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Prelude: Occam’s Razor

According to the so called Electronic Banking Conspiracy1, a 1 See e.g. http://en.wikipedia.org/
wiki/List_of_conspiracy_theories.secret organization is conspiring to throw down the global economic

system and the whole society. The first step in their plot, replacing
precious metal-based currency by virtual money, has already mostly
taken place. Next, worldwide chaos will be caused by a complete
blackout, erasing all electronic records of bank accounts. Following
the usual conspiracy theory pattern, anyone denying or contradicting
the existence of such a plot is taken to be clearly a member of the
organization, pointing at the involvement of several important gov-
ernment and financial bodies. Similar conspiracy theories abound,
involving UFOs, the Apollo moon landings, the 9/11 attacks, the
Bible, Elvis, global warming, etc.

Figure 1: What comes next in the
sequence?

Solution:Thesymbolsareintegersmir-
roredalongtheverticalaxis.Thenext
symbolwilllooksomethinglike55.

Such conspiracy theories are very hard to debunk. To see why,
consider the following analogue. Figure 1 shows a typical IQ test
question. In order to continue the sequence, one starts to consider
various hypotheses explaining the appearance of the four initial
symbols. The answer is not clear until the solution presents itself,
after which it is so simple and obvious that no one can doubt its
correctness. Likewise, to continue the integer sequence

1, 2, 4, 8, 16, . . . (1)

one easily summons the exponential sequence 20, 21, 22, 23, 24, . . . the
next integer being 25 = 32. However, how can we be so convinced
about the solutions we found? Isn’t it always possible that the se-
quence in Fig. 1 consists of the first four symbols of an alphabet used
by an alien civilization in outer space? And isn’t it possible that the
sequence (1) is the 4-Stöhr sequence2, the following element of which 2 The h-Stöhr sequence is defined as

follows: Let a1 = 1, and define for any
n > 1, an+1 as the least integer greater
than an that cannot be written as the
sum of at most h ≥ 2 terms among
a1, . . . , an; see http://mathworld.

wolfram.com/StoehrSequence.html.

is 31, not 32?
So how are the sequence continuation problems at all related to

conspiracy theories? Answer: both can be resolved by the application
of Occam’s Razor. The principle of Occam’s Razor — also known as
principle of (logical) economy, or principle of parsimony — states that
all other things being equal, a simpler explanation is preferred to a
more complex one. In the case of IQ test questions, we usually feel
more attracted to the simplest solution, and almost invariably, this
is also what the designer of the question has had in mind. The alien
alphabet hypothesis is an example of an artificial solution that is
obviously nonsense exactly for the reason that it cannot be rejected by
any evidence: one can continue the sequence arbitrarily long, and still
it is possible that the aliens are using such symbols, and that the next
one will be different. The reason why conspiracy theories cannot be

http://en.wikipedia.org/wiki/List_of_conspiracy_theories
http://en.wikipedia.org/wiki/List_of_conspiracy_theories
http://mathworld.wolfram.com/StoehrSequence.html
http://mathworld.wolfram.com/StoehrSequence.html
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falsified is precisely the same.3 3 According to Karl E. Popper (1902–
1994), a theory is scientific only if it
is falsifiable by potentially obtainable
empirical evidence. This led him to
reject, e.g., psychoanalysis and Marxism
on the basis of being non-falsifiable;
K. E. Popper, Logik der Forschung (The
Logic of Scientific Discovery), Mohr
Siebeck, 1934.

In other words, the very fact that neither conspiracy theories nor
sequence continuations based on alien alphabets can be disproved
shows that they are ‘non-explanations’: they do not rule out any
possible events, and hence, they have no explanatory or predictive
power.

Of course, none of the above implies that a simple explanation is
necessarily true, and a complex one false: if all simple explanations
turn out to be wrong, and only complex ones remain, one of them
must be true. We should therefore take Occam’s Razor as a heuristic
that can be nor ‘right’ nor ‘wrong’, but instead, it can be ‘useful’ or
‘useless’ — a matter that can be decided by applying it in various
circumstances and seeing whether it leads to good inferences.

In his essay, Simplicity: Views of Some Nobel Laureates in Economic
Science,4 Michael McAleer reviews the answers he received from 4 Arnold Zellner, Hugo A.

Keuzenkamp, and Michael McAleer,
editors. Simplicity, Inference and Mod-
elling: Keeping it Sophisticatedly Simple.
Cambridge University Press, Cam-
bridge, UK, 2001

several Nobel laureates to his questions regarding the role of simplic-
ity in their work. One of the respondents, John F. Nash, Jr. (b. 1928,
Nobel laureate 1994) wrote:

“ Yes, I have definitely had appreciation of principles of simplicity and
this is well illustrated in economic theory, in my case [...]

Good examples, in economic or economics-related theory, are my ax-
ioms for bargaining or Shapley’s axioms giving the ‘Shapley value’. [...] “

However, as many of the respondents, Robert M. Solow (b. 1924,
Nobel laureate 1987) points out that there are limits to how far we
should push the idea of simplicity:

Obviously, then, I think simplicity is a desirable characteristic of a
model. But again a qualification is needed. I am prepared to believe
that some things one might like to model are inherently complex, and
will not yield to simplicity. In that case it would be foolish to insist on
simplicity.

Nash too goes on to add a ‘but’ when he concludes his response to
McAleer:

“ It is certainly true that simplicity has a major function but also it’s
difficult to think that a simple ‘rule of simplicity’ can be given so that,
by simply using that rule, it would be easy to produce good scientific
research! “

The goal of this short course is to explore to which extent such
a ‘rule of simplicity’ can be applied in statistical modeling, and to
which extent it is useful. This will take us on a tour in information
theory, where simplicity is measured in terms of entropy, data com-
pression, and computability. We will discuss the modern version of
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Occam’s razor, known as the Minimum Description Length (MDL) Prin-
ciple, and relate it to more classical statistical techniques as well as
Bayesian methods.

Although many practical examples will demonstrate that information-
theoretic principles provide powerful tools for statistical modeling
and prediction, we need to stay aware of the inherent complexity of
the real world which no principle, no matter how elegant, will take
away.

The contents of this short course, as well as these lecture notes, are
organized in two main parts. The first part reviews the basic concepts
of information theory, focusing in particular on the theory of data
compression. The second part will introduce the MDL principle
and some of its applications in statistical problems such as model
selection and prediction.

Information Theory

The birth of information theory can be dated quite precisely
at the publication of Claude E. Shannon’s (1916–2001) article A Math-
ematical Theory of Communication in 1948. Related ideas had been
around for a while, going back to Ludvig Boltzmann (1844–1906)
whose gravestone contains the formula

S = k log W, (2)

relating the entropy S of an ideal gas to the number of microstates,
W, of the system corresponding to a given macrostate. The constant
k = 1.38062× 10−23 joule/kelvin is related to the thermodynamic
significance of the entropy. An important property of Boltzmann’s
formula is the logarithmic relation between the number of states and
the entropy.

Figure 2: Boltzmann’s grave in Zen-
tralfriedhof cemetery in Vienna, and a
detail showing the engraved formula.
Source: Wikipedia.

Equation (2) is applicable when the microstates of the system can
be treated as exchangeable or equally probable. A generalization for
the case where each state may have a distinct probability, denoted
by pi, was proposed by J. Willard Gibbs (1839–1903), who defined
entropy as

S = k ∑
i

pi log
1
pi

, (3)

where k is again Boltzmann’s constant. Note that when there are W
equally probably microstates, Gibbs’ formula reduces to Boltzmann’s,
since then we obtain pi = 1/W for all i, and by substituting this into
Eq. (3) we get

k ∑
i

1
W

log
1

1/W
=

kW
W

log W = k log W. (4)
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Shannon’s insight was that the entropy (now defined without the
thermodynamic constant),

H = ∑
i

pi log
1
pi

, (5)

has a fundamental role in the theory of data communication and
compression. In order to describe Shannon’s results, we need to
discuss the basics of coding and introduce a few mathematical nota-
tions. For a comprehensive and accessible textbook, see 5.

5 Thomas M. Cover and Joy A. Thomas.
Elements of Information Theory. John
Wiley & Sons, New York, NY, 1991

Basics of coding

A remark on mathematical notation: We will use upper-case
letters X, Y, Θ, etc., to denote random variables, and lower-case let-
ters, x, y, θ, etc., to denote their values; although we occasionally slip
from this convention when (hopefully) there is no risk of confusion.
Domains (the sets of possible values) are denoted by calligraphic
letters when available, e.g., X ,Y , Θ.

Letters p, q, etc., are used to denote probability mass functions
(pmf) or probability density functions (pdf), with the relevant vari-
able indicated in the subscript, e.g., pX , whenever it is not clear from
the context. Hence, the expression Pr[X = x], where X is a (discrete)
random variable, and x its value, may be written as pX(x) or even
just p(x). Alternatively, we may denote the probabilities by p1, p2, . . .
(as above, Eqs. (3)–(5)). The expectation of an expression like φ(x), in-
volving the random variable X, is denoted by EX∼p[φ(x)], where the
subscript indicates the variable over which the expectation is taken
and the relevant distribution. Whenever the distribution is clear from
the context, it is omitted.

Encoding data can be formalized as a mapping between
source (input) sequences and code (output) sequences. In data com-
pression the objective is to map source sequences to code sequences
that are as short as possible, and yet enable the reconstruction of the
source sequence.

For simplicity, we consider encoding methods where each symbol
in the source sequence, x1, . . . , xn is encoded separately. Such codes
are called symbol codes. As is common, we restrict the code sequences
to be binary. Such a code is formally a mapping C : X → {0, 1}∗
from the source alphabet X to the set of finite binary sequences,
called codewords.

The extension of code C is the mapping C∗ : X ∗ → {0, 1}∗ ob-
tained by concatenating the codewords C(xi) for each input symbol
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xi (see Fig. 3):

C∗(x1, x2, . . . , xn) = C(x1)C(x2) . . . C(xn). (6)
C*

10010001111001101011111 0011...01

I N P TU S T R I N G ..._

Figure 3: The extension of a symbol
code. The codewords of code C are as
follows:

I 1001

N 0001

P 111001

U 10101

T 1111

_ 01

S 0011

...
...

In Shannon’s theory, the performance is characterized by con-
sidering a probabilistic source emitting random source symbols,
X1, X2, . . . . For simplicity, we assume that the symbols are indepen-
dent and identically distributed, following the probability distribu-
tion p. The performance of the code is then measured by in terms of
the expected codeword length:

E[`(C(X))] = ∑
x∈X

p(x) `(C(x)), (7)

where `(C(x)) denotes the length of the codeword.
A symbol code C is said be decodable (or lossless), if its extension,

C∗, is a one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C∗(x1, . . . , xn) 6= C∗(y1, . . . , yn). (8)

For example, consider the following codes:

1. A code with codewords {0, 1, 10, 11} is not uniquely decodable: 10
could mean either 1, 0 or 10.

2. A code with codewords {00, 01, 10, 11} is uniquely decodable:
Each pair of bits can be decoded individually.

3. A code with codewords {0, 01, 011, 0111} is also uniquely decod-
able. (Question: What does 0011 mean?)

Code 3 above is decodable but it is somewhat less inconvenient to
decode than, for instance, Code 2. Namely, when decoding a Code 3

sequence starting with 0011 . . . , without yet knowing the continua-
tion, one cannot know whether the last two 1s are related to code-
word 011 or 0111. In contrast, Code 2 can be decoded instantaneously:
every codeword can be identified and decoded as soon as it is re-
ceived. Such a property is associated with prefix(-free) codes. Formally,
a code is prefix-free if and only if no codeword is a prefix of another.

The codeword lengths, l1, . . . , ln, of a prefix-free code satisfy the
important Kraft inequality6:

6 Leon G. Kraft. A Device for Quantiz-
ing, Grouping, and Coding Amplitude-
Modulated Pulses. Master’s thesis,
Massachusetts Institute of Technology,
Cambridge, MA, 1949

n

∑
i=1

2−li ≤ 1. (9)

For instance, Code 1 above does not satisfy the Kraft inequality:

2−1 + 2−1 + 2−2 + 2−2 =
1
2

+
1
2

+
1
4

+
1
4

= 1
1
2

> 1,
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while Code 3 does:

2−1 + 2−2 + 2−3 + 2−4 =
1
2

+
1
4

+
1
8

+
1
16

=
15
16
≤ 1.

Conversely, for any set of codeword lengths, l1, . . . , ln, that satisfy the
Kraft inequality, there exists a prefix code with the given codeword
lengths.

The Kraft inequality can be illustrated by means of the following
tables. In the leftmost table, the total ‘budget’ of one unit (the vertical
length of the table) is enough to cover the cost of all the codewords,
∑i 2−li = 1. In the rightmost table the used codewords are 0, 1, 10,
and 11. The sum of the costs, 1 1

2 , exceeds the budget and the Kraft
inequality is violated. In the leftmost table the codewords 0, 10, 110,
and 111 satisfy the inequality. The code is decodable, and in indeed
prefix-free.

0

1

00

01

10

11

000

001

010

011

100

101

110

111
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Figure 4: Illustration of the Kraft
inequality.A very useful result known as the Kraft-McMillan theorem is that

the Kraft inequality applies not only to prefix codes, but to all decod-
able codes.7 Hence, the restriction to prefix codes has no effect on the

7 Brockway McMillan. Two inequalities
implied by unique decipherability. IRE
Transactions on Information Theory, 2(4):
115–116, 1956

achievable compression ratio: any decodable code can be converted
to a corresponding prefix code with the same codeword lengths.

The importance of the Kraft-McMillan theorem is two-fold. First,
it guarantees that we do not lose anything by restricting the codes to
be prefix-free. Secondly, and even more importantly, it enables the
unification of (decodable) codes and probability distributions, which
provides a way to apply probabilistic concepts such as entropy and
mutual information to analyzing the performance of codes.

The unification of codes and probabilities is achieved by defining
for a given set of codeword lengths, `(C(x)), a corresponding (sub-)
probability distribution as

q(x) = 2−`(C(x)) ⇔ `(C(x)) = − log q(x) = log
1

q(x)
, (10)
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table 1: important observations (kraft-
mcmillan theorem)

1. All decodable codes satisfy the Kraft inequality:

n

∑
i=1

2−li ≤ 1.

2. For any decodable code with codeword lengths
l1, . . . , ln, there exists a prefix code with the same
codeword lengths.

where C is a decodable code.8 The fact that the Kraft inequality may 8 We take all logarithms in base 2 so
that, e.g., log 2x = x.be satisfied as a strict inequality, i.e., the sum may be less than one,

means that the sum of the probabilities q(x) may be less than one, in
which case the term sub-probability distribution is used. For the sake
of simplicity, in what follows, we assume that the sum equals one.

We can now analyze the performance of a decodable code (as-
sumed to satisfy the Kraft inequality as an equality). The expected
codeword length, Eq. (7), can then be written as

E[`(C(X))] = ∑
x∈X

p(x) log
1

q(x)
(11)

In order to analyze this quantity, we now introduce some mathemati-
cal concepts related to entropy and information.

Entropy and information

Given a discrete random variable X with pmf p, we can mea-
sure the amount of ‘surprise’ associated with each outcome x ∈ X by
the quantity

Ip(x) = log
1

p(x)
. (12)

The intuition is that the less likely the outcome, the more surprised
we are to observe it. The entropy of X measures the expected amount
of ‘surprise’:

H(X) = E[Ip(X)] = ∑
x∈X

p(x) log
1

p(x)
, (13)

which just another way to write the earlier definition, Eq. (5).
For a binary random variable, X ∈ {0, 1}, the entropy is max-

imized — quite intuitively — when the two outcomes are equally
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probable, see Fig. 5. Naturally, when the outcome is not random at
all, Pr[X = 1] = 0 or Pr[X = 1] = 1, there is no surprise, H(X) = 0.

Figure 5: The entropy of a binary ran-
dom variable as a function of the proba-
bility Pr[X = 1]. Source: Wikipedia.

As a direct generalization of the entropy of a single variable, we
have the joint entropy of two random variables, X and Y, given by

H(X, Y) = ∑
x∈X
y∈Y

p(x, y) log
1

p(x, y)
, (14)

where p(x, y) = Pr[X = x, Y = y] denotes the joint pmf of the two
random variables. Having observed Y = y, we can also evaluate the
entropy of the conditional distribution of X given the observation
Y = y as follows:

H(X | Y = y) = ∑
x∈X

p(x | y)log
1

p(x | y)
, (15)

which depends on the actual observed value y ∈ Y . Taking the ex-
pectation of this over all the possible values of Y gives the conditional
entropy of X given Y:

H(X | Y) = ∑
y∈Y

p(y)H(X | Y = y). (16)

The following table summarizes the intuitive meaning of the above
quantities.

table 2: entropies

1. The entropy, H(X), measures the uncertainty about
the random variable X.

2. The joint entropy, H(X, Y), measures the uncertainty
about the pair (X, Y).

3. The entropy of the conditional distribution,
H(X | Y = y), measures the uncertainty about X
when we know that Y = y.

4. The conditional entropy, H(X | Y), measures the
expected uncertainty about X when the value of Y is
known.

The chain rule of entropy relates the different entropies to each
other:

H(X, Y) = H(Y) + H(X | Y). (17)
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In words, the uncertainty about (X, Y) is equal to the uncertainty
related to Y plus the uncertainty related to X when Y is known.

In case the two random variables are independent, i.e.,

p(x, y) = p(x)p(y) for all x ∈ X , y ∈ Y , (18)

it is easy to show that H(X | Y) = H(X) and H(Y | X) = H(X). This
implies that the chain rule becomes

X ⊥⊥ Y ⇒ H(X, Y) = H(X) + H(Y), (19)

where the symbol ‘⊥⊥’ denotes independence. Both versions of the
chain rule can be easily generalized to more than two random vari-
ables.

It is now natural to ask how much (on the average) does knowing
one variable reduce the uncertainty about another variable. This is
quantified by the mutual information:

I(X ; Y) = H(X)− H(X | Y). (20)

It readily follows from the definition and the basic properties of the
entropy that the mutual information is symmetric:

I(X ; Y) = I(Y ; X), (21)

which means that the amount of information that X carries about Y
is the same as the amount of information that Y carries about X.

Another useful property of mutual information is that it is non-
negative

I(X ; Y) ≥ 0. (22)

Figure 6 illustrates the relationships between the entropies and the
mutual information.

H(X,Y)

H(X)

H(Y)

H(X | Y) I(X ; Y) H(Y | X)

Figure 6: Relationships between the
entropies and mutual information:
H(X, Y) = H(X) + H(Y | X)
H(X, Y) = H(Y) + H(X | Y)
I(X ; Y) = H(X) − H(X | Y)
I(X ; Y) = H(Y) − H(Y | X)

The crucial observation by Shannon was to link the above
information theoretic concepts to coding and data compression. In
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order to understand how this can be achieved, we introduce a useful
tool called the Kullback-Leibler (KL) divergence. The KL-divergence
between probability distributions p and q is defined as

KL(p ‖ q) = EX∼p

[
log

p(X)
q(X)

]
= ∑

x∈X
p(x) log

p(x)
q(x)

. (23)

An interpretation of the KL-divergence is that it gives the expected
difference between the surprise incurred by using distribution q
compared to the surprise incurred by using the true distribution p:

KL(p ‖ q) = EX∼p[Iq(X)− Ip(X)]

= EX∼p

[
log

1
q(X)

− log
1

p(X)

]
.

(24)

Recall now the expected codeword length, Eq. (11), when the code-
word lengths are given by `(C(x)) = log 1

q(x) and the source symbols
are generated by source distribution p. We can rewrite the expecta-
tion as

E[`(C(X))] = ∑
x∈X

p(X) log
p(x)

p(x)q(x)

= ∑
x∈X

p(X)
[

log
1

p(x)
+ log

p(x)
q(x)

]
= H(X) + KL(p ‖ q),

(25)

where we first multiplied and divided the argument of the logarithm
by p(x), then used the fact that log ab = log a + log b, and finally,
observed that the sum can be rewritten using the entropy and the
KL-divergence.

A fundamental result, due to Gibbs, states that the KL-divergence
is never negative

KL(p ‖ q) ≥ 0, (26)

with equality if and only if the two distributions are identical.
The importance of the above is that it suggests a way to choose

the codeword lengths in an optimal way. Namely, given a source
distribution p, we must try to minimize the term KL(p ‖ q) since
the first term, H(X) depends only on the source. Since we know that
KL(p ‖ q) ≥ 0, and that it is minimized when p = q, it follows that a
code with codeword lengths given by

`(C(x)) = log
1

p(x)
(27)

is necessarily optimal. Intuitively, this is very appealing: short code-
words should be assigned to probable symbols and longer codewords
for less probable ones. For instance, a symbol with probability 1

2
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table 3: important observations (expected

codeword length vs entropy)

1. Given a prefix code C(x), the expected codeword
length under source distribution p is given by

E[`(C(X))] = H(X) + KL(p ‖ q),

where q is defined as q(x) = 2−`(C(x)).

2. Since KL(p ‖ q) ≥ 0, this implies

E[`(C(X))] ≥ H(X),

i.e., the expected codeword length is lower bounded
by the entropy.

3. The expected code-length is minimized if the
codeword lengths are given by

`(C(x)) = log
1

p(x)
.

gets a 1-bit codeword (hence, either 0 or 1), whereas a symbol with
probability 1

256 gets a 8-bit codeword, e.g., 00101100. Table 3 above
summarizes these observations.

However, there are a few caveats in this. First, there is no guar-
antee that the ideal codeword lengths, log 1

p(x) , are integers. (Try to

imagine a codeword with length, say, 3
4 or .123!) Secondly, even if we

know the optimal codeword lengths — and even if they happen to be
integers — it is not trivial to choose the actual codewords so that the
code is prefix-free, or even decodable.

Solving the actual codeword selection problem when the source
distribution is given has been studied in great detail. The early codes
by Shannon and Robert M. Fano (b. 1917) were nearly optimal and
achieved the upper bound

E[`(C(X))] ≤ H(X) + 1, (28)

i.e., expected codeword length within one bit per symbol of the en-
tropy lower bound. Shannon and Fano were, however, unable to
figure out how to construct a code that would guarantee that the ex-
cess expected code-length was minimized. At an MIT information
theory course in the early 1950s, Fano actually posed the problem to
a class of graduate students, among whom was David A. Huffman
(1925–1999). Huffman was able to solve the problem, and the solution
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later became known as the Huffman code, still used today in many
data compression applications.

Later various enhancements and variations of compression meth-
ods have been developed to compress data faster and better. In par-
ticular, the integer codeword length requirement can be circumvented
by the use of arithmetic coding, invented by Jorma Rissanen.9 Further- 9 Jorma Rissanen. Generalized Kraft

inequality and arithmetic coding. IBM
Journal of Research and Development, 20

(3):198–203, 1976

more, special purpose algorithms have been developed for various
types of data such as image, sound, video, text, etc. In many of these,
the coding is not lossless, i.e., the source signal can be reconstructed
from the compressed representation only approximately. For an ex-
tensive reference, see 10. 10 David Solomon. Data Compression: The

Complete Reference. Springer, New York,
NY, 3rd edition, 2004

Kolmogorov complexity

Measuring the complexity of objects (or their descriptions) by
using the entropy and the actual code-length is quite natural. A com-
plex object cannot be compressed as much as a simple one can, etc.
However, the fact that both the entropy and the optimal code-length
depend on the distribution supposed to govern the source, can be
seen as a practical problem. How can we know what the distribution
generating, say, a genomic sequence, or an economic time series is
like?

Moreover, given a source distribution, the entropy only measures
the expected code-length. Let us consider for example the uniform
distribution over all binary sequence of length 10. The probability
of each 20-bit sequence is then 1/220 = 1/1048576 ≈ 0.000001. The
entropy is easily seen to be

∑
x∈{0,1}20

1
220 log

1
1/220 = 20. (29)

But what if the observed sequence happens to be

01010101010101010101,

or some other obviously simple sequence? If we measure the com-
plexity of the sequence by the entropy, we miss all the features of the
particular sequence that was observed that are not determined by the
source distribution. This is because the entropy measures the com-
plexity of the sequence only indirectly, through the assumed source
distribution. The same holds more or less to the code-length, which
in this case would be 20 bits too.

An answer to the above ‘lacuna’ in Shannon’s information the-
ory attracted the attention of the great Russian probabilist Andrey
N. Kolmogorov (1903–1987). In his paper Three Approaches to the



introduction to information-theoretic modeling 14

Quantitative Definition of Information11, Kolmogorov discussed the 11 A. N. Kolmogorov, Three Approaches
to the Quantitative Definition of In-
formation, Problems in Information
Transmission, 1:3–11, 1965.

following three approaches to the definition of information (or ‘com-
plexity’):

1. A combinatorial approach based on the logarithm of the number
of possible outcomes, where the complexity measure is essentially
given by Boltzmann’s formula, Eq. (2).

2. The probabilistic approach due to Shannon.

3. An approach based on computability as defined earlier by Alan
M. Turing (1912–1954).

The third approach was independently discovered almost simultane-
ously by three researchers: Kolmogorov, Ray Solomonoff (1926–2009),
and Gregory J. Chaitin (b. 1947). Due to this, it is sometimes called
Solomonoff-Kolmogorov-Chaitin complexity. For a comprehensive
textbook, see12. 12 Ming Li and Paul M. B. Vitányi. An

Introduction to Kolmogorov Complexity
and Its Applications. Springer-Verlag,
Berlin, 1993

In order to define Kolmogorov complexity, we introduce the con-
cept of a Turing machine. A Turing machine is a formal model that
underlies practically all modern computers. It involves a tape that the
computer can read and write (a memory), and a set of rules that de-
termines the action to take in a particular state of the computer and
when reading a particular symbol on the tape. When inputs are given
on the tape in the beginning, and after the Turing machine has been
allowed to run until the rules tell it to halt, the output of the machine
can be read from the tape.13 Formally, each Turing machine corre- 13 For some sets of rules and for some

inputs, the Turing machine will never
halt. The problem of deciding whether
a given Turing machine will actually
halt for a given input, is surprisingly
difficult to solve. It was in fact shown
by Turing, in his seminal paper On
Computable Numbers, with an Application
to the Entscheidungsproblem, published
in the Proceedings of the London
Mathematical Society in 1937, that the
problem is undecidable, i.e., it cannot
be solved even in principle. The conse-
quences of this observation have been
subsequently explored to great depth
by Chaitin and others.

sponds to a partial recursive (or computable) function U : {0, 1}∗ → X ∗
mapping input sequences ω ∈ {0, 1}∗ to output sequences x ∈ X ∗.
We call the input sequences programs since, given a fixed Turing ma-
chine, they determine the performed computations. For programs
such that the machine never halts, the function is said to be unde-
fined (hence the term partial recursive).

Despite its simplicity, the Turing machine model is actually very
flexible. In particular, it is possible to construct Turing machines
that are universal in the sense that they can imitate any other Turing
machine. Modern computers are examples of practically universal
Turing machines. The computable function implemented by a (real)
computer depends the particular aspects of the computer as well as
the programming language that we use to control it. General purpose
programming languages such as Java, Lisp, python, as well as script-
ing languages used in environments such as R, Matlab, and SAS
each define their own computable functions. Each of the above is also
universal.

The Kolmogorov complexity KU(x) of (a description of) an object x is
defined as the length (in bits) of the shortest program that produces x
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Java R python

public static String repeat(String str, int n){

StringBuilder ret = new StringBuilder();

for(int i = 0;i < n;i++) ret.append(str);

return ret.toString();

}

public static void main(String[] args){

System.out.println(repeat("01", 10));

}

paste(rep("01",10),collapse=´´) "01" * 10

Figure 7: Examples of programs in dif-
ferent languages printing the sequence
01010101010101010101. Adapted from
http://rosettacode.org/wiki/Repeat_

a_string

when run on a universal Turing machine U:

KU(x) = min
ω∈{0,1}∗

{`(ω) : U(ω) = x}. (30)

The definition of K(x) depends on the specific Turing machine U.
However, as the complexity of x increases, this dependency becomes
asymptotically negligible since for any two universal machines, U
and V, we have

|KU(x)− KV(x)| ≤ cU,V for all x, (31)

where cU,V is a fixed (but usually unknown) constant. This is called
the Invariance Theorem, since it states that the complexity measure
is asymptotically invariant under modifications in the underlying
universal machine. In practice, we know that, for instance,

|KLisp(x)− KJava(x)| ≤ cLisp,Java, (32)

since it is possible to write a Lisp compiler in Java, and vice versa.
Going back to the sequence 01010101010101010101, we can easily

construct a program that, when run on a suitable universal Turing
machine, prints out 10 times the bits 01; see Fig. 7. It is clear that no
matter how long the same pattern is continued, we can always pro-
duce it using the same technique. This implies that the Kolmogorov
complexity of such a sequence is essentially independent of the se-
quence length.14 This in stark contrast with the result obtained in 14 In fact we need to also encode the

length of the sequence to the Turing
machine so that it knows when to stop
printing more zeros and ones. This can
be achieved with less than 2 log n bits,
where n is the length of the sequence.
Importantly, this is significantly less
than the length of the sequence, n.

Shannon’s approach, where (in this particular case) the complexity of
the sequence is equal to its length.

Unfortunately, besides the unknown additive constant cU,V in
Eq. (31), related to the choice of the universal Turing machine, there
is a more serious drawback in Kolmogorov complexity. Namely, it
is not computable: there is no way to algorithmically calculate the
Kolmogorov complexity. In practical applications, it is possible to
approximate it by using existing compression techniques, such as the
popular Lempel-Ziv algorithm used in tools such as gzip and WinZip.

http://rosettacode.org/wiki/Repeat_a_string
http://rosettacode.org/wiki/Repeat_a_string
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Since any of them produces a valid description of the input string,
they provide upper bounds on the shortest such description, i.e., the
Kolmogorov complexity. This has lead to several interesting results,
see e.g. 15. 15 Stéphane Grumbach and Fariza Tahi.

A new challenge for compression al-
gorithms: Genetic sequences. Journal
of Information Processing and Manage-
ment, 30(6):875–866, 1994; Rudi Cilibrasi
and Paul M. B. Vitányi. Clustering
by compression. IEEE Transactions on
Information Theory, 51(4):1523–1545,
2005; and Stephanie Wehner. Analyzing
worms and network traffic using com-
pression. Journal of Computer Security, 15

(3):303–320, 2007

Exercises

1. Show that the entropy is never negative, H(X) ≥ 0.

2. Use the fact that I(X ; Y) ≥ 0, Eq. (22), to conclude that knowing the value
of one random variable, Y, decreases on the average the uncertainty about
another random variable X:

H(X | Y) ≤ H(X).

3. Let the joint distribution of X and Y be given by the following table. Ex. 3

Y
0 1

X
0 1/4 0

1 1/4 1/2

The marginal distribution of X is then given by

pX(0) = Pr[X = 0, Y = 0] + Pr[X = 0, Y = 1] = 1/4,

pX(1) = Pr[X = 1, Y = 0] + Pr[X = 1, Y = 1] = 1/4 + 1/2 = 3/4,

and similarly, the marginal distribution of Y is given by pY(0) = pY(1) =
1/2. Recall that the conditional distribution of X given Y is determined by

p(x) =
p(x, y)
p(y)

.

Now, evaluate the entropy H(X | Y = 0). Is it true that H(X | Y = 0) <

H(X)? Compare this to the statement in Exercise 2.

4. Let DECODABLE denote the set of uniquely decodable symbol codes, let
KRAFT denote the set of symbol codes that satisfy Kraft’s inequality, let
PREFIX denote the set of prefix-free symbol codes, and let ALL denote the
set of all symbol codes. Write the sets in the correct order so that

SET1 ⊂ SET2 ⊂ SET3 ⊂ SET4

holds. (The symbol ‘⊂’ denotes the subset relation, i.e., the left-hand side
is a subset of the right-hand side).

For each subset relation, present a code showing that the left-hand side is
a strict subset of the right-hand side, i.e., that the two sets are not equiva-
lent.

5. Let the source distribution p be given by the table beside. What are the
optimal codeword lengths under p. Can you construct the actual code-
words so that the code is prefix-free?

Ex. 5

x
A B C D E

p(x)
1
2

1
8

1
16

1
4

1
16

6. Show that the Kolmogorov complexity of more than half of the binary
sequences x ∈ {0, 1}1000 of length 1000 is at least 999 bits. Hint: How
many programs (binary sequences) there are that are shorter than 1000

bits? Compare this number to the number of all possible strings x of
length 1000.
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Minimum Description Length Principle

In this second part of the course, we discuss how the above
information-theoretic concepts can be used as a basis for statistical
inference. In particular, we will describe the modern version of Oc-
cam’s Razor, namely the so called Minimum Description Length (MDL)
principle. MDL is a relatively recent approach, compared to classical
statistical techniques as well as Bayesian methods. For a recent and
comprehensive textbook see 16. A more concise and perhaps more 16 Peter D. Grünwald. The Minimum

Description Length Principle. MIT Press,
2007

easily approachable source is Rissanen’s classic “little green book.” 17

17 Jorma Rissanen. Stochastic Complexity
in Statistical Inquiry. World Scientific
Publishing Company, New Jersey, 1989

The MDL principle was proposed by Jorma Rissanen (b. 1932), a
Finnish information theorist mentioned above in connection to the
invention of arithmetic coding.18 The motivation for MDL derived

18 Jorma Rissanen. Modeling by shortest
data description. Automatica, 14(5):
465–471, 1978

from obvious difficulties of the frequentist framework to deal with
the problem of over-fitting, i.e., choosing overly complex models. Ris-
sanen was inspired by the concept of universal description methods
in Kolmogorov complexity, as well as the earlier Minimum Message
Length (MML) principle.19 19 Chris S. Wallace and David M. Boul-

ton. An information measure for
classification. Computer Journal, 11(2):
185–194, 1968

The three central concepts in the theory of MDL are complexity,
information, and noise. Roughly, their relationship is that the total
complexity in an object is the sum of the information and the noise in
it:

complexity ≈ information + noise. (33)

The objective of MDL is to separate the information and the noise
that together define the given set of data. In its basic form MDL
principle amount to choosing the hypothesis that minimizes the total
description length:

min
h∈H

(`(h) + `(D ; h)), (34)

where `(h) denotes the code-length of the hypothesis, and `(D ; h)
denotes length of the description of the data given the hypothesis.
We elaborate on both of these terms below.

The real advantage of MDL and related information-theoretic
approaches is that they provide a principled way to balance the com-
plexity of the hypothesis and the goodness-of-fit. It is clear from the
basic formula, Eq. (34), that even if a complex hypothesis achieves
a shorter code-length for the data, `(D ; hcomplex), than a simple hy-
pothesis, the simple hypothesis should be chosen if it achieves a
shorter total description length.

Three kinds of MDL

The interesting, and practically important, question is how to define
the code-lengths `(h) and `(D ; h). We will organize the discussion
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on this topic in three parts, depending on what kind of hypotheses
are being considered.

Case I. Non-stochastic hypotheses: In case the hypothesis
is, for instance, a sequence continuation that specifies exactly one
particular integer sequence, then the code-length of the data is zero if
the observed sequence matches the one specified by the hypothesis,
`(D ; h) = 0; once the hypothesis is given, the sequence is fully
specified. However, if the observed and specified sequences differ,
then we consider the code-length to be infinite in accordance with the
fact that

p(D ; h) = 0 ⇒ log
1

p(D ; h)
= ∞. (35)

Given an initial sequence and two alternative hypotheses, each of
which specifies one sequence, and both match the initial sequence,
the choice based on MDL is made by minimizing the code-length of
the hypothesis, `(h).

In practice, we often cannot expect that the data either match the
hypothesis exactly or not at all. Instead, we can allow some discrep-
ancy and encode the data in terms of the difference between the
prediction given by the hypothesis and the observed data. This im-
plies that the code-length of the data given the hypothesis will be
non-zero. Assume, for instance, that we are comparing two equally
complex hypotheses, `(h1) = `(h2). Assume further that hypothesis
h1 allows only one sequence, the initial symbols of which agree ex-
actly with the observed initial sequence, but that hypothesis h2, is so
flexible that it allows a great deal of variation in the initial sequence
— such as the alien alphabet hypothesis. Then the code-length of
the data given h1 is zero but the code-length of the data given h2 is
greater than zero, `(D ; h2) > 0. The MDL criterion then prefers the
more specific hypothesis h1.

Codes based on encoding exceptions are among the most natural
ones based on non-stochastic hypotheses. If a binary sequence of
length n matches the hypothesized one at k elements but differs at
the remaining n− k elements, we can encode the difference by listing
the indices of the differing elements. A straightforward code requires
(n− k)dlog ne bits20 (dlog ne bits for each of the n− k exceptions). A 20 The d·e notation refers to the smallest

integer greater than or equal to the
argument (read: ceiling). Thus, for
instance, the number of bits required to
express an integer between 0, . . . , 5 is
dlog 6e = 3; the number of alternatives
is six, and each can be assigned a
unique 3-bit codeword.

more refined method based on observing that the number of ways to
choose the n− k exceptions out of the n indices is given by(

n
n− k

)
=

n!
k!(n− k)!

, (36)

where n! denotes the factorial. This reduces the code-length to⌈
log
(

n
k

)⌉
= dlog n!− log k!− log(n− k)!e, (37)
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a) k = 3 b) k = 10 c) k = 100 d) k = 300 e) k = 372
`(D ; h) = 36 `(D ; h) = 81 `(D ; h) = 402 `(D ; h) = 630 `(D ; h) = 614

Figure 8: Encoding data under the
non-stochastic hypothesis “black
square with white dots”. Code-length
is calculated using Eq. (38), where
n = 25× 25 = 625, and k is the number
of white dots.

which is strictly less than (n− k)dlog ne.
Figure 8 illustrates the idea of exception-based hypotheses. The

hypothesis states that the object to be described is a black square
of size 25× 25 pixels. The exceptions to the rule are white pixels at
different positions of the square, which are encoded by first giving
their number, using dlog(n + 1)e bits (the number of exceptions can
be anything between 0 and n), and then specifying their locations.
Using the code of Eq. (37), the total code-length then becomes

`(D ; h) = dlog(n + 1)e+
⌈(

n
k

)⌉
, (38)

where n = 625 and k is the number of white pixels. The code-lengths
can be compared to the straightforward binary representation where
the color of each pixel is given by a single bit (0 for black, 1 for white,
or vice versa), which would always give the code-length 625. Notice
that the black-square-with-white-dots hypothesis sometimes gives
significantly shorter code-lengths (but not always, see image d) — we
have in fact created a very crude method for image compression; see
Fig. 9 Figure 9: In practice, compressed

image formats, such as GIF and PNG
exploit the local structure in the pixel
colors. Most natural images contain
structures such as contiguous regions
of the same or similar colors or texture
that can be exploited to compress the
data significantly more than the our
crude code based on only the number
of white pixels on a black background.
In lossy compression, such as the kind
used in JPEG format, some loss of
information is accepted in return for
several orders of magnitude more
compact representation. The above
image shows the progressive loss of
accuracy as the level of compression
is increased from left to right. Source:
Wikipedia (photo by A. Karwath,
processing by I. Karonen).

Case II. Stochastic point hypotheses: It is often advantageous
to construct codes based on stochastic hypotheses, i.e., probability
distributions. We first discuss point hypotheses, wherein a single dis-
tribution is involved. This is nicely handled by Shannon’s framework,
and the code-length becomes

`(D ; h) = log
1

ph(D)
, (39)

where ph(D) denotes the probability of data D under hypothesis h.
The term ‘ideal code-length’ is often used to refer to the real numbers
log 1

p independent of whether they are integers or not. The fact that
the actual codewords need never be constructed when applying
the MDL principle makes it unnecessary to round the numbers to
integers. In the following, we use such ideal code-lengths.
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Here too, the code-length of a hypothesis, `(h), must be carefully
determined. Whenever the hypothesis amounts to a probability dis-
tribution, such as, e.g., the Poisson or geometric distribution, that
involves a continuous-valued parameter, the parameter must be trun-
cated to finite precision, or otherwise it cannot be encoded with a
finite number of bits; see the discussion of two-part codes in the next
section.

Case III. Stochastic composite hypotheses: The real challenge
for model selection criteria is the composite hypothesis case where
each hypothesis corresponds to a set of distributions, or a model class.
Much of the difficulty is related to handling models of varying com-
plexity. For instance, one may need to choose which variables to
include in a regression model, or to choose the length of the look-
back (lag) in a time series prediction model. Popular solutions to the
problem include forward and backward selection procedures, Akaike
information criterion (AIC), Bayesian information criterion (BIC), etc.

The inspiration that led Rissanen to formulate the MDL principle
was to imitate the construction of a universal computable function
(Turing machine) in Kolmogorov complexity. The corresponding
MDL concept is a universal code that achieves essentially as short a
code-length as any of the distributions in the model class. The dif-
ference being that the universal code is universal with respect to
the distributions in the given model class, whereas the universal
computable function is universal with respect to all computable func-
tions. The code-length of the data achieved when using the universal
code is called the stochastic complexity as its role is similar to that of
Kolmogorov complexity. The key observation is that once a universal
code is associated to each model class, they can be compared head-
to-head in terms of the stochastic complexity of the data. This puts
each model class on an equal footing independent of its complexity.

Universal codes

There are three main types of universal codes used to define the
stochastic complexity. We briefly describe each one.

1. Two-part code: Historically, the first type of universal codes is
called the two-part code, where one first encodes truncated parame-
ter values, and then the data given the truncated parameters. The
specifics of the truncation (or quantization) procedure may strongly
affect the outcome, but under some conditions, the code-length can
be asymptotically approximated as

`approx(D ; M) = min
θ∈Θ

log
1

p(D ; θ, M)
+

k
2

log n, (40)
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where the minimization is over all the parameter values θ in the
parameter space Θ corresponding to model M, and k is the num-
ber of (free) parameters in the model. It is easy to see that the
minimizing parameter values are given by the familiar maximum
likelihood parameters, which we denote as θ̂(D). Hence, the two-
part code-length becomes

`approx(D ; M) = − log p(D ; θ̂(D), M) +
k
2

log n, (41)

which coincides with the Bayesian information criterion (BIC).

2. Mixture code: The second definition is based on so called mix-
tures distributions (often called Bayesian mixtures) of the form

`mixture(D ; M) = − log
∫

Θ
p(D ; θ, M) wM(θ) dθ, (42)

where wM denotes the parameter prior. Here the prior is used in a
technical sense without its Bayesian interpretation.21 21 Quoting Rissanen (Information Theory

and Neural Nets in Smolensky, Mozer,
and Rumelhart (editors): Mathematical
Perspectives on Neural Networks,
1996):

“ In the MDL principle for
statistical inference there is
no need for the awkward
Bayesian interpretations of
the meaning of the prior
probability on the parame-
ters. Rather, we may inter-
pret distributions, such as
[p(D ; M)], just as convex
linear combinations of the
models in the class, whose
utility will be assessed on
other grounds... ”

(paraphrased from Baxter and Oliver,
MDL and MML: Similarities and Differ-
ences (Introduction to Minimum Encoding
Inference – Part III), Technical Report,
Monash University, 1994)

3. Normalized maximum likelihood code: Finally, the most recent
definition of stochastic complexity is based on the Normalized
Maximum Likelihood (NML) distribution, originally proposed by
Yuri Shtarkov (b. 1935) for data compression in 1987. The NML
distribution is defined as

pnml(D ; M) =
p(D ; θ̂(D), M)

CM
, (43)

where the normalizing constant CM is given by

CM = ∑
D′∈X n

p(D′ ; θ̂(D′), M), (44)

the sum being over all sequences of the same length, n, as the
observed data D.

The stochastic complexity based on the NML distribution is
given by

`nml(D ; M) = − log p(D ; θ̂(D), M) + log CM. (45)

The term parametric complexity is used for log CM since it gives the
additional code-length incurred because the best parameter value
θ̂(D) is not known in advance.

We demonstrate each variant of MDL in a simple model selection
problem involving stochastic composite hypotheses. Consider two
models that we will to illustrate the three kinds of universal codes.
Model M1 involves independent binary-valued variables, X and Y. It
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corresponds to a model class including distributions of the form

pM1(x, y ; θx, θy) =


(1− θx)(1− θy), if x = 0, y = 0

(1− θx)θy, if x = 0, y = 1

θx(1− θy), if x = 1, y = 0

θxθy, if x = 1, y = 1,

(46)

where θx and θy are two parameters taking values within the range
[0, 1]. The model is essentially a combination of two Bernoulli models
with independent parameters.

Model M2 also involves two binary variables, but this time they
are dependent. This corresponds to the model class

pM2(x, y ; θ00, θ01, θ10, θ11) =


θ00, if x = 0, y = 0

θ01, if x = 0, y = 1

θ10, if x = 1, y = 0

θ11, if x = 1, y = 1,

(47)

where there are now four continuous-valued parameters; although a
more parsimonious parameterization exploits the fact that θ00 + θ01 +
θ10 + θ11 = 1, so that the dimensionality (degrees of freedom) of the
the model class is actually three. Model M2 is equivalent to a single
multinomial model with k = 4 possible outcomes, namely the four
combinations of the values of x and y.

Extending both models to n independent and identically dis-
tributed observations can be achieved by letting

p(D ; θ, M) =
n

∏
i=1

p(xi, yi ; θ, M), (48)

where D = ((x1, y1), . . . , (xn, yn)) denotes the observation sequence,
and θ denotes the set of parameters for the model in question.

For concreteness, we consider the following small data set:

observation
1 2 3 4 5 6 7 8 9 10

x 0 1 1 0 1 0 0 1 0 0

y 0 0 0 1 1 0 1 0 1 1

The code-lengths for each of the three variants are then computed
as follows.

1. Two-part code: We approximate the two-part code-length using
the approximation of Eq. (41). The required maximum likelihood
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parameters are given by the relative frequencies in the data:

M1 : θ̂x = 4/10, θ̂y = 5/10, (49)

M2 :
θ̂00 = 2/10, θ̂01 = 3/10,
θ̂10 = 4/10, θ̂11 = 1/10,

(50)

and hence, the code-lengths become

`approx(D ; M1) = − log p(D ; θ̂x, θ̂y, M1) +
2
2

log 10

= − log[(1− θ̂x)6θ̂4
x(1− θ̂y)5θ̂5

y] + log 10

≈ 19.7 + 3.3 = 23.0,

(51)

and

`approx(D ; M2) = − log p(D ; θ̂00, θ̂01, θ̂10, θ̂11, M2) +
3
2

log 10

= − log θ̂2
00θ̂3

01θ̂4
10θ̂11 +

3
2

log 10

≈ 18.5 + 5.0 = 23.4.

(52)

By this criterion, we would (just slightly) prefer model M1, i.e.,
the model where the two variables are independent of each other.
Note that this is due to the greater complexity of the second model
(5.0 bits versus 3.3 bits), despite the fact that it leads to a more
compact encoding of the data given the model (18.5 bits versus
19.7 bits).

2. Mixture code: The mixture code requires a prior. For model M1,
we adopt a uniform density θ ∼ Uni(0, 1) that assigns the same
probability to any equal-length interval within the range [0, 1]. The
same uniform density is used for both of the parameters, θx and
θy, which are considered independent of each other.

For model M2, we need to take into account the requirement that
the parameters sum to one. In this case, the uniform distribution
over all admissible sets of parameter values is equivalent to the
Dirichlet prior Dir(1, 1, 1, 1). The respective mixture code-lengths
— well known in Bayesian theory as negative logarithms of so
called Dirichlet-multinomial integrals — for models M1 and M2 are
then given by

`mixture(D ; M1) = − log
(n[x=0]!n[x=1]!

n!

n[y=0]!n[y=1]!

n!

)
= − log

6!4!5!5!
10!10!

≈ 15.7,
(53)

where nx=0 denotes the number of observations with x = 0, etc.,
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and n! denotes the factorial of n; and

`mixture(D ; M2) = − log
n[xy=00]!n[xy=01]!n[xy=10]!n[xy=11]!

n

= − log
2!3!4!1!

10!
≈ 13.6.

(54)

Thus, the mixture code leads to a different decision than the ap-
proximate two-part code, i.e., choosing model M2.

3. Normalized maximum likelihood code: The NML code-length,
Eq. (45), consists of two terms, the first of which is the same as the
first term in the approximate two-part code, Eqs. (51)–(52). The
second term is given by the normalization term that involves a
sum over all possible data sequences with length n, the number
of which is exponential in n. Fortunately, there exists a remark-
ably recurrence formula for the multinomial case, which gives the
normalization term in linear time22 (see Exercise 9 below). 22 Petri Kontkanen and Petri Myllymäki.

A linear-time algorithm for computing
the multinomial stochastic complexity.
Information Processing Letters, 103(6):
227–233, 2007

For model M1, the normalization constant is given by the
square of the corresponding constant for a simple Bernoulli model
with n = 10, the calculation of which is straightforward and omit-
ted, see e.g. 23: 23 Peter D. Grünwald. The Minimum

Description Length Principle. MIT Press,
2007

CM1 ≈ 4.662 = 21.7. (55)

For model M2, the constant is given by

CM2 ≈ 38.0. (56)

Thus, the respective NML code-lengths are given by

`nml(D ; M1) = − log p(D ; θ̂x, θ̂y, M1) + log CM1

≈ 19.7 + 4.4 = 24.1,
(57)

and

`nml(D ; M2) = − log p(D ; θ̂00, θ̂01, θ̂10, θ̂11, M2) + log CM2

≈ 18.5 + 5.2 = 23.7.
(58)

Hence, also the NML code leads to the choice of M2, although
again the margin is slight.

The above situation is actually typical: the asymptotic two-part
formula is known to penalize model complexity more heavily than
mixture and NML models. Note that the decision based on the mix-
ture code may have been different, had we chosen different priors for
the parameters.

The fact that the different variants sometimes lead to different de-
cisions is somewhat troubling. However, it can be shown that as the
size of the data set grows larger, the criteria tend to converge to the
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same outcome; for details see 24 and references therein. Furthermore, 24 Peter D. Grünwald. The Minimum
Description Length Principle. MIT Press,
2007

since the mixture version is equivalent to Bayesian model choice us-
ing so called Bayes factors, the above implies that model selection
by MDL is asymptotically equivalent to Bayesian model selection,
at least when the said regularity assumptions hold. In practice, the
sample sizes are always finite, and differences remain.

Exercises

7. Let the model class be given by Bernoulli distributions where each bit in
a sequence, D = x1, . . . , xn, is independent of the others with probability
Pr(Xi = 1) = θ for all 1 ≤ i ≤ n, and

p(D ; θ) = (1− θ)n[x=0] θn[x=1] .

The parameter takes values θ ∈ Θ = {0.0, 0.5, 1.0}, and the parameter
prior is given by w(0.0) = 1/4, w(0.5) = 1/2, w(1.0) = 1/4.

(a) Evaluate the two-part code-length of sequence D = 0011 using the
formula

min
θ∈{0.0,0.5,1.0}

[
log

1
p(D ; θ)

+ `(θ)
]

when the code-length of the parameters is given by `(θ) = 2−w(θ).

(b) Evaluate the mixture code-length of sequence D = 0011 by using the
discrete version of Eq. (42):

`mixture(D ; M) = − log ∑
θ∈Θ

p(D ; θ, M) wM(θ).

(c) Evaluate the normalized maximum likelihood code-length of se-
quence D = 0011 using Eqs. (43)–(44).

8. Evaluate the NML normalization term for the Bernoulli model with
θ ∈ Θ = [0, 1] when n = 10, i.e., compute the sum

C(10)
Ber = ∑

D∈{0,1}10

p(D ; θ̂(D)) = ∑
D∈{0,1}10

(1− θ̂(D))n[x=0] θ̂(D)n[x=1] ,

where the maximum likelihood parameter is given by

θ̂(D) =
n[x=1]

n
.

The straightforward algorithm requires the evaluation of a sum with
210 = 1024 terms. Can you figure out how to manage with only 11 terms
by grouping like terms?

9. The linear-time algorithm of Kontkanen and Myllymäki for computing
the normalizing constant for NML in multinomial models is based on the
recurrence

C(n)
k = C(n)

k−1 +
n

k− 2
C(n)

k−2,

where n is the sample size, and k is the cardinality of the multinomial,
i.e., the number of different values the variable can take. The recurrence
is initialized using known values of C(n)

1 = 1 and C(n)
k , the latter of which
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can be evaluated in linear time using a straightforward formula (see
Exercise 8).

Let n = 10 and k = 5. Evaluate the normalizing constant C(n)
k using the

above recurrence and the fact that

C(n)
2 = C(n)

Ber ≈ 4.66.

As an intermediate step, you will also confirm the fact CM2 = C(n)
4 ≈ 38.0

as stated in the example on p. 24.

10. Figure 10 shows eight models (polynomials) fitted to the same data.
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Figure 10: Eight models fitted to the
same data; see Exercise 10.For the eight cases in Fig. 10, the code-lengths `(D ; θ̂, M) and k

2 log n take
the following values

`(D ; θ̂, M) k
2 log n

case 1 60.99 3.81

case 2 57.71 5.71

case 3 55.11 7.61

case 4 45.45 9.52

case 5 44.63 11.42

case 6 42.77 13.33

case 7 39.44 15.23

case 8 37.76 17.13

Which model is chosen by the MDL principle?
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Case studies

Case Study I. Signal Denoising The goal of signal denoising is
to remove the noise in an observed signal while retaining its intended
or informative part. Various approaches have been devised. Often,
a straightforward smoothing does the job in a satisfactory manner,
removing most of the noise, but it has the side effect of blurring
sharp edges and peaks in the signal. The blurring phenomenon can
be avoided or at least significantly alleviated by methods that adapt
to the local smoothness of the signal. A popular approach way to
obtain smoothness adaptive methods is to use wavelets.25 25 Stéphane Mallat. A Wavelet Tour of

Signal Processing. Academic Press, San
Diego, CA, 1998; and David L. Donoho
and Iain M. Johnstone. Adapting
to unknown smoothness via wavelet
shrinkage. Journal of the American
Statistical Association, 90(432):1200–1224,
1995

The idea in wavelet based denoising is to represent the signal as
a linear combination of wavelet basis functions. A set of Haar basis
functions is shown in Eq. (59).

1/
√

8 × (1, 1, 1, 1, 1, 1, 1, 1)
1/
√

8 × (1, 1, 1, 1, −1, −1, −1, −1)
1/2 × (1, 1, −1, −1, 0, 0, 0, 0)
1/2 × (0, 0, 0, 0, 1, 1, −1, −1)

1/
√

2 × (1, −1, 0, 0, 0, 0, 0, 0)
1/
√

2 × (0, 0, 1, −1, 0, 0, 0, 0)
1/
√

2 × (0, 0, 0, 0, 1, −1, 0, 0)
1/
√

2 × (0, 0, 0, 0, 0, 0, 1, −1)


(59)

The first row represents a constant basis function that can be used to
uniformly translate the signal to the desired level. The second row
represents the basis function corresponding to the average difference
between the first half and the second half of the signal, etc. Note
that the basis functions 3–8 are spatially localized, i.e., they only affect
a part of the signal. Furthermore, the basis functions have variable
frequency: in the rows nearer the lower end of the matrix, there are
sharper changes in the values as one moves from column to column.

In the wavelet regression model, the linear combination of the
basis functions, involving certain coefficients, β = (β1, . . . , βm), with
which the basis functions are multiplied, determines the mean of the
signal

yn =WT β + εn =
m

∑
i=1

wiβi + εn, (60)

whereW is a m × n matrix containing the basis functions, such
as (59), wi is the i’th row ofW , and εn are Gaussian errors. The goal
is to choose the coefficients so thatWT β is as close as possible to the
informative part of the signal, and the noise is left in the residuals.
Typically, one chooses a subset of the coefficients to retain and sets
the remaining ones to zero. (In addition, one can shrink the remain-
ing ones as well.)
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Choosing the coefficients to retain is a good example of a model
selection problem. Hence, MDL provides a princpled solution where
the complexity of the model (the number of retained coefficients) is
determined automatically. An example of an MDL denoising method
is described in 26. The criterion, obtained by using the NML univer-

26 Jorma Rissanen. MDL denoising.
IEEE Transactions on Information Theory,
46(7):2537–2543, 2000; and Teemu
Roos, Petri Myllymäki, and Jorma
Rissanen. MDL denoising revisited.
IEEE Transactions on Signal Processing,
101(4):839–849, 2009

sal code, for choosing the subset of retained coefficients is given by

n− k
2

ln
S(yn)− Sγ(yn)

(n− k)3 +
k
2

ln
Sγ(yn)

k3 , (61)

where S(yn) denotes the sum of squares of the maximum likelihood
(ML) parameter estimates β̂; Sγ(yn) denotes the sum of squares of
the ML estimates of parameters in subset γ ⊆ {1, . . . , m}, and k is
the number of parameters in γ. Further refinements are obtained
by separating the wavelet coefficients into different levels, and by
applying shrinkage to the retained coefficients. Figure 11 shows the
results of the method when applied to a simple simulated example,
where the signal consists of a piece-wise constant function.
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Figure 11: An example of wavelet
denoising. The left-most panel shows
a simulated noisy signal. The middle
panel shows the result obtained by a
Bayesian shrinkage method (Chang,
Yu, & Vetterli, “Adaptive wavelet
thresholding for image denoising and
compression”, IEEE Transactions on
Image Processing, 9:1532–1546, 2000).
The right-most panel shows the result
of MDL denoising. The peak-signal-
to-noise ratio (PSNR) is significantly
enhanced by both denoising methods,
the MDL method being slightly better.

Such denoising methods can be used as a preprocessing step in
many types of data analysis, and it can be applied to one-dimensional
(as above) as well as two-dimensional data, such as images; see
Fig. 12.

Case Study II: Bayesian Network Structure Learning

Bayesian networks are a popular model class for describing depen-
dency structures in multivariate data. To specify a Bayesian network,
we first fix a directed acyclic graph (DAG) where nodes represent
random variables, and directed edges represent direct statistical de-
pendency. Sometimes a causal interpretation is attached to the de-
pendencies, so that an edge represent a direct cause–effect relation.
However, it is important to keep in mind that this is not always the
case.
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Figure 12: Wavelet denoising of a pho-
tographic image. The top-left panel
shows the original (all images show a
detail of a larger image). The same im-
age with additive Gaussian white noise
is shown in the top-middle panel. The
results of various denoising methods
are shown in the remaining panels. In
terms of the peak-signal-to-noise ratio
(PSNR) the BayesShrink method (see
the caption of Fig. 11) is the best one.
For details, see T. Roos, Statistical and
Information-Theoretic Methods for Data
Analysis, PhD dissertation, University of
Helsinki, 2007.
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Age Occupation Climate

Disease

Symptoms

Figure 13: A directed acyclic graph
(DAG) reprenting a Bayesian network
structure.

To give an example, the DAG in Fig. 13 implies that once the val-
ues of Disease (the unshaded node in the middle) and Age are ob-
served, the Symptoms variable is independent of Climate and Occupa-
tion. However, Age and Symptoms are dependent even given Disease
and any of the other variables due to the direct edge connecting the
former. (Disclaimer: We take no clinical responsibility...)

In addition to the structure encoded by a DAG, a set of parameters
is associated to a Bayesian network. They give the local conditional
distributions between directly connected variables. If we denote the
set of parents of a node Xi ∈ {X1, . . . , Xm} by Pai ⊆ {X1, . . . , Xm}\Xi,
the local conditional distributions are defined as

Pr[Xi = j | Pai = k] = θijk, (62)

that should be read as “the probability that Xi takes its j’th value
given that its parents take their k’th parent configuration (combina-
tion of values) equals θijk.” Given the structure and the parameters,
the joint distribution of the variables is uniquely defined by

p(x1, . . . , xm) =
m

∏
j=1

θixipai
, (63)

where pai denotes the parent configuration corresponding to the
observation vector x1, . . . , xm.

Given data in the form of a set of observed data vectors D =
x(1), . . . , x(n), where x(i) = (x(i)

1 , . . . , x(i)
m ) for each 1 ≤ i ≤ n, the struc-

ture learning problem is to choose a suitable DAG that describes the
(in)dependency structure governing the data. Since a more complex
network that includes more edges than a simpler one can represent
more distributions, a way of controlling the complexity of the learned
network is required — again, a case where MDL is found useful.27 27 Of course, there are various other

approaches to complexity penaliza-
tion, either explicit or implicit in their
preference for simpler models. In the
context of Bayesian networks, one can,
for instance, accept only edges that im-
prove the fit with statistical significance.
Bayesian methods are also very popular,
see e.g., D. Heckerman, D. Geiger, and
D. M. Chickering, “Learning Bayesian
networks: The combination of knowl-
edge and statistical data”, Machine
Learning 20:197–243, 1995.

In order to apply the NML universal code to choosing the network
structure, one would need to evaluate the normalizing constant

CBn = ∑
D∈Dn

n

∏
i=1

p(x(i) ; θ̂B(D),B), (64)

where B denotes the structure, and θ̂B(D) are the corresponding ML
parameters for data D. This is, however, computationally infeasible
since the number of possible data sets, D ∈ Dn, is exponential in both
the number of variables, m, as well as the sample size, n.

To reduce the computational cost, one can approximate the NML
code by the so called factorized NML (fNML).28 In fNML, each vari-

28 Tomi Silander, Teemu Roos, and Petri
Myllymäki. Learning locally minimax
optimal Bayesian networks. International
Journal of Approximate Reasoning, 51:
544–557, 2010

able is encoded separately (but not independently) so that the nor-
malizing term only involves a sum over all the possible observations
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of that variable. This can be achieved by first encoding any of the
variables that have no parents, say, variable X1, as if it were the only
variable in the model. This step reduces to the multinomial case, for
which there is a linear-time algorithm, see p. 24 and Exercise 9. Hav-
ing encoded all variables that have no parents, we can encode each
of the variables whose parent set is included in the already encoded
variables, by considering their conditional distribution given the par-
ents. Again, the computation reduces to the multinomial case. We
then carry on recursively, until all variables have been encoded.

X2X1 X3X2X1 X3X2X1 X3X2X1 X3

ro
w

s

NML fNML sNML fsNML

Figure 14: A schematic illustration of
different ways to obtain NML-like uni-
versal codes for multivariate data. From
left to right: NML: whole data block is
normalized at the same time; factorized
NML: each variable is encoded sepa-
rately; sequential NML: each observation
vector (row) is encoded separately;
factorized-sequential NML: each com-
ponent of each observation vector is
encoded separately. Note that encod-
ing parts of the data separately does
not imply that they would be treated
independently of each other. Source:
T. Silander, T. Roos, and P. Myllymäki,
“Learning locally minimax optimal
Bayesian networks”, International Journal
of Approximate Reasoning 51:544–557,
2010.

The resulting fNML criterion is very efficient and requires no
adjustable parameters to be chosen by the user. The lack of adjustable
parameters is in general a benefit of the MDL approach compared to,
for instance, Bayesian methods where a prior distribution has to be
carefully chosen.
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Figure 15: A comparison of four model
selection criteria, AIC, BIC, BDe, and
fNML. The graphs show the rank of the
correct model structure when ordered
according to each of the criteria (the
lower the rank, the better). The two
panels correspond to two different
sampling distributions of the parame-
ters of the simulated networks. Source:
ibid. (see Fig. 14)

The fNML criterion was compared to the state-of-the-art Bayesian
criterion, the Bayesian-Dirichlet criterion (BDe). For this purpose, 200

different random Bayesian networks with five to seven nodes were
generated. Figure 15 shows the rank of the true structure when all
possible structures were ordered according to four different model
selection criteria — for a perfect criterion (an “oracle”) that always
chooses the true structure, the rank would always be one. It is clearly
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seen that fNML and BDe criteria outperform the Akaike information
criterion (AIC) as well as BIC. Moreover, the two different graphs
that correspond to different parameter distributions used in the sim-
ulation, show that the BDe criterion is sensitive to the parameter
distribution. In the left panel, the parameter distribution matches the
Dir(1, . . . , 1) distribution assumed in the BDe score which in this case
performs optimally. However, in the right panel the distribution is
slightly off, which clearly degrades the relative performance of the
BDe score. The fNML score is more robust.
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