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Abstract—Recent data revolution in population genomics for
bacteria has increased the size of aligned sequence data sets
by two-to-three orders of magnitude. This trend is expected to
continue in the near future, putting an emphasis on applicability
of big data techniques to leverage biologically important insights.
Moreover, with the increasing density of sampling, it may also be
necessary to consider alignment-free sequence analysis techniques
combined with clustering to yield a sufficient insight to data.
This leads to ultra high-dimensional data with tens of millions of
variables, which can no longer be handled by the existing popula-
tion genomic methods. Using the largest bacterial sequence data
sets published to date, we demonstrate that random projection
based clustering provides a highly accurate and several orders
of magnitude faster approach to the analysis of both alignment-
based and alignment-free genome data sets, compared with the
Bayesian model-based analysis that is currently considered as the
state-of-the-art. Hence, clustering methods for big data harbor
considerable potential for important applications in genomics
and could pave way for novel analysis pipelines even in the
online setting when executed in a massively parallel computing
environment.

Keywords—Clustering; Random Projection; Population Ge-
nomics; High Dimensionality;

I. INTRODUCTION

Recent rapid advances in sequencing technology have
enabled a data revolution in population genomics, in par-
ticular for prokaryotic organisms such as bacteria. Since
most bacteria are fast-evolving and can have highly cryp-
tic population structure due to horizontal transfer of DNA,
clustering is an important tool for the analysis of whole-
genome bacterial sequence data, offering the potential to reveal
evolutionary patterns that are not discoverable with standard
phylogenetic methods. Very recently, sizes of the cutting-edge
bacterial genome data sets have increased one to two orders
of magnitude [1]–[3], which poses a considerable challenge
even for the most advanced model-based clustering methods
developed for population genomics [4], [5]. Currently, the

largest published bacterial data set [3] harbors hundreds of
thousands of variable genome positions and fitting of the
Bayesian population genomic model to the data with intelligent
non-reversible stochastic optimization algorithm [4], [5] is a
matter of several weeks in a parallel computing environment.
As data sets of comparable size and beyond will soon become
widespread routine for the study of bacterial evolution, there
is an urgent need for developing faster clustering methods
that are able to maintain high level of accuracy compared
with the model-based gold standard approach. Moreover, with
the increasing density of sampling, it will also be necessary
to use alignment-free sequence analysis techniques combined
with clustering to yield sufficient insight to data. Already with
the afore-mentioned genome studies, this leads to ultra high-
dimensional data with tens of millions of variables, which
can no longer be handled by the existing Bayesian population
genomic methods. Here we demonstrate that random projec-
tion based clustering provides a highly accurate and several
orders of magnitude faster approach to the analysis of both
alignment-based and alignment-free genome data sets. Hence,
clustering methods for big data harbor considerable potential
for important applications in genomics and could pave way
for novel analysis pipelines even in the online setting when
executed in a massively parallel computing environment.

The rest of the paper is organized as follows. In Section
II we give a brief description of the Random Projection
(RP) method. In Sections III and IV the RP based clustering
algorithms are presented while Section V is devoted to the
experimental evaluation of the clustering approaches.

II. BACKGROUND

Clustering is a very important problem in data mining and
statistical pattern recognition, which has been studied exten-
sively by several research communities the past decades. More
recently, high-dimensional clustering has been a very active
research field, due to its relevance in real-world applications.
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Along with the high computational requirements a fundamental
limitation posed by increasing dimensionality is that concepts
like proximity, distance, or neighbourhood, which are intrinsi-
cally related to similarity, become less meaningful.

Projection methods for dimension reduction have enabled
the discovery of otherwise unattainable structure in ultra high
dimensional data [6]–[9]. More recently, a particular method,
namely Random Projection [10]–[12], has been shown to
have the advantage of high quality data representations with
minimal computation effort, even for data dimensions in the
range of hundreds of thousands or even millions. In [13] this
dimension reduction technique was coupled with a hierarchical
data clustering algorithm that is specially designed for high
dimensional cases while it was shown that the theoretical
properties of both components can be combined in a promising
and effective clustering framework that achieves high quality
data partitions, orders of magnitude faster. In addition, in [14]
it was shown that by applying the random projection method
prior to the k-means clustering algorithm the real “clusters”
are not distorted significantly.

A. The Random Projection Method

Random Projection (RP) for dimensionality reduction has
been used widely in several domains. Using RP in the context
of a system for organizing textual documents, Kaski [15]
presented experimental results that were as good as those
obtained using PCA. Papadimitriou et al. [12] use random
projection as a prepossessing step in an attempt to speed
up Linear Discriminant Analysis for document categorization.
Bingham and Mannila [11] have shown that RP preserves
distances and has performance comparable to that of PCA on
image and text data, while being much faster. Dasgupta [16],
[17] also concludes that RP results in more spherical cluster
than those in the original dimension. RP also performs better
than PCA on eccentric data, where actually PCA might fail
completely. Based on the principles of RP in [18] Schnei-
der and Vlachos combine random projections onto randomly
chosen lines with hierarchical clustering to offer expedient
construction of dendrograms with provable quality guarantees,
while in [19] through the use of such random projections
they extend density-based clustering techniques by presenting
algorithms that significantly improve runtime.

RP is motivated by the Johnson–Lindenstrauss lemma
which states that a set of n points in a high dimension Eu-
clidean space can be mapped down onto an r < O(log n/ε2)
dimension space such that the distances between the points are
approximately preserved. In other words, the distances are not
distorted more than a factor of 1± ε, for any 0 < ε < 1.

B. Technical details of RP

In RP the original a-dimensional data is projected to an
r-dimensional subspace (r < a), using a random a × r
orthogonal matrix R, whose rows have unit lengths. Using
matrix notation where Dn×a is the original set of n a-
dimensional observations,

DRP
n×r = Dn×aRa×r,

is the projection of the data onto the lower r-dimensional
subspace spanned by R.

The orthogonalization of R is computationally expensive,
but necessary in order to preserve similarities between the
original vectors in the low dimension space and avoid distor-
tions. However, in some cases, we can avoid orthogonalization.
As shown in [20], in high dimension spaces, there exists
a much larger number of almost orthogonal vectors than
orthogonal directions. Thus, high-dimensional vectors having
random directions are very likely to be close to orthogonal.

The selection of the elements of the matrix R is a matter of
interest. In most cases the elements are drawn from a Normal
distribution, but this is not always necessary. In [10] Achlioptas
has proposed a much simpler algorithm for approximating the
random matrix. Random projection is computationally very
simple, forming the random matrix R and projection the n×a
data matrix D onto r dimensions is of order O(arn), and if
the data matrix D is sparse with about c non zero entries per
column, the complexity is reduced to O(crn) [12].

III. RANDOM DIRECTION DIVISIVE CLUSTERING

Divisive hierarchical clustering algorithms build a hierar-
chy of clusters following a top to bottom procedure. Starting
with a single all inclusive cluster at the top, clusters are split
recursively into two parts until a stopping criterion is satisfied.

The main characteristic of the dePDDP (density enhanced
Principal Direction Divisive Partitioning) algorithm is that it
incorporates information from the density of the projected data
onto the first principal component. The algorithm creates a top-
down hierarchy of partitions by iteratively projecting on the
first principal component and performing binary splits based
on the density of the projected data.

Let us assume that the data at hand is represented by an
n× a matrix D, in which each row represents a data sample
di, i = 1, . . . , n, and a denotes the dimensionality. We define
the vector b and matrix Σ to represent the mean vector and
the covariance of the data respectively:

b =
1

n

n∑
i=1

di, Σ =
1

n
(D − be)>(D − be),

where e is a column vector of ones. The covariance matrix Σ
is symmetric and positive semi-definite, so all its eigenvalues
are real and non-negative. The eigenvectors uj , j = 1, . . . , k,
corresponding to the k largest eigenvalues, are called the
principal components or principal directions. The dePDDP
algorithm uses the projections pi:

pi = u1(di − b), i = 1, . . . , n,

onto the first principal component u1, to initially separate the
entire data set into two partitions P1 and P2 based on the
minimimum of all local minima of their univariate density es-
timation, namely MinLocal . More formally MinLocal defined
in Definition 1 as follows:

Definition 1. (MinLocal): A point µ ∈ R is a local minimum
of f̂1D is there exists δ > 0 s.t. f̂1D(µ) < f̂1D(x) for all
x ∈ (µ− δ, µ+ δ). A point µ∗ ∈ R is said to be a MinLocal
if f̂1D(µ∗) 6 f̂1D(µ) for all local minima µ.

In the above definition f̂1D : R → [0,∞) is the kernel
density estimation of the density of the projected data onto
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Density Estimation 

MinLocal	  

Fig. 1: An example of the dePDDP algorithm’s splitting
criterion.

the first principal component defined as

f̂1D(py) =
1

n

∑
x∈D

K(|py − px|)

at any point py ∈ R, where h ∈ R+ is a real positive number
called the bandwidth and K is a kernel function which needs
to be normalized. Several different kernel functions can be
used, such as triangular, normal, etc., but typically, the quality
of a kernel estimate depends less on the shape of K than on
the value of its bandwidth h. Small values of h increase the
variance and thus the resulting estimate f̂1D seems “wiggly”
with many spurious features if graphically checked. On the
other hand, big values of h reduce the variance of f̂1D, but
also increase the bias, probably “smoothing away” the features
of the true density. In this work the bandwidth parameter is
set by choosing a multiple of the hopt bandwidth (“normal
reference rule”) as proposed in [21]. That is the bandwidth that
minimizes the mean integrated squared error (MISE), given by:

hopt = σ

(
4

3n

)1/5

,

where σ is the standard deviation of the data. That multiple
was set to 3 for all experiments.

The computational complexity of the dePDDP implemen-
tation is mostly influenced by the computation of the principal
vectors. To compute them, the Singular Value Decomposition
of the data matrix is employed. This introduces a total worst
case complexity of O (L(2 + kSV D)(snzn a)) where kSV D

are the iterations needed by the Lanczos SVD computation
algorithm, snz is the fraction of non-zero entries in D and L is
the number of clusters retrieved (for more details refer to [8]).
In addition, using techniques like the Fast Gauss Transform we
achieve linear running time for the Kernel Density Estimation
while to find MinLocal we only need to evaluate the density at
n positions, in between the projected data points, since those
are the only places we can have valid splitting points.

The Random Projection dePDDP (rp-dePDDP) algorithm
is a method that combines RP along with the dePDDP algo-

Algorithm 1 The rp-dePDDP algorithm summary.

1: Given the error parameter ε calculate DRP
2: Set Π = {DRP}
3: repeat
4: Select a set C ∈ Π
5: Split C into two sub-sets C1 and C2
6: Remove C from Π and set Π→ Π ∪ {C1, C2}
7: until Stopping Criterion is not satisfied
8: Return Π the partition of D into |Π| clusters

Random	  
Projec-on	   PCA	  

DRP
m⇥r

DRP
(n�m)⇥r

DRP
n⇥r

Dn⇥a

Fig. 2: An example of the rp-dePDDP algorithm’s methodol-
ogy.

rithmic structure by exploiting the relationship between the
density of the true clusters in the data and the density of
the one dimensional projections of the data that are priory
projected onto a random frame. By expressing the Johnson and
Lindenstrauss lemma in terms of the kernel density estimate of
the data projection, it has been shown that using the dePDDP
algorithm’s splitting technique we can guarantee not to split
any actual cluster up to an error term. For more information on
the proof of the related theorems the interested reader should
refer to [13]. A short description of the (rp-dePDDP) algorithm
follows:

The algorithm starts with a single cluster C0 =
DRP constituted by the projections of the input
data D onto the Random Frame. Then iterative
splits of clusters Ci are performed corresponding
to the MinLocal. The selected cluster is replaced
by two subclusters that are constituted by the
points whose one dimensional projections lie at
the left and right side of µ∗ respectively. The
procedure stops when there are no local minima
of f̂1D in any of the remaining clusters. This ter-
mination criterion allows the algorithm to provide
estimates of the number of clusters that constitute
the given dataset.

An algorithmic outline is presented at Algorithm 1. Note
in particular that the first principal component is recalculated
recursively on each of the subclusters. In addition, a graphical
illustration of the method is given in Figure 2.
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Algorithm 2 The rp-kmeans algorithm summary.

1: Given the error parameter ε calculate DRP
2: Set the desired number of clusters k
3: Run the k-means algorithm on DRP
4: Return Π the partition of D into k clusters

IV. RANDOM PROJECTIONS FOR k-MEANS

The k-means algorithm is simple and quite efficient in
most cases; it was recently recognized as one of the top ten
data mining tools of the last fifty years. As a partitioning
clustering algorithm, starts from an initial clustering (that may
be formed at random) and subsequently create flat partitionings
by iteratively adjusting the clusters based on the distance of
the data points from a representative member of each cluster.
The authors in [14] discuss the topic of dimensionality reduc-
tion for k-means focusing on the application of the random
projection method to the k-means clustering problem. In the
proposed approach the original dataset Dn×a is projected onto
an r dimensional subspace with r � a, and then k-means is
applied on the projected data points. The size of the target
subspace is defined by r = ck/ε2 where c is a sufficient
large constant. It is shown that the algorithm distorts the real
“clusters” by a factor at most 2 + ε for some ε ∈ (0, 1/3).
Although there are many variants of k-means that improve its
performance and are less susceptible to initialization problems,
here we focus only on the simple form of k-means. The
algorithmic scheme of the aforementioned method on which
we will refer as rp-kmeans is presented at Algorithm 2.

If the random frame R is constructed to be a sign
matrix as defined in [10], then the mailman algorithm for
matrix manipulation [22] can be used to compute the RP in
O
(
nadε2k/ log(a)e

)
. Subsequently the total running time can

be bounded by O
(
nadε2k/ log(a)e+ 2(k/ε)

O(1)

kn/ε2
)

using
the γ-approximation algorithm presented in [23] for k-means
with input parameter γ = 1 + ε.

V. EXPERIMENTAL RESULTS

To test the presented approaches we use the three largest
bacterial genome data sets published to date: [1] (MA), [2]
(TB), [3] (MAELA). The genome alignments in these studies
have been analysed using the Bayesian model-based method
(BAPS) [4], [5] and we use the clustering output as the gold
standard against which the random projection -based clustering
is compared. The BAPS clusterings used here as the reference
are nested at either two or three levels, in the results below
we generally refer to the cluster labels at the second level. In
any of the case the level of clustering is explicitly mentioned.
The data sets contain between 616-3085 bacterial genomes,
with up to 385,000 variable positions (MAELA). The variable
positions, single-nucleotide polymorphisms (SNPs), are stored
in a data matrix with each sequence as a row. The largest
alignment-based data matrix (MAELA) is of size 3085 ×
385,000.

In addition, since producing a genome alignment is com-
putationally very expensive in itself, we use in tandem an
alignment-free approach, where DNA words of a given length
(KMERs) are scanned from the genome assemblies using

TABLE I: Mean purity, V-measure and number of found
clusters (with the observed standard deviation in parentheses)
for the genome alignment datasets.

Purity V-measure # of Clusters
dePDDP

TB (12) 0.8412 0.7051 25
MA (16) 0.9513 0.7924 43

rp-dePDDP ε = 0.1

TB (12) 0.8503 (0.06) 0.7138 (0.03) 28.09 (5.10)
MA (16) 0.8787 (0.11) 0.7631 (0.07) 34.36 (7.33)

MAELA (190) 0.7528 (0.03) 0.8688 (0.01) 151.60 (13.50)
rp-kmeans ε = 0.1

TB (12) 0.7666 (0.06) 0.7309 (0.05)
MA (16) 0.6903 (0.05) 0.7297 (0.04)

MAELA (190) 0.8317 (0.02) 0.9008 (0.01)
rp-dePDDP ε = 0.05

TB (12) 0.8519 (0.05) 0.7141 (0.02) 27.17 (4.11)
MA (16) 0.9412 (0.02) 0.7932 (0.01) 40.01 (2.46)

MAELA (190) 0.7091 (0.11) 0.8349 (0.09) 139.90 (30.08)
rp-kmeans ε = 0.05

TB (12) 0.7504 (0.07) 0.7207 (0.06)
MA (16) 0.6786 (0.05) 0.7200 (0.04)

MAELA (190) 0.7651 (0.02) 0.8969 (0.01)

TABLE II: Mean purity, V-measure and number of found
clusters(with the observed standard deviation in parenthesis)
with respect to the first level class labels for the genome
alignment datasets.

Purity V-measure # of Clusters
rp-dePDDP ε = 0.1

TB first level (3) 0.9897 (0.00) 0.4778 (0.04) 28.09 (5.10)
MAELA first level (34) 0.9400 (0.02) 0.7743 (0.01) 151.60 (13.50)

rp-dePDDP ε = 0.05

TB first level (3) 0.9917 (0.00) 0.4455 (0.01) 27.17 (4.11)
MAELA first level (34) 0.8888 (0.13) 0.7487 (0.06) 139.90 (30.08)

the distributed method introduced in [24]. By comparing the
accuracy of the clustering based on KMER indicator variable
data with the alignment-based clustering, it is possible to assess
the potential of using methods for ultra high-dimensional data
to bypass the alignment procedure in an analysis. The use of
KMERs is computationally attractive since scanning of the
DNA words scales linearly with respect to the size of the
assemblies, whereas alignment requires methods that are at
least polynomial in terms of computational complexity. How-
ever, it is an open research question how much information
about population structure will be lost by the use of KMERs
instead of an alignment. In our experiments we used the
fixed KMER length of 21 to ensure sufficient within-species
informativeness of the resulting indicator variables. Earlier,
it has been shown that KMERs approximately of length 12-
13 are generally sufficient for separating genomes of bacteria
representing different species [25], but considerably longer
words are still necessary for characterization of differences
in within-population variation. Notably, even much longer
KMERs (up to length 50) are used in the single genome
assembly process where short DNA reads are assembled to
sequence contigs [26].

To measure the degree of correspondence between the
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PCA Class labels RP−PCA Class labels RP−PCA Clustering result

Fig. 3: The projected TB alignment data onto the first two principal components with respect to the class labels and the clustering
result respectively.

PCA Class labels RP−PCA Class labels RP−PCA Clustering result

Fig. 4: The projected MA alignment data onto the first two principal components with respect to the class labels and the clustering
result respectively.

resulting clusters and the assigned classes (coming from BABS
clustering) for each object we use two measures namely Purity
and V-measure [21]. Both of these scale from 0 to 1 with
high values indicating better clusterings. Large Purity values
indicate that the majority of vectors in each cluster come
from the same class, so in essence the partitioning is ”pure”
with respect to class labels. V-measure tries to capture cluster
homogeneity and completeness, by representing the degree to
which classes are split to different clusters. For details on how
these are calculated, see [27].

The size of the r-dimensional subspace used in the RP step
is set based on the desired ε value (see Section II-A), since we
have r = O(log n/ε2) while the random frame R is a random
sign matrix as defined in [10]. In what follows we present
results for rp-dePDDP and rp-kmeans respectively where both
algorithms use the same random projections in their processes
for all cases. The predefined number of clusters is given as
input to rp-kmeans while in the case of rp-dePDDP it is
automatically determined based on the algorithm’s termination
criterion. Note that very often the initialization of rp-kmeans
produces an empty cluster but these cases are excluded from
the analysis.

A. Genome Alignments

Table I reports the clustering results of the algorithms for
the genome alignment datasets with respect to the Purity, V-
measure and number of found clusters when the ε error param-
eter is set to 0.1 and 0.05 respectively. For details regarding
this parameter selection see the Sensitivity Analysis paragraph
below. The mean values along with the standard deviation in
the parenthesis are reported for 100 algorithm’s runs of the RP
based methods. For comparison purposes we also employ the
basic dePDDP algorithm for TB and MA datasets where the
direct application of PCA is feasible. For MAELA dataset this
was not possible due to memory restrictions using the available
resources (server computer with 32 gigabytes of memory). As
shown there is not any significant difference in the results for
the different ε values for both RP based algorithms while we
notice that there is a slight decrease in the performance of rp-
dePDDP for the MAELA dataset when ε = 0.05. With respect
to V-measure the algorithms have similar performance for the
TB and MA datasets, while rp-dePDDP and dePDDP achieve
higher purity values in these cases due to the high number of
retrieved clusters. rp-kmeans performs better for the MAELA
dataset as rp-dePDDP retrieves less clusters than the number of
classes. In Table II we also report the clustering results of the
rp-dePDDP algorithm with respect to the first level class labels
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Fig. 5: Clustering result with respect to the Purity and V-
measure and number of found clusters for different ε parameter
values for the MA dataset (top) and the MAELA dataset
(bottom).

when these are available. As shown by the high purity values
the clustering result captures the first level clustering structure
very well. The lower values of V-measure is a consequence
of the low number of first level classes being partitioned to a
much high number of clusters.

In an attempt to visually investigate the clustering result
and the effect of RP in the datasets structure we employ 2-
dimensional projections onto the first two principal compo-
nents for the TB and MA dataset. In Figure 3 (left) PCA is
applied directly to the TB dataset. The different symbols and
colours of the points describe the class labels. In Figure 3
(middle) PCA is applied to the randomly projected data points
and again the class labels are described by different symbols
and colours, while in Figure 3 (right) the 2-dimensional
projections of the randomly projected data points are plotted
with respect to the clustering result. Similar plots for the MA
dataset are illustrated in Figure 4. We notice that there is
not any significant visual difference in the datasets structure
after applying the RP. Also the clustering results match very
well the class labels, for both cases. In addition, in Figure 3
(see bottom part of each subfigure) we visually identify points
with the same class label that form clearly separate groups.
These groups are in fact identified as separate clusters by the
algorithm. Similar behaviour is observed in Figure 4 indicating
that this phenomenon may occur in other cases as well. Such
information could help the experts identify further structure in
the data that is not captured by BABS.

Sensitivity Analysis: In what follows, we perform an ex-
tensive analysis of the ε parameter. For that purpose we use
MA and MAELA datasets. In Figure 5 (top) we can see the
clustering results for the MA dataset with respect to the mean
values of Purity, V-measure and number of found clusters
over 100 experiments for different ε values. As shown for

TABLE III: Mean purity, V-measure and number of found
clusters(with the observed standard deviation in parenthesis)
for the KMER datasets

Purity V-measure # of Clusters
rp-dePDDP ε = 0.1

TB (12) 0.6495 (0.01) 0.6130 (0.02) 20.31 (3.56)
MA (16) 0.5617 (0.18) 0.4520 (0.16) 24.87 (15.21)

rp-kmeans ε = 0.1

TB (12) 0.6111 (0.03) 0.6268 (0.05)
MA (16) 0.7798 (0.05) 0.7637 (0.04)

rp-dePDDP ε = 0.05

TB (12) 0.6622 (0.02) 0.5802 (0.01) 24.46 (2.82)
MA (16) 0.8142 (0.15) 0.6551 (0.14) 44.82 (11.99)

rp-kmeans ε = 0.05

TB (12) 0.6169 (0.03) 0.6233 (0.04)
MA (16) 0.7828 (0.06) 0.7720 (0.05)

error values less than 0.2 the clustering results are quite good
while the performance is stabilizing for values less than 0.05.
The computational time for a single run when ε = 0.1 is
approximately 10 minutes for the MA dataset, using Maltab
on OS X with the following computer specifications: processor
1, 3 GHz Intel Core i5 and memory 8 GB 1600 MHz DDR3.
In this case it was possible to load the full data matrix into
memory as well as the constructed random matrix thus the
computation of the random projection talking advantage of
Matlab’s efficient matrix computations is very fast. However
due to the memory limitations it is impossible to load the
dataset and the random matrix at once in the case of the
MAELA dataset. The simplicity of the RP method allow
us to apply it iteratively by generating only a column of
the random matrix at each step and then discard it. This
modification extended the computational time of a single run
to approximately 1 hour. It is important to notice that in all
cases the total computational time is mainly determined by the
computation of RP. After reducing the dimensionality and thus
surpassing the memory limitations, the execution time of the
clustering algorithms is minimal, which is expected consid-
ering the relatively small number of samples. In general, the
computational challenges in this work regard the computation
RP. Figure 5 (bottom) displays the same kind of a parameter
analysis with respect to the bigger MAELA dataset. The
difference in size and dimensionality between the two datasets
does not alter the results significantly. The clustering algorithm
seems to achieve its maximum performance again for values
close to 0.1. It is also important to notice that very small ε
values results into high dimensional random projections. For
example in the case of ε = 0.01 the resulting dimensionality
for the MAELA dataset is 80,407. This justifies the use of a
high dimensional clustering algorithm like dePDDP even after
the RP method is applied.

B. KMER datasets

Even if we manage to bypass the memory restrictions
using the aforementioned techniques, the computation of RP
becomes extensively slow as the size of the random matrix
grows. In the case where loading the data matrix into memory
is not possible we will have to pass over it for each generated
part of the random matrix. Thankfully, it is possible to avoid
multiple passes over the data by saving the random generator
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Fig. 6: The projected TB KMER data onto the first two principal components with respect to the class labels and the clustering
result respectively.

TABLE IV: Mean purity and V-measure (with the observed
standard deviation in parenthesis) with respect to the first level
class labels for the KMER datasets.

Purity V-measure # of Clusters
rp-dePDDP ε = 0.1

TB first level (3) 0.9867 (0.00) 0.4780 (0.02) 20.31 (3.56)
rp-dePDDP ε = 0.05

TB first level (3) 0.9845 (0.00) 0.5333 (0.04) 24.46 (2.82)

seed when generating parts of the random matrix. Still the
computation of RP would require several hours strained by the
regular usage of the hard disk. To efficiently apply RP to the
much bigger KMER datasets (MA in this case is characterized
by 9,469,696 attributes) we introduce an efficient and simple
approach talking advantage of parallel computations. It is
possible to generate the same random matrix in individual
nodes of a cluster computer by storing the random seed that
the random generation mechanism uses. Then to compute the
random projection of the dataset we just need to distribute parts
of the data matrix amongst the cluster nodes. This makes the
problem perfectly parallel so calculating the random projection
of the MA dataset on the Computer Science Department’s high
performance cluster constituted by 192 nodes with 32GB of
RAM and 2 Intel Xeon E5540 2.53GHz CPUs takes only a
few minutes.

Table III reports the clustering results of the algorithms
for the KMER datasets. Again these are mean values and the
corresponding standard deviation in the parenthesis for 100
algorithms’ runs. In the case of the MA dataset the rp-dePDDP
algorithm in its default settings only split a few data points,
probably outliers, and then based on the termination criterion
stops the procedure having found just a small number of
clusters. This behaviour is due to the inappropriate bandwidth
parameter for the kernel density estimation. By reducing the
multiplier value of the bandwidth parameter by 0.5 the perfor-
mance of the algorithm is increased significantly. However, this
phenomenon still occurs in some cases, mostly when ε = 0.1,
which explains the large variation in the clustering results. That
is the reason why rp-kmeans performs better in this case. Table
IV again reports the results of rp-dePDDP with respect to the
first level class labels for the TB dataset.

In Figure 6 we can visually investigate the clustering
result and the effect of RP in the structure of the TB dataset
following the procedure explained in the previous Section.
Here we observe the more spherical shapes of the clusters
when PCA is applied to the randomly projected dataset (Figure
6 (middle-right)). It has been shown [17], that the randomly
projected counterparts of even highly skewed clusters will be
more spherical an thus more easy to detect by most clustering
algorithms. Finally, the clustering result again matches very
well the class labels.

VI. CONCLUSION

We have shown that Random Projection -based clustering
offers a promising approach to population genomic analysis
of bacteria, where Bayesian model-based analysis is currently
considered as the gold standard. The rapidly increasing dimen-
sionality of genome data sets is calling for novel approaches
that would be more suitable for massive parallelization and
online type analysis. For the largest published bacterial genome
data set (MAELA), the model-based analysis takes approxi-
mately four weeks of CPU time with fast intelligent stochastic
optimization. Hence, the RP approach offers a several order
of magnitude faster clustering, while maintaining high levels
of homogeneity and completeness. The clustering results were
relatively insensitive with respect to the ε parameter, as long
as the values remain bounded below a certain threshold.
Moreover, we showed that reasonably high accuracy cluster-
ings results could also be obtained with alignment-free input
based on high-order DNA word (KMER) occurrences in the
genome assemblies. This suggests that it would also be useful
to examine the potential of KMERs to population genomic
analysis in more depth.
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