in quantititive biology have been interested
in representing evolutionary processes using network models since as early as the
1970s [20]. Even though various computational techniques have been proposed to
deal with the challenges caused by network-like models, inferring the network
structure from data remains a problem.

We propose a combination of solutions for speeding up the required computa-
tions in a likelyhood-based framework. These include a stochastic expectation-
maximization (EM) algorithm for dealing with unobserved ancestral sequences.
As a subroutine of the EM algorithm, we apply an approximate inference method
known as loopy belief propagation [16], which provides dramatic computational
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savings when computing the required sampling distributions while avoiding any
unwarranted independence assumptions (see e.g., [6]).

We describe a stand-alone method, which we call PhyloDAG,1 which can
learn phylogenetic networks from data. The present implementation assumes a
generic mixture model of the reticulation process but the model can be extended
to handle more specific kinds of processes as well. Preliminary numerical and
real world experiments demonstrate the utility of the method. For an application
of PhyloDAG to the analysis of non-biological data, see [23].

The rest of the paper is organized as follows. In Sec. 2, we review some of
the relevant prior work on likelihood-based phylogenetic networks. In Sec. 3, we
describe our model in detail. We introduce the PhyloDAG method in Sec. 4, and
present experimental results in Sec. 5. A summary and pointers for future work
are given in Sec. 6.

2 Related Work

Likelihood-based inference has become a popular approach in phylogenetics since
it was first proposed by Felsenstein [5]. Likelihood-based methods are widely
considered to be the state-of-the-art in molecular phylogenetics [4, 26].

The first framework for likelihood-based inference of phylogenetic networks
was proposed by Haeseler and Churchill [8]. Based on their work, Strimmer
and Moulton [21] proposed to use directed graphical models, or Bayesian net-
works, as a represention of explicit likelihood-based phylogenetic networks. Their
framework was first applied to split networks, but it can be easily applied to evo-
lutionary networks [22]. However, networks pose major computational challenges
for likelihood-based inference. Computations involving unobserved ancestral se-
quences are in general intractable. The solution applied in [21] is to approximate
the likelihood by method similar to Gibbs sampling.

Strimmer et al. [22] model reticulation events by introducing a random
variable that indicates which one of the possible ancestral taxa is active and
using the same mechanism as in tree-structured models as if the active taxon
were the only immediate ancestor. The random choice of the ancestor taxon
is repeated independently at each site according to fixed but unknown weight
parameters. The authors referred to this as the mixture model. In this work, we
adopt the mixture model and develop novel efficient algorithms that can be used
for inferring the network structure and parameters from data.

Jin et al. [10] point out the importance of allowing different evolutionary
mechanisms for different genomic sites. However, despite their emphasis on the
differences between their approach and that of Strimmer et al., the existence of a
separate edge length parameter for each site, which significantly increases the
model complexity but simplifies the computations, turns out to be the distinctive
feature of their model. In follow-up work, Park and Nakleh [15] consider given

1 The implementation is available for download at http://phylomemetic.wordpress.

com/2015/04/17/phylodag/ .
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genomic regions inside which a fixed ancestor taxon and edge length value is
used.

There are also other sophisticated ways to relax the mixture model assumption.
Husmeier and Wright [9] and Webb et al. [25] assume each site to be generated
from an unknown phylogenetic tree which is a hidden state in a hidden Markov
model (HMM). Transitions between the states of the HMM constitute breakpoints
from one phylogenetic structure to another. This approach is likely to be more
realistic under recombination scenarios, but it is very computationally expensive
since it introduces complex dependencies between the sites and the state space
of the HMM grows exponentially in the number of taxa.

In all of the aforementioned work, due to the said computational challenges,
network search is either restricted to a small set of possible networks given explic-
itly by the user or more implicitly to networks obtained by adding reticulation
edges to a fixed backbone tree structure obtained by standard tree methods such
as MrBayes [17]. A key assumption behind the use of a backbone tree is that even
when the actual phylogenetic process involves reticulation events, a tree structure
estimated from the data comprises a part of the true network that represents
the phylogenetic history. If this is the case, the true network can be obtained
by adding reticulation edges. Unfortunately, in our experience this assumption
is unlikely to hold in practice. In Sec. 5.3 we demonstrate simple cases where a
violation of the assumption leads to suboptimal outcomes.

Apart from horizontal gene transfer and other processes discussed above,
deep coalescence arising from incomplete lineage sorting is another source of
incompatibility of gene trees for individual sites or genes of a given same set of
taxa, see e.g., [13]. Since deep coalescence tends to occur even when the organisms’
evolution is completely tree-like, it is usually not considered to be a type of
reticulation. The models used to handle deep coalescence are also somewhat
distinct from those used to handle reticulation. Recently, there have been several
attempts to incorporate reticulation into models for deep coalescence [12, 27].

3 Likelihood-based Inference in Phylogenetic Trees and
Networks

We adopt the standard likelihood-based framework in phylogenetics and let each
node (either leaf or internal) of a phylogenetic tree correspond to a taxon. Leaf
nodes are assumed to be extant taxa whose genomic sequences are observed. In
this work we focus on DNA sequences although for example protein sequences
can in principle be handled in the same fashion.

We denote the probability that a DNA sequence associated to node Xi in
a phylogenetic tree evolves from the sequence in its immediate ancestor, called
its parent, Pai in time proportional to branch length τi by Pτi(Xi | Pai). These
local probabilities are specified explicitly by a sequence evolution model such as
the Jukes-Cantor (JC) model [11] as a function of τi. In the following, we denote
random variables and sequences like Xi by upper case letters and their values,
such as xi, by lower case letters.
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The above kind of probabilistic model describes the following evolution
scenario. The nucleotide sequence at the root Xr is drawn independently from
a stationary distribution π obtained as the limit π(X) = limτ→∞ Pτ (X | y) for
any sequence y. The sequence evolves independently along the edges of the tree.
Assuming a fully observed tree T with p nodes (taxa), the likelihood of a single
site at all taxa is factorized as

P(T,τ)(X1 = x1, ..., Xp = xp) = π(xr)
∏
i 6=r

Pτi(xi | pai), (1)

where pai denotes the nucleotide at the site in question in the parent of taxon
Xi in tree T . However, since we assume that only the sequences in the leaf nodes
are observed, the internal nodes, including the root node, represent ancestral
taxa whose biological sequences are unavailable, and hence they become latent
(unobserved) variables in the model.

Following and extending the convention familiar from phylogenetic trees, we
assume that any node in a phylogenetic network is classified in one of three
categories based on the number of its parents. First, the unique root node has no
parents and two children (immediate descendants). Second, tree nodes have a
single parent and either zero or two children. For both of these classes of nodes,
the evolutionary model coincides with the model commonly used for likelihood-
based phylogenetic trees. The third class of nodes are the reticulation nodes
which have two parents and either zero or two children. For a given nucleotide
xi ∈ {A,C,G, T} in reticulation node Xi, we have the conditional probability
given its parents’ states pai = (yi, zi) as the weighted sum of its conditional
probability given a single parent:

P(wi,τi)(xi | pai) = wiPηi(xi | yi) + (1− wi)Pζi(xi | zi), (2)

where the probabilities on the right side of the equation are the same as in the
case of tree models, and the weight parameter wi as well as the edge length
parameters τi = (ηi, ζi) are parameters whose values need to be given in order to
make the model fully specified. Plugging the above terms in the factorization (1)
provides a complete probability model for reticulate evolution.

The model in Eq. (2) is the mixture model of Strimmer and Moulton [21]. If
genomic regions that follow a fixed ancestry are given like in [15], they can be
incorporated in the model by treating sites within a given region as a sample of
data from the same source. In this work, we focus on the case where the sites are
independent.

From a computational point of view, most of the complications arise from the
fact that the observed-data likelihood involves a summation over the possible
values of the latent variables. In tree topologies, well-known techniques exist for
carrying out the summation in linear time with respect to the size of the tree [5].
These techniques are known in probabilistic graphical models more generally
as variable elimination. Felsenstein [5] uses the expectation–maximization (EM)
algorithm [3] to estimate branch length parameters in tree-structured models. In
the following, we introduce methods for approximating the computations in the
case where the phylogenetic hypothesis involves reticulation nodes.
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4 The PhyloDAG Method

We propose an efficient method for likelihood-based inference of phylogenetic
networks. The key novelties of the PhyloDAG method include a stochastic EM
algorithm for learning the structure and parameters of the network as well as a
fast loopy belief propagation (LBP) algorithm which is used to accelerate the
required computations involving the latent variables in the model.

The outer loop of the algorithm is a stochastic structural EM (SSEM) algo-
rithm. Similar to regular EM, SSEM repeats iterations consisting of an expectation
(E) step followed by a maximization (M) step. Slightly different from regular
EM, SSEM is based on stochastic sampling of latent variables in the E step in
order to obtain (pseudo-)complete data. The word ‘structural’ refers to the fact
that the M step involves a maximization not only over model parameters (parent
weights and edge lengths) but also over the model structure (network topology).
Inside the E step, an inner loop based on LBP replaces the variable elimination
algorithm commonly used in dealing with latent variables in tree-structured
phylogenies.

We initialize the structure as a phylogenetic tree obtained from by Neighbor-
Joining algorithm [18], which is used for sampling of the latent variables in the
first E step. After this the initial tree is discarded and in particular, it is not
used to restrict the structure search in any way. The E and M steps are repeated
until the objective function converges.

Let o denote all the observed data, and let L denote the latent variables. The
model structure and parameters on each iteration, t, of the algorithm are denoted
as G(t) and θ(t) = (w(t), τ (t)) respectively.

4.1 Stochastic E Step

Recall that in the E step, regular EM computes the expected complete data
log-likelihood with respect to the latent variables

EL|o,G(t),θ(t)
[
logP(G,θ)(o, L)

]
, (3)

where the structure and parameters G, θ = (w, τ) are allowed to differ from
G(t), θ(t). The above quantity is then maximized with respect to G and θ in the
M step. For complete data, under the i.i.d. assumption, the log-likelihood for
a set of sequences of length N becomes a sum with N terms. We group them
based on the configurations of a node and its parents:

logP(G,θ)(o, l) =
∑

i=1,...,p
x∈{A,C,G,T}

pa∈{A,C,G,T}qi

Nixpa logPθi(Xi = x | Pai = pa), (4)

where qi denotes the number of parents for variable Xi, and the count Nixpa
indicates the number of sites where Xi takes value x and its parents take values
pa. The counts Nixpa are called the sufficient statistics since given the model
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parameters they uniquely determine the likelihood. For each combination of values
x, pa, the conditional probability Pθi(Xi | Pai) can be considered a constant, and
the log-likelihood is a linear function of the sufficient statistics. Hence computing
the expected log-likelihood only requires the computation of the expectation of
the sufficient statistics, which can be done by summing over all the independent
sites

EL|o,θ(t) [Nixpa ] =

N∑
j=1

P(G(t),θ(t))(X
j
i = x,Paji = pa | oj),

where superscript j indicates the site. The required computations may easily
become infeasible since the conditional probabilities in the above formula may
require complex inference procedures in case the network structure is not of a
very specific kind (such as a tree).

Friedman et al. [6] suggest an approximation of the form

P(G(t),θ(t))(L | o) ≈
|L|∏
i=1

P(G(t),θ(t))(Li | o), (5)

where |L| denotes the number of latent variables. This amounts to treating
each node and its (potential) parent(s) as conditionally independent given the
observed data. We suggest a different approximation which avoids the above
drastic conditional independence assumption by sampling the latent variables
from their conditional distribution P(G(t),θ(t))(L | o). To do so, we exploit the
chain rule

P(G(t),θ(t))(L | o) =

|L|∏
i=1

P(G(t),θ(t))(Li | L1:i−1, o) (6)

We will sample a value l1 for the latent variable L1 from its LBP-approximated
conditional distribution given the observed data o, after which we include the
value l1 in the set of (pseudo-)observed variables, and proceed recursively to
sample all the remaining latent variables. The procedure is outlined as Algorithm 1
below.

Data: o: vector of observed data (at a single site)
Result: l: vector of sampled data for latent variables (at the same site)
for i ∈ {1, ..., |L|} do

Perform LBP to approximate P(G(t),θ(t))(Li | l1, . . . , li−1, o)
Draw value li from the obtained distribution.

end
return l1, . . . , l|L|

Algorithm 1: Sampling latent variables from their joint conditional distribu-
tion approximated by loopy belief propagation (LBP).

In practice, drawing a single sample vector, l, per site appears to be sufficient
to obtain sufficiently accurate approximations of the expected counts unless the
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number of sites is very small. This strategy is more generally called stochastic
EM [2]. Theoretical and numerical results backing up its validity are presented
in [14].

4.2 Structural M Step

Having sampled the latent variables in the E step to obtain the pseudo-complete
data (o, l̃), the M step is used to estimate a phylogenetic hypothesis, i.e., the
network structure, G, the weight parameters associated with possible reticulations,
w, and the edge lengths, τ . All of them are estimated by maximizing the following
objective function:

(G(t+1), θ(t+1)) = arg max
(G,θ)

logP(G,θ)(o, l̃), (7)

where l̃ denotes the sampled values for all hidden variables obtained in the
stochastic E step, and θ = (w, τ). Any Bayesian network learning algorithm can
be applied with the pseudo-complete data. We start with an empty network and
apply local modifications including edge deletions, additions, and reversals until
the likelihood score cannot be improved. Further heuristics including a tabu
search to escape local optima are detailed in the next section.

The parameters can be estimated in a relatively straightforward manner under
the JC model, which we use in our implementation, as well as other commonly
used sequence evolution models.

4.3 Avoiding Local Optima and Overfitting

As is typical to EM-based algorithms, it is beneficial to implement some modifi-
cations that help to avoid the search from getting stuck to local optima. Since
the method is based on maximizing the likelihood, it is also prone to overfitting
unless some complexity regularization is performed.

First, to escape local optima in the structure search within the M step, we
apply so called tabu search heuristic [7] where structure modifications that reduce
the likelihood score are accepted in case there are no available local modifications
that improve the score. To do so, we maintain a tabu list wherein we record
recently visited graph structures in order to prevent repeatedly visiting the same
structures. The search is terminated after a maximum number of iterations is
reached or when no improvement in the best structure occurs in several steps,
after which the overall best structure is returned.

Moreover, even if the M step finds the globally optimal structure given the
pseudo-complete data (o, l̃), the EM iterations may end up in a local optimum of
the incomplete-data likelihood, where the pseudo-observations sampled in the
E step reinforce the current (locally optimal) structure hypothesis; see [6]. The
stochastic EM algorithm is less prone to this problem than regular EM (see [14])
but when the sequence length is large enough, the problem persists. We therefore
adopt the perturbation method in deterministic annealing EM by Ueda and
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Nakano [24]. This means that the sampling distributions in Algorithm 1 is raised
to power β ≤ 1 and normalized after it has been inferred by LBP so that the
pseudo-observations are drawn from a distribution proportional to

P(G(t),θ(t))(Li | l1:i−1, o)β

where 1/β acts like a temperature parameter. The inverse temperature β should
be small at the beginning, so that the sampling distribution is close to uniform.
When β is increased, the distribution is perturbed less and it will approach the
unperturbed distribution as β → 1. Currently we heuristically set β(1) = 0.6 and
β(t+1) = min{1.0, 1.05β(t)}.

Finally, to avoid overfitting due to the increased flexibility allowed by the
reticulation nodes, we use the Bayesian information criterion (BIC) [19] to
penalize the score function, which becomes

BIC(G, θ | o, l̃) = logP(G,θ)(o, l̃)−
k

2
logN, (8)

where k is number of free parameters in model G (including both the weights
and the edge lengths), and N is the sequence length. The second term in the
BIC score can be seen as a complexity penalty reducing the tendency to overfit.
Because the penalizing term is the same in both complete and incomplete data,
when BIC is used instead of ML as the scoring function in Eq. (7), the validity
of the EM algorithm is maintained; see [3]. The good performance of BIC in
preventing overfitting in phylogenetic networks has been observed by Park and
Nakleh [15].

4.4 Postprocessing of the Networks

From the point of view of network search, the properties required from phylo-
genetic networks can be a problem since they might restrict the exploration of
promising structures. Therefore, we perform the SSEM algorithm using uncon-
strained network structures, and apply the following sequence of postprocessing
steps only after the algorithm has converged:

1. Recursively remove all unlabeled leaves.

2. Remove unlabeled nodes with in-degree and out-degree of 1.

3. Edge from two labeled nodes (A,B) with length τAB is replaced by (x,A)
with τxA = ε and (x,B) with τxB = τAB, where x is an internal node and
ε ≈ 0.

4. An internal node x with more than two children, x1, x2, ..., is replaced by
a new internal node y with children x1 and x, and x1 is removed from the
children of x. This rule is applied recursively until x has at most two children.

We refer the reader to [6] for detailed illustrations and the proof why these
alterations do not change the score.
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Fig. 1. Left: The true phylogenetic network. Edge lengths (shown along the edges) are
drawn from an exponential distribution. Right: Ranks of the true network as a function
of sequences length using exact and approximate computations. Both curves tend to
increase which means that as the sample size grows, they eventually rank the true
network first.

5 Experiments

To demonstrate the practical utility of the proposed method, we perform experi-
ments on both simulated and real data. We first illustrate the accuracy of the
likelihood evaluation based on loopy belief propagation which we use in the E
step to show that model comparison based on approximated likelihood is reliable.
We then demonstrate the PhyloDAG method by applying it to both simulated
and real data.

5.1 Exact vs Approximated Likelihood: an Illustration

We apply a procedure where we simulate DNA data with increasing sequence
length, N = 50, 100, 150, . . . , 500 for the leaf nodes of an arbitrary tree structure
following the JC model and no insertions or deletions (indels). To create a hybrid
node, we pick two leaf nodes and produce a hybrid sequence by randomly copying
the character at each site from either one of chosen the leaf nodes according to
some fixed weights. The two leaf nodes are then removed and replaced by the
hybrid node whose parents are those of the removed leaf nodes. The resulting
phylogenetic network is shown in Fig. 1.

We then modify the true structure by adding and removing edges to obtain a
sample of 1000 incorrect topologies (including some duplicates). We rank these
1001 phylogenies by their BIC scores where instead of the pseudo-complete
likelihood P (o, l̃) we use the incomplete-data likelihood P (o) so that the scores
are comparable across different networks. We compare the ranking performance
obtained by using an exact brute-force computation of the incomplete-data
likelihood and the LBP approximation. Since the problem size is small, even
the exact computation takes less than three seconds for samples up to N = 500
using an efficient implementation. In the case of LBP, we use the identity P (o) =
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P (l̃, o)/P (l̃ | o) which holds for all l̃. The LBP approximation takes less than
0.5 seconds. Since the exact computation takes exponential time in the number
of latent variables, it quickly becomes useless in practice as the problem size is
increased, whereas the LBP method scales to much bigger problems.

In Fig. 1, the ranks of the true phylogenetic network by both exact and
approximate inference are plotted against the sample size. In both methods
the rank of the true structure tends to improve as the sequence length grows.
The brute-force method ranks the true structure higher for sequences up to 100
nucleotides but for longer sequences the differences are generally very small.

5.2 Structure Search on Synthetic Data

Following the experimental procedure described above, we generate a data set
with 15 taxa and sequence length 2000. The true underlying phylogenetic network
is shown in Fig. 2. We apply PhyloDAG as well as PhyloNet2, a recent method
proposed by Yu et al. [27].

Figure 3 shows the result of PhyloDAG. In order to make it easier to compare
the structure inferred by PhyloDAG to the correct network, four groups of taxa
are shaded and labelled as A–D. Except some minor differences like the position
of group C (taxa t6 and t17), PhyloDAG infers the structure almost correctly. In
particular, the two reticulation events at t7 and t9 are inferred correctly. Note
that the BIC criterion was used to decide the number of reticulate edges in the
model based on the data without user intervention.

In PhyloNet, we apply the maximum likelihood phylogenetic network method.
PhyloNet requires a backbone tree, and as suggested by Yu et al. [27], we use a
backbone obtained by MrBayes [17]. PhyloNet also requires that the number of
reticulations be specified, and we provide the correct number, two. Other settings
of PhyloNet are set to default values. By default, the algorithm is repeated 10
times and the network that maximizes the likelihood as computed by PhyloNet
is produced as the output.

Figure 4 shows the structure inferred by PhyloNet. The solid edges are from
the backbone tree by MrBayes and dotted edges are the added reticulation
edges. In this experiment, despite the good backbone tree, the two reticulation
edges suggested by PhyloNet are incorrect. The reticulation edge near t11 may
correspond to an actual reticulation (see Fig. 2) between the immediate ancestors
of t11 and t4 which results in the sequence at t7 but it is still relatively far
from correct. It will be interesting to analyse in detail why PhyloNet produces
reticulate edges between neighboring nodes only. The experiments presented by
Yu et al. [27] do not test whether this behavior occurs generally: they involve
only 4 or 5 taxa so that reticulation between more distant branches cannot
be investigated. Another possible explanation for the poor result is a different
sequence evolution model employed in PhyloNet whereas PhyloDAG may benefit
from the fact that it is based on the JC model which is also used to simulate the
sequences – however, see the results on real data in the next subsection.

2 http://bioinfo.cs.rice.edu/phylonet
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Fig. 4. Result of PhyloNet [27] for data simulated from the network in Fig. 2.

The test is done on an 3.4 GHz 8 core CPU computer with 16 GB of memory.
For this data set, PhyloDAG runs 12 iterations of the SSEM procedure which
takes less than three minutes. On the same setup, PhyloNet runs for about five
hours (excluding the running time of MrBayes).

5.3 Real Data Experiment

We test PhyloDAG on a real data set “Feliner”3. This is one of a few data sets
where the underlying phylogenetic network is at least partially known since they
result from an artificial hybridization of Armeria plants in a greenhouse [1].

The data contains a number of Armeria villosa ssp. longiaristata (VIL) and
Armeria colorata (COL) plants. The specimens VIL#58/120 and COL#11/12
were crossed to create a hybrid generation labeled F1. We select a subset of
the original data set that includes hybrid taxa and their ancestors, so that
the relationships between the taxa are known from the experiment and the
results are easy to interpret. We expand heterozygous sites as pairs of nucleotides
following the encoding of Aguilar et al. [1] (for example, W in the sequence is
expanded as nucleotides AT ). The total sequence length is 626 nucleotides after
the preprocessing. The problem is complicated by the fact that all the sequences
are very similar to each other: they differ at not more than 10 sites.

Figure 5 shows the results of PhyloDAG on the subset of seven sequences
from the Feliner data. PhyloDAG groups the COL and VIL families correctly
and includes a reticulation edge correctly identifying the hybrid ancestry of
the F1 family. The edge lengths are compatible with the observation that the

3 http://www.rjr-productions.org/Database.html
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F1 sequences are very close to the COL sequences (about 4–5 differences) and
somewhat less close to the VIL sequences (about 7–10 differences).

Figure 6 shows the PhyloNet result, obtained using default settings. The
backbone tree (solid lines) obtained by MrBayes places the hybrid F1 species
between the ancestor groups COL and VIL. The PhyloNet method was repeated
twice: first, setting the number of reticulations to one, and another time, setting
it to two. The network show in the figure includes all the reticulate edges (dotted
lines) appearing in either of the the resulting networks. Similar to the simulation
experiment, the reticulate edges by PhyloNet are near the hybrid taxa but their
end points are too close to each other to provide useful information about the
ancestry of the hybrids.

6 Conclusions

We propose a new method, PhyloDAG, for constructing likelihood based phy-
logenetic networks from sequence data. The method is based on i) structural
EM which treats the graph structure as a parameter to be optimized in the
M step ii) an efficient stochastic implementation of the E step based on loopy
belief propagation. The key difference in the procedure compared to earlier
likelihood-based approaches is that whereas earlier methods tend to involve an
EM or Monte Carlo type algorithm as an inner loop of a structure learning
process, we put the structure learning procedure inside the M step of an EM-type
algorithm. This significantly speeds up the structure learning process since it
avoids costly iterative likelihood evaluations, and allows an unrestricted structure
search without a fixed backbone tree.

We presented simulations and a real data experiment to demonstrate the
accuracy of the method. Compared to another recent likelihood-based method,
PhyloDAG was orders of magnitude faster and produced much more accurate
network structures. Variations of our method can be constructed where different
models of reticulation are applied. Additional large scale experiments with real
and simulated data will be required to assess the benefits of our approach.
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