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“Whether on the internet, encoded
in radio waves or coursing through
wires, information is all around us.
Our senses record it, our brains
process it and our genes pass it on.
But what exactly is information?
Can it be analysed and measured?
[...] a concept that could soon
become as central to science as
space, time mass or energy.”
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Introduction to Information-Theoretic Modeling

A short course, 2× 3 h.

Mon 4/11, 5:00pm-7:20pm.

Tue 4/12, 5:00pm-7:20pm.

Lecturer: Dr Teemu Roos,
teemu.roos at cs.helsinki.fi

Lecture notes:
www.cs.helsinki.fi/teemu.roos/brazil.pdf
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Resources

Further reading:

Highly recommended: Cover & Thomas, Elements of
Information Theory.

Rissanen, Stochastic Complexity in Statistical Inquiry.

Rissanen, Information and Complexity in Statistical Modeling.

Grünwald, The Minimum Description Length Principle.

MacKay, Information Theory, Inference and Learning
Algorithms.

Solomon, Data Compression: The Complete Reference.
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What is Information?

Etymology: informare = give form, 14th century.

knowledge [...], intelligence, news, facts, data, [...], (as
nucleotides in DNA or binary digits in a computer program)
[...], a signal [...], a numerical quantity that measures the
uncertainty in the outcome of an experiment to be performed.
(source: Merriam-Webster).

Data < Information < Knowledge.

Information technology.

Physical information.

This course: measuring the amount of information in data,
and using such measures for automatically buiding models.
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Why Information?

The amount of information around us is exploding – internet!

Need to store, transmit, and process information efficiently.

Wish to understand more and more complex phenomena.

Computer science: make things automatic (intelligent).

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Course details
What is Information?
Why Information?
Information vs. Complexity
Information Theory

Why Information?

The amount of information around us is exploding – internet!

Need to store, transmit, and process information efficiently.

Wish to understand more and more complex phenomena.

Computer science: make things automatic (intelligent).

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Course details
What is Information?
Why Information?
Information vs. Complexity
Information Theory

Why Information?

The amount of information around us is exploding – internet!

Need to store, transmit, and process information efficiently.

Wish to understand more and more complex phenomena.

Computer science: make things automatic (intelligent).

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Course details
What is Information?
Why Information?
Information vs. Complexity
Information Theory

Why Information?

The amount of information around us is exploding – internet!

Need to store, transmit, and process information efficiently.

Wish to understand more and more complex phenomena.

Computer science: make things automatic (intelligent).

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Course details
What is Information?
Why Information?
Information vs. Complexity
Information Theory

Information vs. Complexity

Is complexity the same as information?

Is there a lot of information in a random string? No.

Complexity = Information + Noise
= Regularity + Randomness
= Algorithm + Compressed file
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Information Theory

”The real birth of
modern information
theory can be traced
to the publication in
1948 of Claude
Shannon’s “The
Mathematical Theory
of Communication”
in the Bell System
Technical Journal. ”
(Encyclopædia
Britannica)
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Course Topics

Information Theory:

entropy and information, bits,

compression,

error correction.

Fundamental limits (mathematical and statistical) and practice
(computer science).

Modeling:

statistical models,

complexity (in data and models),

over-fitting, Occam’s Razor, and MDL Principle.
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Coding Game

Form groups of 3–4 persons. Each group constructs a code for the
letters A–Z by using as code-words unique sequences of dots • and
dashes (—) like “•”, “— •”, “ — • — —”, etc.

A G M S Y
B H N T Z
C I O U
D J P V
E K Q W
F L R X
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Coding Game

Use your code to encode the message
“WHAT DOES THIS HAVE TO DO WITH INFORMATION”.

Now count how long the encoded message is using the rule:

A dot •: 1 units.

A dash —: 2 units.

A space between words: 2 units.

• • • — — — • • •: 1 + 1 + 1 + 2 + 2 + 2 + 1 + 1 + 1 = 12.

The coding rate of your code is the length of the encoded message
divided by the length of the original message, including spaces (42).
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c© 1989 A.G. Reinhold. Samuel F.M. Morse (1791–1872)
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WHAT DOES THIS HAVE TO DO WITH INFORMATION

.-- .... .- - -.. --- . ... - .... .. ...

.... .- ...- . - --- -.. --- .-- .. - ....

.. -. ..-. --- .-. -- .- - .. --- -.

51 dots, 36 dashes, 7 spaces: 51 + 72 + 14 = 137 units.

Morse code

Coding rate:
137

42
≈ 3.26

Did you do better or worse? Why?
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Codes as Mappings

Lossless compression:
injective mapping

Lossy compression:
non-injective mapping
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Only lossless codes are uniquely decodable.
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Examples

music

video

general
purpose

image

gzip

bzip

png

jpeg

mp3

mpeg

~ 1 : 2.5

~ 1 : 25

~ 1 : 12

~ 1 : 3

~ 1 : 3.5

~ 1 : 30

lossless

lossy

ratio
compression
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Compression

Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1 = 2n−k − 1. Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .
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Compression

Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.

The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1 = 2n−k − 1. Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .
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Compression

Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1

= 2n−k − 1. Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Dots and Dashes
Codes as Mappings
Data Compression
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Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1 = 2n−k − 1.

Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .
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Compression

Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1 = 2n−k − 1. Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .
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Compression

Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1 = 2n−k − 1. Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .

Less than 50 % of files are compressible by more than one bit.
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Compression

Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1 = 2n−k − 1. Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .

Less than 1 % of files are compressible by more than 7 bits.
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Compression

Is it always possible to compress data?

Theorem

The proportion of binary strings compressible by more than k bits
is less than 2−k .

Proof. For all n ≥ 1, the number of binary strings of length n is
2n.The number of binary code strings of length less than n − k is
20 + 21 + 22 + . . .+ 2n−k−1 = 2n−k − 1. Thus the ratio is

2n−k − 1

2n
<

2n−k

2n
= 2−k .

Less than 0.000000000000000000000000000001 % of files
are compressible by 100 bits.
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Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .
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Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*

I N P U T _ S T R I N G ...

10010001111001101011111010011...
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Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*

N P U T _ S T R I N G ...
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Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .
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Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*
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Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*
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Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*
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010011...

I

1001

N

0001

P

111001

U

10101

T

1111

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Decodable Codes
Prefix Codes
Kraft-McMillan Theorem

Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*

S T R I N G ...

0011...

I

1001

N

0001

P

111001

U

10101

T

1111

_

01

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Decodable Codes
Prefix Codes
Kraft-McMillan Theorem

Symbol Codes

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each source
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*
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Decodable Codes

Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?
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Decodable Codes

Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?

√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?
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Decodable Codes

Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.

√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?
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Decodable Codes

Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?
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Prefix Codes

An important subset of decodable codes is the set of prefix(-free)
codes.

Prefix Code

A code C : X → {0, 1}∗ is called a prefix code iff no codeword is
a prefix of another.

It is easily seen that all prefix codes are uniquely decodable: each
symbol can be decoded as soon as its codeword is read. Therefore,
prefix codes are also called instantaneous codes.

x A code with codewords {0, 01, 011, 0111} is uniquely
decodable but not prefix-free: e.g., 0 is a prefix of 01.√
A code with codewords {0, 10, 110, 111} is
prefix-free.
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Prefix Codes

An important subset of decodable codes is the set of prefix(-free)
codes.

Prefix Code

A code C : X → {0, 1}∗ is called a prefix code iff no codeword is
a prefix of another.

It is easily seen that all prefix codes are uniquely decodable: each
symbol can be decoded as soon as its codeword is read. Therefore,
prefix codes are also called instantaneous codes.

x A code with codewords {0, 01, 011, 0111} is uniquely
decodable but not prefix-free: e.g., 0 is a prefix of 01.

√
A code with codewords {0, 10, 110, 111} is
prefix-free.
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Prefix Codes

An important subset of decodable codes is the set of prefix(-free)
codes.

Prefix Code

A code C : X → {0, 1}∗ is called a prefix code iff no codeword is
a prefix of another.

It is easily seen that all prefix codes are uniquely decodable: each
symbol can be decoded as soon as its codeword is read. Therefore,
prefix codes are also called instantaneous codes.

x A code with codewords {0, 01, 011, 0111} is uniquely
decodable but not prefix-free: e.g., 0 is a prefix of 01.√
A code with codewords {0, 10, 110, 111} is
prefix-free.
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Kraft Inequality

The codeword lengths of a prefix codes satisfy the following
important property.

Kraft Inequality

The codeword lengths `1, . . . , `m of any (binary) prefix code satisfy

m∑
i=1

2−`i ≤ 1 .

Conversely, given a set of codeword lengths that satisfy this
inequality, there is a prefix code with these codeword lengths.
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Codewords {0, 10, 110, 111}
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x Kraft inequality violated. ⇒ Not decodable.
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Fixed-length code
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Kraft Inequality

Question: What if the inequality is satisfied strictly, i.e., the sum
of the terms in the sum equals less than one:

m∑
i=1

2−`i < 1 .

Then it is possible to make the codewords shorter and still have a
decodable (prefix) code.
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“Kraft tight” / complete code.
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Kraft–McMillan Theorem

The Kraft inequality restricts the codeword lengths of prefix codes.
Could we do much better if we would only require decodability?

In fact it can be shown that we do not lose anything at all!

Kraft-McMillan Theorem

The codeword lengths `1, . . . , `m of any uniquely decodable
(binary) code satisfy

m∑
i=1

2−`i ≤ 1 .

Conversely, given a set of codeword lengths that satisfy this
inequality, there is a prefix code with these codeword lengths.
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Expected Code-length

Now we can tell which codes are decodable, prefix-free, etc.

The next question to answer is:

Out of two decodable (prefix-free) codes,
which one is better?

For the purpose of data compression, the answer is clearly the
code that yields the shortest code-length.

We consider the expected (per-symbol) code-length:

E [`(C (X ))] =
∑
x∈X

p(x) `(C (x)) .
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Expected Code-length

To study the expected code-length, it is useful to define

q(x) = 2−`(C(x))

⇔ `(C (x)) = − log2 q(x) = log2
1

q(x)
.

The Kraft-(in)equality implies that

Important Observation

Probability distributions are codes are probability distributions!
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Based on the unification of codes and distributions, we can write

E [`(C (X ))] =
∑
x∈X

p(x) `(C (x))

=
∑
x∈X

p(x) log2
1

q(x)
,

where q(x) = 2−`(C(x)).

⇒ Information theory (entropy, Kullback-Leibler divergence, ...)
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Entropy

Given a discrete random variable X with pmf pX , we can measure
the amount of “surprise” associated with each outcome x ∈ X by
the quantity

IX (x) = log2
1

pX (x)
.

The less likely an outcome is, the more surprised we are to observe
it. (The point in the log-scale will become clear shortly.)

The entropy of X measures the expected amount of “surprise”:

H(X ) = E [IX (X )] =
∑
x∈X

pX (x) log2
1

pX (x)
.
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Binary Entropy Function

For binary-valued X , with p = pX (1) = 1− pX (0), we have

H(X ) = p log2
1

p
+ (1− p) log2

1

1− p
.
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More Entropies

1 the joint entropy of two (or more) random variables:

H(X ,Y ) =
∑
x∈X
y∈Y

pX ,Y (x , y) log2
1

pX ,Y (x , y)
,

2 the entropy of a conditional distribution:

H(X | Y = y) =
∑
x∈X

pX |Y (x | y) log2
1

pX |Y (x | y)
,

3 and the conditional entropy:

H(X | Y ) =
∑
y∈Y

p(y) H(X | Y = y) .
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More Entropies

The joint entropy H(X ,Y ) measures the uncertainty about the
pair (X ,Y ).

The entropy of the conditional distribution H(X | Y = y)
measures the uncertainty about X when we know that Y = y .

The conditional entropy H(X | Y ) measures the expected
uncertainty about X when the value Y is known.
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Chain Rule of Entropy

Remember the chain rule of probability:

pX ,Y (x , y) = pY (y)× pX |Y (x | y) .

For the entropy we have:

Chain Rule of Entropy

H(X ,Y ) = H(Y ) + H(X | Y ) .

X �Y ⇔ H(X | Y ) = H(X ) ⇔ H(X ,Y ) = H(X ) + H(Y ).

Logarithmic scale makes entropy additive.
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Mutual Information

The mutual information

I (X ; Y ) = H(X )− H(X | Y )

measures the average decrease in uncertainty about X when the
value of Y becomes known.

Mutual information is symmetric (chain rule):

I (X ; Y ) = H(X )− H(X | Y ) =

= H(Y )− H(Y | X ) = I (Y ; X ) .

On the average, X gives as much information about Y as Y gives
about X .
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On the average, X gives as much information about Y as Y gives
about X .
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Relationships between Entropies

H(X,Y)

H(X)

H(Y)

H(X | Y) I(X ; Y) H(Y | X)
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Time for a break?

Teemu Roos Introduction to Information-Theoretic Modeling



Course Outline
What is Coding?

Symbol Codes
Entropy and Information

Kolmogorov complexity

Entropy
Kullback-Leibler Divergence
Nearly Optimal Coding

Kullback-Leibler Divergence

Kullback-Leibler Divergence

The relative entropy or Kullback-Leibler divergence between
(discrete) distributions pX and qX is defined as

D(pX ‖ qX ) =
∑
x∈X

pX (x) log2
pX (x)

qX (x)
.

Information Inquality

For any two (discrete) distributions pX and qX , we have

D(pX ‖ qX ) ≥ 0

with equality iff pX (x) = qX (x) for all x ∈ X .
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The information inequality implies

I (X ; Y ) ≥ 0 .

Proof.

I (X ; Y ) = H(X )− H(X | Y )

= H(X ) + H(Y )− H(X ,Y )

=
∑
x∈X
y∈Y

pX ,Y (x , y) log2

pX ,Y (x , y)

pX (x) pY (y)

= D(pX ,Y ‖ pX pY ) ≥ 0 .

In addition, D(pX ,Y ‖ pX pY ) = 0 iff pX ,Y (x , y) = pX (x) pY (y) for
all x ∈ X , y ∈ Y. This means that variables X and Y are
independent iff I (X ; Y ) = 0.
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Properties of Entropy

Properties of entropy:

1 H(X ) ≥ 0

Proof. pX (x) ≤ 1⇒ log2
1

pX (x)
≥ 0.

2 H(X ) ≤ log2 |X |

A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S = k ln W .
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Properties of entropy:

1 H(X ) ≥ 0

Proof. pX (x) ≤ 1⇒ log2
1

pX (x)
≥ 0.

2 H(X ) ≤ log2 |X |

Proof. Let uX (x) = 1
|X | be the uniform distribution over X .

0 ≤ D(pX ‖ uX ) =
∑
x∈X

pX (x) log2
pX (x)

uX (x)
= log2 |X |−H(X ) .

A combinatorial approach to the definition of information(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S = k ln W .
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Ludvig Boltzmann (1844–1906)
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Properties of Entropy

Properties of entropy:

1 H(X ) ≥ 0

Proof. pX (x) ≤ 1⇒ log2
1

pX (x)
≥ 0.

2 H(X ) ≤ log2 |X |
A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S = k ln W .

3 H(X | Y ) ≤ H(X )

On the average, knowing another r.v. can only reduce uncer-
tainty about X . However, note that H(X | Y = y) may be
greater than H(X ) for some y — “contradicting evidence”.
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Proof. pX (x) ≤ 1⇒ log2
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pX (x)
≥ 0.

2 H(X ) ≤ log2 |X |
A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S = k ln W .

3 H(X | Y ) ≤ H(X )
Proof.

0 ≤ I (X ; Y ) = H(X )− H(X | Y ) .

On the average, knowing another r.v. can only reduce uncer-
tainty about X . However, note that H(X | Y = y) may be
greater than H(X ) for some y — “contradicting evidence”.
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Entropy Lower Bound

Entropy Lower Bound

E [`(X )] ≥ H(X ) .

Proof.

E [`(X )] =
∑
x∈X

p(x) `(x)

=
∑
x∈X

p(x) log2
1

q(x)
q(x) = 2−`(x)

=
∑
x∈X

p(x)

[
log2

p(x)

q(x)
+ log2

1

p(x)

]
= D(p ‖ q) + H(X ) ≥ 0 .
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So what have we learned?

For (“Kraft-tight”) decodable symbols
codes:

1 E [`(X )] = H(X ) + D(p ‖ q), where q(x) = 2−`(x).

2 E [`(X )] ≥ H(X ).

3 If `(x) = log2
1

p(x) , then E [`(X )] = H(X ). Optimal!
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Exercise 5.

5. Let the source distribution p be given by the table below. What
are the optimal codeword lengths under p? Can you construct the
actual codewords so that the code is prefix-free?

Ex. 5
x

A B C D E

p(x)
1

2

1

8

1

16

1

4

1

16
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Exercise 5.

0

1

00

01

10

11

000

001

010

011

100

101

110

111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

T
o
ta

l 
b

u
d
g
e
t
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Codelengths and Probabilities

A problem with the `(x) = log2
1

p(x) codeword choice is the

requirement that codeword lengths must be integers (try to think
about a codeword with length 0.123, for instance).

The simplest solution is to round upwards:

Shannon’s Code

Given a pmf, the Shannon code has the codeword lengths

`(x) =

⌈
log2

1

p(x)

⌉
for all x ∈ X .
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Alice in Wonderland
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Shannon’s code: Example

X p(X ) log2
1

p(X )
`(X )

a 0.0644 3.9 4
b 0.0108 6.5 7
c 0.0178 5.8 6
d 0.0359 4.7 5
e 0.0991 3.3 4
f 0.0147 6.0 7
g 0.0184 5.7 6
h 0.0535 4.2 5
i 0.0551 4.1 5
j 0.0011 9.8 10
k 0.0083 6.8 7
l 0.0343 4.8 5

...
y 0.0165 5.9 6
z 0.0005 10.7 11

0.2111 2.2 3

H(X ) = 4.03

Shannon (1948):

1 Sort by probability.

2 Choose codewords in
order, avoiding prefixes.
(“Kraft table”!)
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Shannon’s code: Example

X p(X ) log2
1

p(X )
`(X )

0.2111 2.2 3
e 0.0991 3.3 4
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a 0.0644 3.9 4
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s 0.0475 4.3 5
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z 0.0005 10.7 11

H(X ) = 4.03

Shannon (1948):

1 Sort by probability.

2 Choose codewords in
order, avoiding prefixes.
(“Kraft table”!)
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1 Sort by probability.

2 Choose codewords in
order, avoiding prefixes.
(“Kraft table”!)
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Shannon’s code: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 3 000

e 0.0991 3.3 4 0010

t 0.0781 3.6 4 0011

a 0.0644 3.9 4 0100

o 0.0598 4.0 5 01010

i 0.0551 4.1 5 01011

h 0.0535 4.2 5 01100

n 0.0516 4.2 5 01101

s 0.0475 4.3 5 01110

r 0.0401 4.6 5 01111

d 0.0359 4.7 5 10000

l 0.0343 4.8 5 10001
...

x 0.0011 9.8 10 1010111101

j 0.0011 9.8 10 1010111110

z 0.0005 10.7 11 10101111110

H(X ) = 4.03

E [`(X )] = 4.60

E [`(X )]− H(X ) = 0.57
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Shannon’s code

The expected codeword length of Shannon’s code is

E [`(X )] = E

[⌈
log2

1

p(X )

⌉]
≤ E

[
log2

1

p(X )
+ 1

]
= H(X ) + 1 .

In the Alice example we had

E [`(X )]− H(X ) = 4.60− 4.03 = 0.57 ≤ 1 .

Is this optimal? Not necessarily — Huffman!
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Kolmogorov complexity

Is the string
10101010101010101010 . . . 10

‘simple’ or ‘complex’?

(One) answer: Simple because it can be described easily:

“10 repeated k times”.

Remark: We should be careful in how we define describing; for
instance, “to compute by an algorithm” (a formal procedure that
eventually halts).
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A.N. Kolmogorov R.J. Solomonoff G.J. Chaitin

Kolmogorov-Solomonoff-Chaitin complexity

−→ Kolmogorov complexity
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echo <x> | gzip - | wc -c # times 8 (for bits)
source string, x `(C (x)) ratio

aaa . . . a (10000× a) 368 27.2 : 1

aabaabbbbabb . . . (10000 random digits) 13456 0.74 : 1
abababab . . . ab (5000× ab) 368 27.2 : 1
aaa . . . abbb . . . b (5000× a, 5000× b) 376 26.6 : 1
abbaababba . . . (1000× abbaababba) 488 20.5 : 1

Strings that follow a rule can be compressed?
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echo <x> | gzip - | wc -c # times 8 (for bits)
source string, x `(C (x)) ratio

aaa . . . a (10000× a) 368 27.2 : 1
aabaabbbbabb . . . (10000 random digits) 13456 0.74 : 1
abababab . . . ab (5000× ab) 368 27.2 : 1
aaa . . . abbb . . . b (5000× a, 5000× b) 376 26.6 : 1
abbaababba . . . (1000× abbaababba) 488 20.5 : 1
aaabbabbabb . . . (π, 0–4 7→ a, 5–9 7→ b) 13416 0.74 : 1

π follows a rule but isn’t compressible!

Perhaps the problem is in gzip? It would be possible to write a
specific program that compresses π.

But what does it mean to compress an individual string???
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An individual string is “simple” (not “complex”) if it can be
compressed using a pre-specified program.

Which program? gzip isn’t good at compressing images (nor
digits of π).

We can use several programs as long as we prefix the file with a
code indicating the used program.

What about new programs? Self-extracting files!

Do we this automatically? Find /////the////////////shortest////////////program////to///////print////x .
the Kolmogorov complexity of x .
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Kolmogorov-kompleksisuus: mritelm

Let U : {0, 1}∗ → {0, 1}∗ ∪ be a computer that given a
program ω ∈ {0, 1}∗ either prints out a finite output
U(ω) ∈ {0, 1}∗ or keeps computing forever. In the latter case, we
say that the output U(ω) is undefined ( ).

Kolmogorov complexity

Given a string x ∈ {0, 1}∗, let ω∗(x) be the shortest program such
that

U(ω∗(x)) = x .

The Kolmogorov complexity of x is the length of program ω∗(x):

KU(x) = min
p : U(p)=x

|p| .
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Kolmogorov complexity: basic properties

Let U and V be two computers. If computer U is ‘rich’ enough it
can ‘emulate’ computer V .

Universal computer

Computer U is said to be universal if for any other computer V ,
there exists a “translation program” τ ∈ {0, 1}∗ such that for all
programs ω, we have

U(τω) = V (ω) .
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Examples

The following are (in principle) universal computers

1 Python (compiler + OS + hardware)
2 Java (compiler + OS + hardware)
3 your favorite programming language (interpreter/compiler +

OS + hardware)
4 universal Turing machine
5 universal recursive function,
6 Lambda calculus,
7 arithmetics,
8 Game of Life
9 ...

Each of these can emulate any of the others.

In contrast, gzip (or rather, gunzip) is a non-universal computer.
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Kolmogorov complexity: basic principles

Lemma: For any universal computer U and any other computer V
we have

KU(x) ≤ KV (x) + C ,

where C is a constant independent of x .

Proof: Let τ be a translation program that translates the programs
of V into programs of U, and let ω∗V (x) be the shortest program
such that V (ω∗V (x)) = x . Then, U(τω∗V (x)) = x , and hence

KU(x) ≤ |τω∗V (x)| = |ω∗V (x)|+ |τ | = KV (X ) + |τ | .
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Invariance theorem

From now on, we consider the Kolmogorov complexity, KU , defined
using a universal computer U.

Invariance theorem

Kolmogorov complexity is (up to an additive constant) invariant
wrt. the choice of the universal computer. In other words, for any
two universal computers U and V , there is a constant C > 0 such
that

|KU(x)− KV (x)| ≤ C for any x ∈ {0, 1}∗ .

Proof: Let τV→U be a program that translates programs of V into
programs of U so that U(τω) = V (ω) for all ω. Then
KU(x) ≤ KV (x) + |τV→U | for all x . Similarly,
KV (x) ≤ KU(x) + |τU→V | for all x . The theorem follows by setting
C = max{|τV→U |, |τU→V |}.
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Conditional Kolmogorov complexity

Conditional Kolmogorov complexity

The conditional Kolmogorov complexity is the length of the
shortest program to convert input y into output x :

KU(x | y) = min{|ω| : U(ȳ ω) = x}

where ȳ is a “self-delimiting” description of y .

Uniform upper bounds

The following upper bound holds for all x :

KU(x | |x |) ≤ |x |+ C

where C is a constant independent of x .
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Examples

Let n = |x |.

1 KU(0101010101...01 | n) = C .
Program: print n/2 times ‘01’.

2 KU(π1 π2 . . . πn | n) = C .
Program: print the n first bits of π.

3 KU(English text | n) . 1.3× n + C .
Program: Huffman code.
(The estimated entropy of English is about 1.3 bits per
symbol.)

4 KU(fractal) = C .
Program: print the number of interations until
zn+1 = z2

n + c > T.
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Martin-Löf randomness

Examples (contd.):

5 KU(x | n) ≈ n for almost all x ∈ {0, 1}n.

Proof: Uniform upper bound: KU(x | n) ≤ n + C . Lower
bound from a counting argument — less than 2−k strings can
be compressed by more than k bits.

Martin-Löf randomness

String x is said to be Martin-Löf random iff KU(x | n) ≥ n.

Consequence of point 5: A sequence of coin tosses is Martin-Löf
random with high probability.
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Berry paradox

What is the least natural number that cannot be described using
thirteen words?
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Berry paradox

What is the least natural number that cannot be described using
thirteen words?

Whatever the number is, we have just described(?) it using thirteen
words!
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Berry paradox

The least uninteresting natural number?
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Berry paradox

The least uninteresting natural number?

Whatever it is, such a number is quite interesting.
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Non-computability

There is no algorithmic way to compute KU(x).

Non-computability

Kolmogorov complexity KU : {0, 1}∗ → N is a non-computable
function.

Proof: Assume that KU(x) were computable. Consider the
program

print x for which KU(x) > M.

Contradiction follows by choosing M greater than the Kolmogorov
complexity of the above program. Hence, KU(x) cannot be
computable.
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Kolmogorov complexity: summary

To summarize:

Kolmogorov complexity, KU(x), is the length of the shortest
program, ω, such that U(ω) = x .

The choice of the universal computer, U, affects the definition
by an additive constant independent of x .

Uncomputable.

Enables the definition of randomness of individual strings.
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Tomorrow

Tomorrow’s plan:

1 Occam’s Razor,

2 MDL principle,

3 Universal coding,

4 Example applications.

Thanks for your attention. Now, let’s have a few caipirinhas!
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