
On Model Selection, Bayesian Networks, and the
Fisher Information Integral

Yuan Zou and Teemu Roos

Helsinki Institute for Information Technology HIIT
Department of Computer Science, University of Helsinki
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Abstract. We study BIC-like model selection criteria and in particular,
their refinements that include a constant term involving the Fisher infor-
mation matrix. We observe that for complex Bayesian network models,
the constant term is a negative number with a very large absolute value
that dominates the other terms for small and moderate sample sizes. We
show that including the constant term degrades model selection accuracy
dramatically compared to the standard BIC criterion where the term is
omitted. On the other hand, we demonstrate that exact formulas such
as Bayes factors or the normalized maximum likelihood (NML), or their
approximations that are not based on Taylor expansions, perform well.
A conclusion is that in lack of an exact formula, one should use either
BIC, which is a very rough approximation, or a very close approximation
but not an approximation that is truncated after the constant term.

1 Introduction

A Bayesian network encodes joint probability distributions of a set of random
variables via a directed acyclic graph (DAG). Bayesian networks with different
network topologies form a lattice-like hierarchy with both nested and non-nested
relations where the model complexity varies greatly. It therefore becomes imper-
ative to regularize model complexity when learning the structure from finite
data. In this paper we study BIC-like model selection criteria that can be de-
rived via Laplace approximation, and their properties in the case of Bayesian
networks. Our main focus is on complexity regularization and in particular, the
lower-order terms such as the constant term, log

∫
Θ

√
det I(θ) dθ, which involves

the Fisher information, I(θ). The omission of such terms in the standard BIC
formula can be justified by asymptotic arguments.

An approximation of the Bayes factor (or the marginal likelihood) [5] under
Jeffreys’ prior, where the constant term is retained, results in a so called Fisher
information approximation (FIA). We show that contrary to what might be
expected, namely that a more refined approximation such as FIA should be
better than a rough approximation such as BIC, FIA tends to be extremely
inaccurate for small and moderate sample sizes. In particular, we observe that
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for complex Bayesian network models (with thousands or tens of thousands of
independent parameters), the constant term is a negative number with a very
large absolute value that dominates all the other terms in FIA unless the sample
size is greater than the number of parameters. The absolute value of the term
grows rapidly with increasing model order, which makes the FIA criterion favor
complex models unless the sample size is extremely large. Similar results have
been reported for other model families such as the exponential model [9] and
Markov sources [15].

In this paper, we first review the FIA approximation and discuss its relation
to certain other model selection criteria. Because there is no closed form formula
for the Fisher information integral under most model families, including Bayesian
networks, we illustrate how to estimate it with arbitrarily fine precision using
Monte Carlo techniques. We carry out model selection experiments where we
highlight the complexity regularization performance by the various criteria in
order to determine which of the criteria are safe and which should be avoided
under given conditions.

2 The Fisher information approximation

In this section, we discuss what we call the Fisher information approxima-
tion (FIA), and relate it to other model selection criteria. First, let’s consider
the Bayes factor criterion before investigating asymptotic approximations. The
Bayes factor measures the ratio of marginal likelihoods between competing mod-
els.

BF12 =
p(xn ; M1)

p(xn ; M2)
=

∫
ΘM1

p(xn ; θ1,M1) p(θ1) dθ1∫
ΘM2

p(xn ; θ2,M2) p(θ2) dθ2
, (1)

where p(θ1) and p(θ2) denote the parameter priors under the two models, M1

and M2, respectively.
The marginal likelihood has a built-in, implicit penalty for model complex-

ity, see [10]. A closed form solution for the marginal likelihood is only available
for a limited set of model families when conjugate priors exist. For other model
families, we usually need to resort to sampling methods such as MCMC meth-
ods [3]. Furthermore, even when an efficient formula for calculating Bayes factors
is available, like in the case of Bayesian networks discussed in this work, model
selection performance may be highly sensitive to the choice of the associated
parameter priors [18].

2.1 Approximation of marginal likelihood

To avoid the selection of a specific prior and to obtain a more objective method
for model selection, we can use asymptotic (large-sample) approximations of the
Bayes factor or the marginal likelihood such as the classic BIC criterion [16].
The BIC can be obtained via Laplace approximation, which involves a Taylor
expansion of the log-likelihood function around its maximum. For instance, if we
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have a model M with dM free parameters, jointly denoted by θ ∈ ΘM, and a
data set xn with sample size n, the Laplace approximation of the log-marginal
likelihood is given by

log p(xn ; M) = log

∫
ΘM

p(xn ; θ,M) p(θ) dθ

= log p(xn ; θ̂(xn)) + log p(θ̂(xn))

+
dM
2

log(2π)− 1

2
log det Î(θ̂(xn)) + o(1),

(2)

where p(θ) is the parameter prior, the maximum likelihood parameters are de-

noted by θ̂(xn), and Î(θ) is the empirical Fisher information matrix at θ. If the
distributions of model M are independent and identically distributed (i.i.d.),
by the law of large numbers, we have the average per-symbol empirical Fisher
information converging to its expectation I(θ̂(x)):

n−1Î(θ̂(xn))→ I(θ̂(xn)), where I(θ) = Eθ Î(θ). (3)

Then by simple manipulation, the fourth term in Eq. (2) can be approximated
as

1

2
log det Î(θ̂(xn)) =

dM
2

log n+
1

2
log det I(θ̂(xn)) + o(1). (4)

Finally, we can obtain the approximation of log marginal likelihood as

log p(xn ; M) = log p(xn ; θ̂(xn))− dM
2

log n

+ log p(θ̂(xn)) +
dM
2

log (2π)− 1

2
log det I(θ̂(xn)) + o(1).

(5)

When the sample size n increases, lower order terms that are independent of n
will eventually be dominated by the terms that grow with n. Therefore, for very
large sample sizes, we can omit the last four terms in Eq. (5) and change the
sign to obtain the familiar BIC criterion:

BIC(xn ; M) = − log p(xn ; θ̂M(xn)) +
dM
2

log n, (6)

To get a more precise approximation, we would need to include the lower-
order terms as well. However, they depend on the chosen prior. An often quoted
objective choice is the Jeffreys prior. The Jeffreys prior was initially proposed to
acquire an invariance property under reparameterization [4]. Later studies have
shown that the Jeffreys prior also has several minimax properties [1], [11]. For
example, it achieves asymptotic minimax risk for model families with smooth
finite-dimensional parameters. This requirement is met in most of the cases for
Bayesian networks. However, when the maximum likelihood parameters lie on
the boundary of the parameter space, Jeffreys prior may fail to achieve the
asymptotic minimax property. In this work, for the sake of simplicity, we as-
sume that the necessary conditions are satisfied and ignore the boundary issues.
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For further discussion on the regularity conditions and an alternative BIC-like
criterion, called NIP-BIC, see [20].

The Jeffreys prior is proportional to the square root of the determinant of
the Fisher information matrix:

p(θ) = FII(M)−1
√

det I(θ). (7)

The normalizing term, which we call the the Fisher information integral (FII),
is given by

FII(M) =

∫
ΘM

√
det I(θ) dθ.

Plugging Eq. (7) in Eq. (5), we get the Fisher information approximation:

FIA(xn ; M) = log p(xn ; θ̂M(xn))− dM
2

log
n

2π
− log FII(M) + o(1). (8)

For Bayesian networks, which is the model class studied in this work, the
Jeffreys prior has been derived in [7]. Unfortunately, as the authors showed,
evaluating it is NP-hard. Therefore, it is unlikely that an efficient formula for
FII could be obtained for Bayesian networks. To get around this difficulty, we
introduce a way to approximate FII by first linking the marginal likelihood to
another model selection criterion via the FIA formula.

2.2 Approximation of normalized maximum likelihood

The FIA formula is important not only because it approximates the Bayesian
marginal likelihood. It also coincides with the asymptotic form of the normal-
ized maximum likelihood (NML) model selection criterion [17]. NML is a modern
form of the minimum description length (MDL) principle, which is an informa-
tion theoretic approach to select the model that has the shortest code length for
describing the information in the data [2], [12].

The NML model is defined as:

NML(xn ; M) =
p(xn ; θ̂M(xn))

CMn
, (9)

where the normalizing factor CMn is the sum of the maximum likelihoods over
all potential data sets:

CMn =
∑
xn

p(xn ; θ̂M(xn)). (10)

NML provides a unique solution to minimize the worst case regret under log
loss for all possible distributions, and the constant logCMn is the minimax and
maximin regret, see [17, 21].

As stated above, the logarithm of the NML probability shares the same
asymptotic expansion as the marginal likelihood under Jeffreys prior, given by
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FIA. The regularity conditions required for this to hold are discussed in [11].
Therefore, we can combine Eq. (8) with Eq. (9) and obtain an estimate of
log FII(M) by:

log FII(M) = logCMn −
dM
2

log
n

2π
+ o(1), (11)

However, the normalizing constant, CMn also lacks a closed form solution for most
of model families and therefore, its value can be calculated efficiently only for
a restricted set of model families such as the Bernoulli and multinomial models
[6]. For other cases, one possible solution is to use factorized variants of NML
[14], which approximate the formula by factorizing it as a product of locally
minimax optimal models. The study in [19] proves that for Bayesian networks,
the factorized NML (fNML) is asymptotically equivalent to BIC but leads to
improved model selection accuracy for finite samples. In this work, we provide
further evidence about the behavior of fNML.

However, instead of resorting to factorized NML variants, where no numeri-
cal guarantees about the approximation error are known, we estimate NML by
Monte Carlo sampling in the same fashion as in [13]. The obtained estimates can
be shown to be consistent as the number of simulated samples is increased. Hence
they provide a sound approach for approximating NML and thereby also the FII
constant: once we have obtained an estimate of the NML normalizing term, we
deduct other terms as in Eq. (8) to approximate log FII(M). After that, by plug-
ging in the approximated value of log FII(M) in Eq. (11), we can calculate FIA
for any sample size without having to repeat the sampling procedure.

3 Monte Carlo approximation of NML

For Bayesian networks, there is no efficient way to compute the exact value of
logCMn . We need to consider other approximate methods such as the Monte
Carlo sampling method introduced in [13]. Based on the law of large numbers,
the sample average is guaranteed to converge to the mean if the sampling size
is large. By sampling m data sets {xn1 , . . . , xnm} from distribution q(·), we have
a consistent importance sampling estimator for CMn as:

1

m

m∑
t=1

p(xnt ; θ̂M(xnt ))

q(xnt )

a.s.−→ CMn as m→∞. (12)

Ideally, any proposal distribution q with full support will guarantee convergence.
However, the shape of q significantly affects the rate of convergence and the

variance of the estimator. We need to choose a sampling distribution q that is
similar to the target distribution. Following [13], we use the sampling distri-
bution by drawing each set of the parameters independently from the Dirichlet
distribution Dir( 1

2 ,
1
2 , . . . ,

1
2 ), which results in the Krichevsky-Trofimov universal

model (K-T model) [8]. It has been proved that the K-T model is asymptotically
equivalent to NML as long as the parameters are not on the boundary.
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4 Numerical results concerning the lower-order terms

In this section we present some properties of log FII(M) that are important to
the model selection behavior of the FIA formula.

4.1 Numerical values of logCM
n and log FII(M)

Firstly, for each combination of maximum indegree, number of nodes, and al-
phabet size, which together determine the number of parameters, we generate
100 Bayesian networks randomly. We estimate the logCMn under different sam-
ple sizes to show how the logCMn curve relates to the BIC curve and its upper
bound. Note that while the main determinant of the model complexity, as mea-
sured by logCMn , is the number of parameters, these different Bayesian network
models usually have somewhat different complexities. As we will see, however,
the variance among networks with a fixed number of parameters is relatively
small compared to the differences between networks with a different number of
parameters.1

As an example, we show the results of Bayesian networks with l = 20 nodes,
alphabet size |X | = 4, and indegree (number of parents) of each node k = 5, . . . , 8
subject to the acyclicity condition. All estimates of logCMn under each sample
size are calculated separately for 100 different Bayesian networks to obtain the
mean and the standard deviation. (The variance is due to both the aforemen-
tioned differences between different model structures as well as the noise inherent
to the Monte Carlo technique.)

Because CMn is defined as the sum of maximized likelihoods over all possible
data sets, and because in the discrete case the likelihood is always at most one,
a trivial upper bound for logCMn is defined as

logCMn ≤ nl log |X |. (13)

Figure 1 shows that for small sample sizes, this upper bound tightly squeezes
logCMn towards zero. On the other hand, up to constant terms, logCMn shares
the same asymptotic form with the BIC (Eq. (6) and Eq. (11)). As the sample
size increases, the slope of the logCMn curve will tend to the slope of dM

2 log n.
In terms of the graph, where the sample size is shown on a logarithmic scale, the
logCMn curve becomes a straight line that is parallel to the corresponding BIC
curve. The difference between the curves tends to the constant log FII(M) −
dM
2 log 2π. The figure suggests that the constant grows rapidly as the model

order is increased.
If the sample size is small, the sum of lower-order terms may be a very

important part that should not be ignored. For example, Fig. 1 shows that for
Bayesian networks with 20 nodes, alphabet size |X | = 4 and maximum indegree
k = 6, when the sample size is n = 1000, the sum of lower terms amount to a

1 An interesting line of future research will be to zoom in into the differences in model
complexity within classes of networks with a fixed number of parameters by the
techniques we use here.
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Fig. 1: Estimates of logCMn by Monte Carlo sampling for Bayesian networks with l = 20
nodes and alphabet size |X | = 4, labeled by the model complexity k = {3, . . . , 6}, as
a function of sample size n = 1, 10, . . . , 108 (in log-scale). The black lines connect the
mean values and the whiskers indicate standard deviation over 100 random repeti-
tions. The red curve shows the upper bound nl log |X |. The straight blue lines are BIC
complexity penalties over different k.

number less than −800, 000. This is because logCMn is restricted by its upper
bound to almost zero but the the term dM

2 log n is larger than 800, 000.

4.2 Accuracy of FIA for small sample sizes

Secondly, we look into the accuracy of FIA as an approximation of logCMn when
the sample size is small. Here we estimate logCMn by the Monte Carlo sampling
method for both small and large sample sizes. We show the estimated values for
a set of nested Bayesian networks of 20 nodes. The models are nested in the sense
that simpler (less edges) Bayesian networks are obtained by removing edges from
a complex (k = 8), randomly generated Bayesian network. We simulate m = 100
data sets in each case and take the average to estimate the logCMn value. On
the other hand, we also estimate the constant term log FII(M) (by Eq. (11)) for
the same networks using a sample size of 109 to make sure that the term o(1)
becomes negligible, and plug in the resulting constant into the FIA formula for
the smaller sample sizes. Table 1 lists related quantities for Bayesian networks
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with 20 nodes and alphabet size |X | ∈ {2, 4}, when sample sizes are 103 or 105

and maximum indegrees are from one to eight.
Based on Table 1, a significant observation is that when the model is very

complex, for instance, when |X | = 4 and k ≥ 6, the log FII(M) is a negative
number with very large absolute value (less than −106). However, the absolute
values of the term dM

2 log n
2π , as shown in the third row of Table 1 are much

smaller than log FII(M) for small sample sizes. Therefore, the term dM
2 log n

2π
is dominated by log FII(M), which results in negative values of the sum. For
example, as shown in the fourth row of Table 1, for sample size n = 103, this
is the case for alphabet size |X | = 4, with maximum indegree k ≥ 4; and for
alphabet size |X | = 2, with maximum indegree k = 8. When the sample size
increases to n = 105, for some simpler networks like |X | = 2, and k ≤ 5, the
values of logCMn and the sum are fairly close to each other. But for the most
complex networks when |X | = 4 and k ≥ 7, sample sizes as large as 105 are still
far from enough to even make the sum positive. The more complex the model,
the larger sample size that we need to get sensible complexity penalties.

Due to the properties discussed above, the model selection by FIA fails under
several conditions. For example, with |X | = 2 and sample size n = 103, the FIA
penalty for Bayesian networks with maximum indegree k = 6 is larger than for
k = 7. Because the simpler network is a subset of the more complex one, the
maximum likelihood value for the network with k = 7 is always higher or equal
to that for the model with k = 7. Therefore, the FIA criterion will select the
Bayesian network with k = 7 rather than the one with k = 6, no matter what
the data are. For sample size n = 105 the problem does not occur when the
alphabet size of |X | = 2 but with |X | = 4, the same problem occurs for k ≥ 7
even with sample size n = 105. The rule of thumb that one should have more
samples than there are free parameters in the model seems to hold quite well in
these situations.

The above observations underline the importance of paying attention to the
potential problems due to the o(1) terms involved in the approximations for
small and moderate sample sizes. Curiously enough, the BIC formula, which is
based on omitting all O(1) terms does not have a similar problem; we will return
to this issue below.

5 Model Selection Simulations

In the above, we already made some remarks on the likely consequences of the the
identified properties of FIA to model selection performance. In this section, we
perform a set of simulation experiments to investigate them in detail. We focus
in particular on complexity regularization in Bayesian networks. We consider
networks with l = 20 and l = 40 discrete-valued nodes. The alphabet size of
each node is varied to be |X | = 2 or |X | = 4.

In each simulation, we restrict the model comparison to a set of eight network
topologies that are obtained by constructing a random DAG with each node’s
indegree k = 8 (subject to the acyclicity condition) and removing edges from
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Table 1: The logCMn estimates based on FIA (the fourth row) or Monte Carlo sam-
pling (the fifth row), the Fisher information integral log FII and the higher order term
d
2

log n
2π

for Bayesian networks of k = {1, . . . , 8}, alphabet size |X | = {2, 4} with num-
ber of nodes l = 20 and sample size n ∈ {103, 105}. Values that are based on Monte
Carlo approximation are reported with four significant digits

|X | = 2,n = 103

k 1 2 3 4 5 6 7 8

log FII -22.88 -37.57 -96.27 -349.9 -1004 -2565 -6488 -14330
dM 39 75 143 271 511 959 1791 3327

dM
2

log n
2π

142.6 274.3 523.0 991.1 1869 3507 6550 12167
sum 119.8 236.7 426.7 641.2 864.1 941.7 61.45∗∗ -2163∗

logCn 179.5 298.9 481.2 711.0 1092 1565 2056 2698

|X | = 2, n = 105

k 1 2 3 4 5 6 7 8

log FII -22.88 -37.57 -96.27 -349.9 -1004 -2565 -6488 -14330
dM 39 75 143 271 511 959 1791 3327

dM
2

log n
2π

272.2 523.4 998.0 1891 3566 6693 12500 23219
sum 249.3 485.9 901.7 1541 2562 4128 6011 8889

logCn 308.0 542.4 941.8 1545 2608 4204 6390 10270

|X | = 4, n = 103

k 1 2 3 4 5 6 7 8

log FII -86.96 -1123 -8211 -48710 -239000 -1135000 -5105000 -21230000
dM 231 879 3327 12543 47103 176127 655359 2424831

dM
2

log n
2π

844.8 3215 12167 45872 172263 644122 2396742 8867956
sum 757.8 2092 3956 -2840∗ -66720∗ -490700∗ -2709000∗ -12360000∗

logCn 832.4 2289 5522 10300 16880 21070 23050 24500

|X | = 4, n = 105

k 1 2 3 4 5 6 7 8

log FII -86.96 -1123 -8211 -48710 -239000 -1135000 -5105000 -21230000
dM 231 879 3327 12543 47103 176127 655359 2424831

dM
2

log n
2π

1612 6135 23219 87539 328735 1229203 4573798 16923071
sum 1525 5012 15010 38830 89750 94330 -531500∗ -4308000∗

logCn 1582 5059 15310 4137 112500 261100 494000 858900

*) logCMn approximations by FIA with negative values
**) logCMn approximations by FIA with a changing order
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it to obtain DAGs with maximum indegrees k = 7, . . . , 1. Such a comparison is
admittedly atypical since most practical scenarios involve several possible net-
work topologies with the same maximum indegree, whereas we only consider one
topology for each value of k. We adopt the present methodology for the purpose
of highlighting the complexity regularization aspect and in order to be able to
estimate the FII term accurately for each individual Baysian network model.2

Within each group of Bayesian networks, we compare FIA with other model
selection criteria of varying levels of approximation, including BIC [16], and
fNML [19]. To obtain a measure of the ideal performance, we also include the
Bayes factor based on the “true” prior. In practice, the true prior is obviously
not known in advance, and therefore, the Bayes factor criterion should be taken
simply as a yardstick against which to compare the other methods. The effect
of using different priors in Bayes factors has been studied in [18].

We perform the comparison for sample sizes 10, 100, . . . , 106. For each sample
size we draw 100 random data sets from the true network, and apply the different
criteria to select one of the eight possible network structures. We show the results
as percentages of correctly identified models in Figs 2 and 3. For the Bayesian
networks with alphabet size |X | = 2 (for both l = 20 and l = 40), sample size
104 is enough for FIA to achieve nearly 100% accuracy. But for the cases when
|X | = 4, FIA needs n ≥ 106 to achieve good performance. Most of the failures are
caused by selecting the most complex models with maximum indegree k = 8: see
the bottom panels of each figure to verify that when the true model is k = 8, FIA
achieves 100% accuracy just because it always favors the most complex model
available unless the sample size is large enough to avoid the reversed complexity
penalty phenomenon discussed in the previous section.

On the contrary, the BIC criterion works better than FIA except when the
true model is the most complex one. Its accuracy decreases when the maximum
indegree of the true model increases. For networks with |X | = 4 and k = 8, the
BIC criterion fails even when the sample size reaches 106. Based on Table 1, we
can see that BIC puts unnecessary large penalties to complex models. Therefore,
it tends to select simple models. On the other hand, we note that the fNML
criterion performs almost as well as the Bayes factor criterion with the true
prior.

6 Conclusions

The simulation experiment verifies that whenever the sample size is not suffi-
cient, the FIA model selection criterion is unreliable for Bayesian network model
selection. We emphasize that none of the above suggests that NML or Bayes fac-
tors have similar issues for small sample sizes. Indeed, the experiments also show
that another kind of (non-asymptotic) approximation of NML, the fNML crite-
rion, behaves almost as well as Bayes factor with the true prior. A remarkable

2 Unlike in the numerical studies in the previous section, here we want to take into
account the fine-grained differences between FII values between different Bayesian
network models with a fixed number of parameters.
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Fig. 2: Model selection experiments for selecting Bayesian networks with 20 nodes and
maximum indegree k = {1, . . . , 8}. Bars show percentages of correctly identified models
by four different criteria as a function of sample size n = {10, 102, . . . , 106}. For the
left plots, we have alphabet size |X | = 2, and for the right ones we have |X | = 4.
Four criteria, from left to right at each sample size, are: FIA (Fisher information
approximation) by Eq. (8), BIC by Eq. (6), fsNML (factorized sequential NML) [19],
and BF (Bayes factor with “true” prior).
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Fig. 3: Model selection experiments with the same settings for Bayesian networks with
40 nodes. (cont’d from Fig. 2)
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fact is that a very rough approximation (of the Bayes factor as well as the NML),
namely the classic BIC criterion where all O(1) terms are ignored, was in our
experiments actually never worse and often much better than the FIA criterion
where the asymptotic formula is truncated only at the o(1) term.

Comparing FIA penalties with logCMn makes it clear that the o(1) term in
Eq. (8) is also an essential part when the sample size is small, which leads to huge
differences between the FIA penalty and logCMn . Similar results are also reported
in the early work in [9] for an exponential model and in [15] for Markov sources.
Based on the simulation experiment, we suggest that including the constant term
alone may actually be dangerous, and in case useful asymptotic formulas are
sought after, one should consider more refined approximations that also include
o(1) terms. As a rule of thumb, situations where a FIA type approximation can
be considered “safe” seem to be those where the sample size exceeds the number
of parameters in any of the models being compared.

It is important to note that the goal of this study was not to evaluate the
model selection performance of a criterion where the constant FII term is ob-
tained by Monte Carlo techniques. Such a criterion may not be very practical
since for complex networks, the sample size at which the o(1) term becomes
negligible can be enormous, and drawing a sufficient number of random data
sets from each of the candidate models would be time consuming. Instead, we
wanted to illustrate the performance of the FIA criterion, independently of the
method by which the FII term is obtained. In other words, we wanted to find
out whether evaluating the FII term via an approximate analytic formula, for
example, would lead to a useful model selection criterion. The answer turns out
to be negative unless the model complexity is severly restricted or the sample
size is extremely large. Hence, studying analytic approximations without paying
close attention to the o(1) terms is likely to be of limited interest.

In the future, it will be interesting to extend the scope of this study to other
model classes such as generalized linear models with continuous parameters to
see if the problem of FIA for small sample sizes also applies to them. To address
the small sample issues related to FIA, we may also try to analytically break
down the o(1) term to obtain more reliable approximations. A closer study for
the performance of FIA and related model selection criteria in general can then
be done in these two directions.
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