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MDL Denoising Revisited

Teemu Roos, Petri Myllymaki, and Jorma Rissanen

Abstract— We refine and extend an earlier MDL denoising A third approach to denoising is based on the minimum
criterion for wavelet-based denoising. We start by showinghat  description length (MDL) principle [16]-[19]. Several fiif-
the denoising problem can be reformulated as a clustering ent MDL denoising methods have been suggested [6], [12],

problem, where the goal is to obtain separate clusters for .
informative and non-informative wavelet coefficients, repectively. [20]-[24]. We focus on what we consider as the most pure

This suggests two refinements, adding a code-length for the MDL approach, namely that of Rissanen [23]. Our motivation
model index, and extending the model in order to account for is two-fold: First, as an immediate result of refining and

subband-dependent coefficient distributions. A third refirement extending the earlier MDL denoising method, we obtain a
is derivation of soft thresholding inspired by predictive universal new practical method with greatly improved performance

coding with weighted mixtures. We propose a practical methd .
incorporating all three refinements, which is shown to achiee and robustness. Secondly, the denoising problem turns out

good performance and robustness in denoising both artificieand  t0 illustrate theoretical issues related to the MDL pritejp
natural signals. involving the problem of unbounded parametric complexity

Index Terms— Minimum description length (MDL) principle, and t_hg negessity of .en.coding the mpdel class. The study of
wavelets, denoising. denoising gives new insight to these issues.

Formally, the denoising problem is the following. Lgt =
(y1,-..,yn)" be a signal represented by a real-valued column
vector of lengthn. The signal can be, for instance, a time-

AVELETS are widely applied in many areas of signateries or an image with its pixels read in a row-by-row order.
processing [1], where their popularity owes largely thet W be ann x m regressor matrix whose columns are
efficient algorithms on the one hand and advantages of spassis vectors. We model the signél as a linear combination
wavelet representations on the other. The sparsenessrigropaf the basis vectors, weighted by coefficient vectr =
means that while the distribution of the original signaluesd (3i,...,5,)", plus Gaussian i.i.d. noise:
may be very diffuse, the distribution of the corresponding " " n iid. 5
wavelet coefficients is often highly concentrated, having a yr =W+ €, e ~N(0,0%), 1)
small number of very large values and a large majority @fhere o3, is the noise variance. Given an observed signal
very small values [2]. Itis easy to appreciate the importawic 4", the ideal is to obtain a coefficient vectst” such that
sparseness in signal compression, [3], [4]. The task of vemahe signal given by the transforgi* = W3™ contains the
ing noise from signals, odenoising, has an intimate link to informative part of the observed signal, and the differeyite
data compression, and many denoising methods are explicjjl* is noise.
designed to take advantage of sparseness and comprégsibiliFor technical convenience, we adopt the common restriction
in the wavelet domain, see e.qg., [5]-[7]. on )V that the basis vectors spais@nplete orthonormal basis.

Among the various wavelet-based denoising methods thoRgis implies that the number of basis vectors is equal to the
suggested by Donoho and Johnstone [8], [9] are the béstgth of the signaljm = n, and that all the basis vectors
known. They follow the frequentist minimax approach, wherare orthogonal unit vectors. There are a number of wavelet
the objective is to asymptotically minimize the worst-cd$e transforms that conform to this restriction, for instantee
risk simultaneously for signals, for instance, in the ensicale Haar transform and the family of Daubechies transforms [1],
of Holder, Sobolev, or Besov classes, characterized higicer [25]. Formally, the matrix/V is of sizen x n and orthogonal
smoothness conditions. By contrast, Bayesian denoisirig-mewith its inverse equal to its transpose. Also the mappifig—
ods minimize thexpected (Bayes) risk, where the expectation/y3" preserves the Euclidean norm, and we have Parseval’s
is taken over a given prior distribution supposed to govieen tequality:
unknown true signal [10], [11]. Appropriate prior modelghvi " "
very good performance in typical benchmark tests, espgcial 18711 = V8", Bm) = /OVB", W) = [IWET]l. ()
for images, include the class of generalized Gaussian tilesnsiGeometrically this means that the mappifiy — WgS" is a
[6], [12], [13], and scale-mixtures of Gaussians [14], [15]otation and/or a reflection. From a statistical point ofwyie
(both of which include the Gaussian and double exponentthis implies that any spherically symmetric density, sush a
densities as special cases). Gaussian, is invariant under this mapping. All these pribger
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petri.myllymaki@cs.helsinki.fi, jorma.rissanen@mdéearch.org. This work wavelet transform. Note that in practice the transformsnate
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Programme of the European Community, under the PASCAL Nedtved .tranSform similar to the f_aSt Fourier transform (see [1hda
Excellence, 1ST-2002-506778. in fact not even the matrices need be written down.
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For complete bases, the conventional maximum likelihoable selection [31], [32] and applications to wavelet-ldase
(least squares) method obviously fails to provide dengisim- denoising [33], [34] (and references therein). In relatiothe
less the coefficients are somehow restricted since thei@olutsparseness property mentioned in the introduction, thikesp
g™ = WTy" gives the reconstructiop” = WWTy" = y" consists of coefficients with¢ ~ that are equal to zero, while
equal to the original signal, including noise. The solutiothe ‘slab’ consists of coefficients with e ~ described by a
proposed by Rissanen [23] is to consider each subset of thaussian density with mean zero. This is a simple form of a
basis vectors separately and to choose the subset thasallseale-mixture of Gaussians with two components. In Sedll|
the shortest description of the data at hand. The length wé will consider a model with more than two components.
the description is determined by the normalized maximum Let¢» = g7+ W7Te”, whereWWT'e™ gives the representation
likelihood (NML) code length. of the noise in the wavelet domain. The vecidr is the

The NML model involves an integral, which is undefine@yavelet representation of the signdl, and we have
unless the range of integration (the support) is restrictéds,
in turn, implies hyper parameters, which have received in- Yyt =W + WIWTem = Wen.
creasing attention in various contexts involving, e.g.ussan,

Poisson and geometric models [17], [19], [26]-[29]. Ri®san It js easy to see that the maximum likelihood parameters are
used renormalization to remove them and to obtain a secoptained directly from
level NML model. Although the range of integration has

to be restricted also in the second-level NML model, the e ific

. . A T Y
range for ordinary regression problems does not affect the Bi = 0. otherwise 4)
resulting criterion and can be ignored. Roos et al. [30] gine ’ '

int tati f th thod which ids th itiwat . . o : N
nterprefation o Ie memod which avolds the renorma ge i.i.d. Gaussian distribution fa* in @) implies that the

procedure and at the same time gives a simplified view of tﬂ- L P . . .
denoising process in terms of two Gaussian distributiotefit |str|but|o_n ofl/\; ¢" is also iid. and_ Gaussian with the
same variancegs,. As a sum of two independent random

to informative and non-informative coefficients, respesdi. it b h distributi . by th luti f
In this paper we carry this interpretation further and shoyfr'ares: €ach; has a distrioution given by the convolution o

that viewing the denoising problem as a clustering probleﬁﬂve densities of the summands, and theith component of

T.n g is is si 2
suggests several refinements and extensions to the originalE - In the case ¢ v this is _smplyj\/(O,aN). In t_he case
method 1 € v the density of the sum is also Gaussian, with variance

. . 5
The rest of this paper is organized as follows. In £éc. Il jven by the sum qf_the varlances%ji—aN. All told, we have
reformulate the denoising problem as a task of clusterieg t e following simplified representation of the extended elod

wavelet coefficients in two or more sets with different distrWhere the paramete(®* are implicit:

butions. In Sedll we propose three different modificasiof ) L
Rissanen’s method, suggested by the clustering intetjmeta Y = Wen, i N(0,07), ifien, (5)
In Sec[I¥ the modifications are shown to significantly improv N(0,0%), otherwise,

the performance of the method in denoising both artificial an
natural signals. The conclusions are summarized in[Sec. Mwhereo? := 72 + 0%, denotes the variance of the informative
coefficients, and we have the important restrictigh> 0%
Il. DENOISING AND CLUSTERING which we will discuss more below.

A. Extended Model

We rederive the basic moddll (1) in such a way that there
is no need for renormalization. This is achieved by inclosidB. Denoising Criterion
of the coefficient vectofs in the model as a variable and by
selection of a (prior) density fgf. While the resulting NML
model will be equivalent to Rissanen’s renormalized sohyti
the new formulation is easier to interpret and directly g
several refinements and extensions.

Consider a fixed subset C {1,...,n} of the coefficient
indices. We model the coefficients for i € v as independent
outcomes from a Gaussian distribution with varianéeln the
basic hard threshold version &l for i ¢ ~ are forced to equal
zero. Thus the extended model is given by

The task of choosing a subsetcan now be seen as a
clustering problem: each wavelet coefficient belongs eithe
to the set of the informative coefficients with varianeg,

or the set of non-informative coefficients with varianeg.
The MDL principle gives a natural clustering criterion by
minimization of the code-length achieved for the observed
signal (see [35]). Once the optimal subset is identified, the
denoised signal is obtained by setting the wavelet coefflisie
to their maximum likelihood valuedl(4); i.e., retaining the
coefficients iny and discarding the rest, and doing the inverse

eii'f;d'/\[(o,ggv)7 transformation. It is well known that this amounts to an
Y = W + €™, 5ii.£\.}d.N(0772)7 if i, ©) orthogonal projection of the signal to the subspace spanned

by the wavelet basis vectors i

The code length under the modEl (5) depends on the values
This way of modeling the coefficients is akin to the sof the two parameters;? and ¢%,. The standard solution in
called spike and slab model often used in Bayesian vari-such a case is to construct a single representative model for

B; =0, otherwise.
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the whole model cladssuch that the representative model isoise it gives better results than a universal threshold of

universal (can mimic any of the densities in the representBdnoho and Johnstone [8] (VisuShrink), over-fitting ocdars

model class). The minimax optimal universal model (see)[36Ghoisy cases [30] (see also SEC] IV below), which is explained

is given by the so called normalized maximum likelihootby the fact that omission of the third term is justified only in

(NML) model, originally proposed by Shtarkov [37] for dataegression problems with few parameters.

compression. We now consider the NML model correspondingRemark 2: It was proved in [23] that the criterior](6) is

to the extended modéll(5) with the index sefixed. minimized by a subset which consists of some numbgrof
Denote byk = k(v) the number of coefficients for which the largest or smallest wavelet coefficients in absoluteezdt

i € 7. The NML density under the extended moddl (5) for avas also felt that in denoising applications the data aré suc

given coefficient subset is defined as that the largest coefficients will minimize the criterionhél
Fly™; 62,62) above alternative formulation gives a natural solutionhis t
fom (Y™ 5 ) = %, question: by the inequality? > o2, the set of coefficients

Y

with larger variance, i.e., the one with larger absoluteigal
where 6% = 6%(y") and 6%, = 6% (y") are the maximum should be retained, rather thaite versa.

likelihood parameters for the dagét, andC,, is the important  Remark 3: In reality the NML model corresponding to the
normalizing constant. The constafit, is also known as the extended model[5) is identical to Rissanen’s renormalized

parametric complexity of the model class defined by, model only if the inequality? > o%; is ignored in the calcu-
Restricting the data such that the maximum likelihooghtions (see the appendix). However, the following progomsi
parameters satisfy (proved in the appendix) shows that the effect of doing so is

2 independent of:, and hence irrelevant.

e Proposition 1: The effect of ignoring the constraint}, <
and ignoring the constraint3, < o2, the code length under o2 is exactly one bit.

2 £2 22
Omin S ON,07 S0

the extended modell(5) is approximated by We can safely ignore the constraint and use the model with-
kS — So(v™) k. So(u™) 1 out the constraint as a starting point for further developtse
n In (") 2y )+— In M4—— Ink(n—k), for the sake of mathematical convenience.
2 n—=k 2 k 2
(6)
plus a constant independent of with S(y") and S, (y") ll. REFINED MDL D ENOISING

denoting the sum of the squares of all the wavelet coeffisient
and the coefficients for which € ~, respectively (see the A, Encoding the Model Class

appendix for a proof). The code length formula is very . : )
accurate even for smail since it involves only the Stirling !t iS customary to ignore encoding of the index of the model
approximation of the Gamma function. class in MDL model selection; i.e., encoding the number of

Remark 1: The set of sequences satisfying the restrictigp@rameters when the class is in one-to-one correspondence

o2, < 62,62 < o2, depends on. For instance, consider With the number of parameters. One simply picks the clads tha

the casen = 2. In a model withk = 1, the restriction corre- €nables the shortest description of the data without cerisig
sponds to a union of four squares, whereas in a model wiffe number of bits needed to encode the class itself. Note tha
eitherk = 0 or k = 2, the relevant area is an annulus (twohere we do not refer to encoding the parameter values as in
dimensional spherical shell). However, the restriction e Wo-partcodes, which are done implicitly in the so-callede-
understood as a definition of the support of the correspgndif@rt codes’ such as the NML and mixture codes. In most cases
NML model, not a rigid restriction on the data, and hencé'€ré are not too many classes and hence omitting the code
models with varyingy are still comparable as long as thdength of the model index has no practical consequence. When
maximum likelihood parameters for the observed sequeri@€ number of model classes is large, however, this issue doe
satisfy the restriction. becc_)me of importance. In t_he case of denqsmg, the number
The code length obtained is identical to that derived Wf different model classes is as large s (with » as large
Rissanen with renormalization [23] (note the correctiothie 25512 x 512 = 262,144) and, as we show, encoding of the
third term of [8) in [38]). The formula has a concise an§/@ss index is crucial.
suggestive form that originally lead to the interpretation ~ The encoding method we adopt for the class index is simple.
terms of two Gaussian densities [30]. It is also the form th¥¥e first encodek, the number of retained coefficients with a
has been used in subsequent experimental work with somewtaiform code, which is possible since the maximal number

mixed conclusions [30], [39]: While for Gaussian low vaan 7 is fixed. This part of the code can be ignored since it
only adds a constant to all code lengths. Secondly, for each

1 : . , .
Here the usual terminology where the word ‘model’ has doubéning ; ;
is somewhat unfortunate. The term refers to both a set ofittEnsuch as the k there are a number of different model classes dependmg

one defined by EqI5) (as in the ‘Gaussian model’, or the &bgimodel’), ON \_NhiCh k C_O_eﬁiCiems are retained. Note tha_-t Wh”e_the
and a single density such as the NML model, which can of cobesthought retained coefficients are always tteegest k& coefficients, this

of as a singleton set. Whenever there is a chance of confusieruse the jnformation is not available to the decoder at this point and
term ‘model class’ in the first sense.

H H JU.
2We express code lengthsnats which corresponds to the use of the naturaFhe 'ndex_ set to be retained has .tO be enCOde_d' .Ther@k?”e
logarithm. One nat is equal tn 2)~! bits. sets of sizek, and we use a uniform code yielding a code
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n

k

length ln( ) nats, corresponding to a prior probability 01 ' ' ' ' '

= (3) =Rl )

n!
0.01 |

Applying Stirling’s approximation to the factorials and
ignoring all constants wrty gives the final code length formula

n—k S-S54 ko SE") ®) ook
2 (n—k)3 2 k3
The proof can be found in the appendix. o
This way of encoding the class index is by no means® [ i
the only possibility but it will be seen to work sufficiently
well, except for one curious limitation: As a consequence | [ |
of modeling both the informative coefficients and the noisg . e . P
by densities from the same Gaussian model, the code length 200 100 0 100 200
formula approaches the same valué approaches either zero _. _ A
. . . .Fig. 1. Log-scale representation of the empirical histogaf the wavelet
or n, which aCtua”y are disallowed. Hence, it may be that Ifbefficients on dyadic levels 6-9 for the Boat image (see [Bfdbelow).
cases where there is little information to recover, the oamd Finer levels have narrower (more sparse) distributions trwarser levels; the
fluctuations in the data may yield a minimizing solution nedinest level (9) is drawn with solid line.
k = n instead of a correct solution near= 0. A similar
phenomenon has been demonstrated for “saturated” Bernoull
models with one parameter for each observation [27], and
resembles the inconsistency problem of BIC in Markov chain

. ) . Can be treated as separate sets of coefficients with their own
order selection [40]: In all these cases pure random noise S

. : e . aussian densities just as in the previous subsection,ewher
incorrectly identified as maximally regular data. In order t T ]
. ; . . we had two such sets. The code length function, including the
prevent this we simply restrick < .95n, which seems to S L
code length fory, becomes after Stirling’s approximation to

avoid such problems. A general explanation and solution fgr : . . i
. e Gamma function and ignoring constants as follows:
these phenomena would be of intefest

- (B Sul) | 1 S
B. Subband Adaptation Do (G gk ) > () )
b=0 b=1

Ignoring again the constraint? + 0% > 0%, the levels

It is an empirical fact that for most natural signals the

coefficients on different subbands corresponding to difier The proof is omitted since it is entirely analogous to the
frequencies (and orientations in 2D data) have differearch proof of Eq. [B) (see the appendix), the only difference gein
acteristics. Basically, the finer the level, the more spdnge that now we haveB + 1 Gaussian densities instead of only
distribution of the coefficients, see FIg. 1. (This is not tase two. Notwithstanding the added code-length for the rethine
for pure Gaussian noise or, more interestingly, signal wiindices, for the casé3 = 1 this coincides with the original
fractal structure [2].) Within the levels the histogramstioé setting, where the subband structure is ignored, Hg. (63esi
subbands for different orientations of 2D transforms tgfljc we then have:y = n—k;. This code can be extended to allow
differ somewhat, but the differences between orientatames k; = 0 for some subbands simply by ignoring such subbands,

not as significant as between levels. which formally corresponds to reducirg in such casés
In order to take the subband structure of wavelet transformsFinding the index setsy, that minimize the NML code
into account, we let each subbaing {1,..., B} have its own length simultaneously for all subbandsis computationally

variance,r,. We choose the set of the retained coefficientfemanding. While on each subband the best choice always
separately on each subband, and 4gtdenote the set of includes somek, largest coefficients, the optimal choice on
the retained coefficients on subbabdwith k;, := |y,|. For subbandb depends on the choices made on fhe- 1 other
convenience, lety be the set of all the coefficients that aresubbands. A reasonable approximate solution to the search
not retained. Note that this way we hakg+ ...+ k, = n. problem is obtained by iteration through the subbands and,
In order to encode the retained and the discarded coefficieat each iteration, finding the locally optimal coefficient se
on each subband, we use a similar code as in the ‘flat’ cas®e each subband, given the current solution on the other
(Sec.=A). For each subband ..., B, the number of nats subbands. Since the total code length achieved by the ¢urren
needed idn (Zi) solution never increases, the algorithm eventually caye®r
typically after not more than five iterations. Algorithm 1 in

*Perhaps a solution could be found in algorithmic informatitheory  Fig [ implements the above described method. Following
(Kolmogorov complexity) and the concept of Kolmogonminimal sufficient
statistic [41] which is the simplest one of many equally &t descriptions.
However, for practical purposes, a modification of the cphde needed in 4In fact, when reducingB the constants ignored also get reduced. This
order to account for the fluctuations near the extremes,wéie succumbed effect is very small compared to terms [ (9), and can be wadelored since
by the constant(1) terms in algorithmic information theory. codes with positive constants added to the code lengthswwagsadecodable.
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ALGORITHM 1. with new updated ‘posterior’ weights for the models, ob¢ain
Input: signaly™ by multiplying the NML density by the prior weights and
0. sete’ — Wiy normalizing wrt.~:

1. initialize k, = ny for all b € {1,..., B} oy | y7) e dm" s TO) (10)

2. do until convergence ' >y S (y™ 5 )m(y')

3. for eachb € {Bo +1,..., B} Since in the denoising problem we only need the mean value
4. optimizek, wrt. criterion [9) instead of a full predictive distribution for the coefficten

5. end we can obtain the predicted mean as a weighted average of
6. end ) the predicted means corresponding to eadiy replacing the

7. foreach e {1,...,n} density fom (2™ | 4™ ; ) by the coefficient value; = ¢;(y™)

8. if i ¢ 7 then setc, — 0 obtained fromy™ for i € v and zero otherwise, which gives
9. end the denoised coefficients

10. outputiWe”

Yoclieym(yly) =ciy wlyly"), (11

Fig. 2. Outline of an algorithm for subband-adaptive MDL dising. The 3

coarsestB, subbands are not processed in the loop of Steps 3-5. In Step 8, L . .
the final modeky is defined by the largest, coefficients on each subbabd ~Where the indicator functiofc, takes value one if € v and

A soft thresholding variation to Step 8 is described in zero otherwise. Thus the mixture prediction of the coeffitie
value is simplyc; times the sum of the weights of the models
where: € v with the weights given by Eq[{1.0).

The practical problem that arises in such a mixture model is
that summing over all thé™ models is intractable. Since this
i ) sum appears as the denominator[afl (10), we cannot evaluate
C. Soft Thresholding by Mixtures the required weights. We now derive a tractable approximati

The methods described above can be used to determinetbehis end, lety, ..., denote a model determined by ~
MDL model, defined by a subsetof the wavelet coefficients, iff v; = 1, and lety; ... 1;. .., denote a particular one with
that gives the shortest description to the observed data- Hoy, = 1. Also, let4 = 4;...4%, be the model with maximal
ever, in many cases there are several models that achiesg ngdML posterior weight [ID). The weight with which each
as good a compression as the best one. Intuitively, it seemdividual coefficient contributes to the mixture predictican
then too strict to choose the single best model and discayd obtained from

established practice [9], [12], all coefficients are retdiron
the smallest (coarsest) subbahds

all the others. A modification of the procedure is to consider . n n

; : ; (O [y") (v ly
a mixture, where all models indexed by are weighted by T = 275170 | — = 25701 )n
Eq. 0): Yz lyt) 1= 5wy [ yt)

T3
Frix(y™) =3 fam (" 3 7) (). =m0y =1 (12)
vy EY] v

Such a mixture model is universal (see e.g. [18], [19]) iNote that the ratio’; is equal to
the sense that with increasing sample size the per sample S (L |y
average of the code lengthn ' In fmix(y™) approaches that P =
of the besty for all y™. Consequently, predictions obtained by 2y O [ y7)

conditioning on past observations converge to the optimaso This can be approximated by
achievable with the chosen model class. A similar approac

with mixtures of trees has been applied in the context 0.2:7 Ol [9") w(aee L [ y") =7,

compression [42]. 2T 0 ly) (e 06 A [ y)

For denoising purposes we need a slightly different settifghich means that the exponential sums in the numerator and
since we cannot let, grow. Instead, given an observedhe denominator are replaced by their largest terms asgumin
signaly™, consider another image" from the same source. that forcing+; to be one or zero has no effect on the other
Denoising is now equivalent to predicting the mean value @bmponents ofy. The ratio of two weights can be evaluated
z". Obtaining predictions for™ given y™ from the mixture without knowing their common denominator, and hence this
is in principle easy: one only needs to evaluate a conditiongives an efficient recipe for approximating the weights reed

mixture in Eq. ().
n oy Jmix(y™, 2™) Intuitively, if fixing ~; = 0 decreases the posterior weight
frix(z" | y") = D) significantly compared to; = 1, the approximated value of

r; becomes large and th&h coefficient is retained near its
maximum likelihood valuec;. Conversely, coefficients that
increase the code length when included in the model are

5 H H .. .
We retain all subbands below level 4, i.e., all subbands wéhor less shrunk towards zero. Thus, the mixing procedure implements
coefficients. This has little effect to the present methodt &ince it is

important for other methods to which we compare, especi@llyeShrink, ggner_al form of ‘soft’ thresholdlng, of which a reSt”Cte'_é(FB'
we adopted the practice in order to facilitate comparison. wise linear form has been found in many cases superior to hard

=3 fam(E" [y )Ty [y
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30+

The compared denoising methods were the original MDL
method [23] without modifications; MDL with the modifica-
tion of SecI=A; MDL with the modifications of SecE_TIIA
and[IzB; and MDL with the modifications of SecE_TIIIA,
=Bl and [M=Cl For comparison, we also give results for
three general denoising methods applicable to both 1D and
‘ 2D signals, namely VisuShrink [8], SureShrink [9], and
10 20 w»  BayesShrink [12].

20+

B. Results

Figure @ illustrates the denoising results for tBeocks
signal [9] with signal lengthn = 2048. The original signal,
shown in the top-left display, is piece-wise constant. The
standard deviation of the noise ds= 0.5. The best method,
Fig. 3.  The behavior of the soft thresholding method impletee by havmg the h|ghe§PSNR (and equwal.e.mly.’ the Sma"eMS.E)
Algorithm 2 for one of the subbands of the Boat image with ndeatinoise 1S the MDL method with all the modifications proposed in the
(see SedIV): the original wavelet coefficient valteon the x-axis, and the present work, labeled MDL (A-B-C) in the figure. Another

thresholded value:; 7#; /(1 + 7;) on the y-axis. For coefficients with large ePep ; ; ; ot
absolute value, the curve approaches the diagonal (dattell The general .Case’ th persimage with noise standard deviation= 30,

shape of the curve is always the same but the scale depentie afata: the 1S Shown in Fig[b, where the best method is BayesShrink.
more noise, the wider the non-linear part. Visually, SureShrink and BayesShrink give a similar result
with some remainder noise left, while MDL (A-B-C) has
removed almost all noise but suffers from some blurring.
thresholding in earlier work [8], [12]. Such soft threshialgl  The relative performance of the methods depends strongly
rules have been justified in earlier works by their improvegh the noise level. FigurEl 6 illustrates this dependency in
theoretical and empirical properties, while here they eariserms of the relative PSNR compared to the MDL (A-B-C)
naturally from a universal mixture code. The whole procedumethod. It can be seen that the MDL (A-B-C) is uniformly
for mixing different coefficient subsets can be implemeritgd the best among the four MDL methods except for a range
replacing Step 8 of Algorithm 1 in Fi@l 2 by the instruction of small noise levels in th@eppers case, where the original
7 method [23] is slightly better. Moreover, it can be seen that
sete; — ¢; —— the modifications of SecE_IIMB addIIMIC improve the perfor
147 . . .
mance on all noise levels for both signals. The right panels
where7; denotes the approximated valueref The behavior of Fig.[d show that the overall best method is BayesShrink,
of the resulting soft threshold is illustrated in Fg. 3. except for small noise levels iBlocks, where the MDL (A-
B-C) method is the best. This is explained by the fact that the
generalized Gaussian model used in BayesShrink is eslyecial
apt for natural images but less so for 1D signals of the kind
A. Data and Setting used in the experiments.
The above observations generalize to other 1D signals and
Images as well, as shown by Tablgs | 40d II. For some 1D

ficial 1D signals [9] and natural imagesommonly used for signals Heavising, Doppler) the SureShrink method is best

benchmarking. The signals were contaminated with Gaussfgﬁ Some noise IeveI;. In images, BayesShnnk Is conslgtent
pseudo-random noise of known variancg and the denoised superior for low noise cases, although 't. can b_e debated
signal was compared with the original signal. The Daubenhi\glhether the test setting where the denoised image is couhpare

D6 wavelet basis was used in all experiments, both in the 1B .the original image, which in itself already contains some

and 2D cases. The error was measured by the peak-signalﬂl‘?)'-se’ gives meaningful results in the low noise regime. For

noise ratio (PSNR), defined as moderate to high noise levels, BayesShrink, MDL (A-B-C)
’ and SureShrink typically give similar PSNR output.

IV. EXPERIMENTAL RESULTS

The effect of the three refinements of the MDL denoisin
method was assessed separately and together on a set of

PSNR:= 10 - logy ( Range” ) ,

MSE

where Range is the difference between the maximum and We have revisited an earlier MDL method for wavelet-
minimum values of the signal (for imag&ange = 255); and based denoising for signals with additive Gaussian white
MSE is the mean squared error. The experiment was repeat@ise. In doing so we gave an alternative interpretation of
15 times for each value of?, and the mean value and standard
deviati ded 7All the compared methods are available as a free packageldadable at
eviation was recorded. http://www.cs.helsinki.fiiteemu.roos/denoise/ . The pack-
age includes the source code in C, using wavelet transforams the Gnu

6The images were the same as used in many earlier papersabiwaiit Scientific Library (GSL). All the experiments of Sdc]IV cae keproduced
http://decsai.ugr.es/ javier/denoise/ | using the package.

V. CONCLUSIONS


http://decsai.ugr.es/~javier/denoise/
http://www.cs.helsinki.fi/teemu.roos/denoise/
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Fig. 4. Simulation Results. Panels from top to bottom, leftight: Blocks signal [9], sample size = 2048; noisy signal, noise standard deviation= 0.5,
PSNR=23.2; original MDL method [23], PSNR=28.5; MDL with dification of Sec[Il[zA, PSNR=29.0; MDL with modifications &ecs 14 andIl-8,
PSNR=29.6; MDL with modifications of SedSIIMMEIMB afidIC] PSNR=30.1; VisuShrink [8], PSNR=28.6; SureShrink PSNR=28.9; BayesShrink [12],
PSNR=29.8. (Higher PSNR is better).

Rissanen’s renormalization technique for avoiding thédfmm the density ofy™ under the extended model is always equal
of unbounded parametric complexity in normalized maximuto the density ofc” evaluated atV”y™. Thus, for instance,
likelihood (NML) codes. This new interpretation suggestethe maximum likelihood parameters for dagé are easily
three refinements to the basic MDL method which were showabtained by maximizing the density af* at W7y". The

to significantly improve empirical performance. density ofc™ is given by
The most significant contributions are: i) an approach in-
volving what we called thextended model, to the problem  f(¢" 5 oF,0%) = [[ ¢(ci s 0,07) [[ 6(ci; 0,0%), (13)

of unbounded parametric complexity which may be useful i€y iy
not only in the Gaussian model but, for instance, in the
Poisson and geometric families of distributions with shiiga
prior densities for the parameters; ii) a demonstrationhef t
importance of encoding the model index when the number
of potential models is large; iii) a combination of universa’

models of the mixture and NML types, and a related predictive
technique which should also be useful in MDL denoising
methods (e.g. [20], [21], [24]) that are based on finding 2nd letS(y™)

single best model, and other predictive tasks.

Where¢(- ; u,0?) denotes a Gaussian density function with
meangu and varianceﬂ.
Let.S, (y™) be the sum of squares of the wavelet coefficients

1€y
-y
1€y

denote the sum of all wavelet coefficients. With
slight abuse of notation, we also denote these twabi")

and S(c™), respectively. Let: be the size of the set.
APPENDIXI The likelihood is maximized by parameters given by
POSTPONEDPROOFS
Proof of Eq. @): The proof of Eq.[(B) is technically similar 62 = %, 63 = L%(U) (14)
n—

to the derivation of theenormalized NML model in [23],
which goes back to [43]. First note that due to orthonormalitwith the maximum likelihood parametels114) the likelihood
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MDL (A)
-'ﬁ“' =

VisuShrink SureShrink BayesShrin

Fig. 5. Simulation Results. Panels from top to bottom, leftright: Peppers image; = 256 x 256; noisy image, noise standard deviatien= 30,
PSNR=18.6; original MDL method [23], PSNR=19.9; MDL with dification of Sec[dllz3, PSNR=23.9; MDL with modifications &ecs [II=4 andIll=8,
PSNR=24.9; MDL with modifications of SedSIHETMB afiIC] PSNR=25.5; VisuShrink [8], PSNR=23.2; SureShrink BSNR=24.6; BayesShrink [12],
PSNR=25.9. (Higher PSNR is better).

[@3) becomes without these bounds. The integral factors in two partslinvo
A —k/2 N N ing only the coefficients with € v andi ¢ ~ respectively.
(2me)~"/? <S»y(y )) (S(y ) =S,y )) . Furthermore, the resulting two integrals depend on thefieoef
k n—k (15) cients only through the values, (¢”) andS(c")—S.,(c"), and

L i i thus, they can be expressed in terms of these two quantities
The normalization constar® is also easier to evaluate by,q the integration variables — we denote them respectively b
integrating the likelihood in terms of*: s, and sy. The associated Riemannian volume elements are
_ s —k/2 e =255 n infinitesimally thin spherical shells (surfaces of baltk first
¢= A/(SW(C ) S(E) = S5 () de”, one with dimensionk and radiusﬁSQ, the second one with

o (16)  dimensionn — k and radiuss./?, given by
where A is given by
n—k
A= (2me) "2 (n — k)7, k2 k21 r(n=k)/2 (/21
. N ) - dsy, dss.
and the range of integratioR is defined by requiring that I'(k/2) o1 T'((n—k)/2) o2

the maximum likelihood estimatorE{14) are both within the
interval [0, o2 ... It will be seen that the integral diverges
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Fig. 6. Simulation Results. PSNR difference compared toptoposed method (MDL with modifications of SeES_TIHA_Bl-and[=Q), see Figdl4 arld 5.
Top row: Blocks signal [9], sample size = 2048. Bottom row: Peppers image, = 256 x 256. Left panels show the effect of each of the three modification
in Secll; right panels show comparison to VisuShrink [8ljreShrink [9], and BayesShrink [12].

Thus the integral in[{16) is equivalent to finally gives the NML density:
Ko h/2gR/270 . T(k/2)0((n — k)/2)
/ T oy S dsy fnm(y ) = n/2 n)\k/2 n n))(n—k)/2
ko2 D(k/2) w2 (S5 (y™)) R (S(y") — Sy (™))
n—k)ol . —(n— (n—k)/2—1 2 -2
y /( ) 7l k)/232 S;(n,k)/g dso. % (hl %) ., (18)
(n—k)o2,;, F((n - k)/2) Tmin

Both integrands become simply of the forjiz and hence, and the corresponding code length becomes
the value of the integral is given by

1o (") = 5 105 (6") + "o (S ) — 5(6")

/2 o2 2
1 max , 17 _
s () a0 S (5) - (54)
Plugging [[I¥) into[[(1I6) gives the value of the normalization P lnr+2nln Urznax'
constant 2 Thin
_ E*/2(n — k) (n=R)/2 o2\’ Applying Stirling’s approximation
(2¢)"/2T(k/2)L((n — k)/2) min/

1 1
Normalizing the numeratof{l5) iy, and canceling like terms InT(2) ~ (z - 5) nz-z+ 2 In 2,
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TABLE |
NUMERICAL RESULTS. THE PEAK-SIGNAL-TO-NOISE RATIO FOR VARIOUS1D SIGNALS, DENOISING METHODS AND NOISE LEVELS. COLUMNS: NOISE
STANDARD DEVIATION o; PSNRFOR DIFFERENT METHODYSEEFIGS.[AAND [H), BEST VALUE(S) IN BOLDFACE; SD: STANDARD DEVIATION OF ALL
PSNR'S FOR EACH VALUE OFo OVER 15 REPETITIONS

(Rissanen, 2000) MDL (A) MDL (A-B) MDL (A-B-C) VisuShrink  SeShrink  BayesShrink SD
Blocks (n = 2048)
o=0.1 44.4 43.8 44.5 44.9 43.6 41.9 40.1 + 032
0.5 28.9 29.1 30.1 30.8 29.0 29.0 30.1 + 042
1.0 20.4 24.4 25.5 26.2 24.3 25.2 26.1 + 044
15 15.0 21.6 22.8 23.4 215 22.8 23.9 + 034
2.0 11.7 19.6 21.6 22.2 19.5 21.6 22.6 + 045
Bumps (@ = 2048)
o=0.1 39.4 39.6 40.0 40.7 39.2 38.8 38.3 + 038
0.5 20.6 26.8 27.8 28.4 26.1 27.2 28.0 + 040
1.0 13.9 21.5 23.0 23.7 21.3 23.3 24.0 + 0.30
15 10.3 18.6 20.6 21.3 18.9 20.5 21.9 + 040
2.0 7.9 17.7 19.2 19.9 17.9 19.5 20.3 + 0.38
Heavisine . = 2048)
o=0.1 51.3 50.4 51.3 51.9 51.1 48.8 48.1 + 060
0.5 35.6 37.4 39.1 39.5 37.7 38.3 38.9 + 061
1.0 27.0 32.9 34.1 34.6 33.2 34.7 34.1 + 070
15 19.8 30.6 31.6 32.0 30.8 32.3 32.3 + 0091
2.0 15.4 28.1 30.5 31.0 28.2 31.2 31.3 + 102
Doppler (2 = 2048)
c=0.1 24.5 28.4 29.2 29.8 28.3 28.6 29.5 + 046
0.5 6.2 17.8 19.3 19.9 17.7 19.6 20.3 + 070
1.0 0.1 12.6 15.4 16.0 13.1 16.1 16.2 + 083
15 -35 10.7 13.3 13.7 10.8 14.0 13.9 + 075
2.0 -5.9 9.9 11.3 115 10.1 12.2 11.8 + 089
to the Gamma functions yields now Proof of Proposition I The maximum likelihood parame-

ters [I3) may violate the restrictiary > o3, that arises from
the definitiono? := 72 + 0%;. The restriction affects range of

n k n n—- n n
—In fom (y") % 5 0S5 (y") + In(S(y") = Sy(u™)) integration in Eq.[C07) giving the non-constant terms alofas

2 2

k—1 k k

— (—> In (_) + = kol .. ((n—Fk)/k)sy
2 2 2 / / 57 sy tdss | dsy
n—k—1 | n—k n n—k ko2, (n—k)ol,,
2 e 2 ko2
n o2 = sy (Ins; —Inko?;,)ds;. (20)

—In27 + 511177—1—2111111%. kol in

Using the integralf s; ' In sy ds; = 1(Ins1)? gives then

Rearranging the terms gives the formula

1 2 2 1 2 2 2 U?nax
5(111 koga)” — 5(111 ko) —Inkos,, | In ) , (21)

Sy gfy") L0 ; k In S@y") — iv(y") where the first two terms can be written as
n—
2

+ 5 lnk(n— k) + const, (19) 5 (koD + ko) (ln 2—> :

min

—In fom (y") =

Combining with the third term of[{21) changes the plus into

wherecongt is a constant wrty, given by a minus and gives finally

2 1 G?rlax O-IQIIB.X
const = g In27e —Indmw 4+ 2Inln ngax. 3 <1n rznin) (hl 01211in > )

which is exactly half of the integral in Eq_{IL7), the congtan
m terms being the same. Thus, the effect of the restriction on
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TABLE Il
NUMERICAL RESULTS. THE PEAK-SIGNAL-TO-NOISE RATIO FOR VARIOUS IMAGES DENOISING METHODS AND NOISE LEVELS. COLUMNS: NOISE
STANDARD DEVIATION o; PSNRFOR DIFFERENT METHODYSEEFIGS.[AAND [H), BEST VALUE(S) IN BOLDFACE; SD: STANDARD DEVIATION OF ALL
PSNR'S FOR EACH VALUE OFo OVER 15 REPETITIONS

(Rissanen, 2000) MDL (A) MDL (A-B) MDL (A-B-C) VisuShrink  SeShrink  BayesShrink SD
Lena 612 x 512)
c=0 39.1 36.6 38.5 39.3 37.3 43.2 46.9 + -
10 31.6 30.8 31.8 324 30.1 32.8 33.1 + 0.02
20 25.0 27.8 28.8 29.4 27.1 295 29.9 + 0.03
30 19.8 26.0 27.1 27.6 25.4 27.8 28.2 + 0.03
40 16.7 24.9 26.0 26.5 24.3 26.4 27.0 + 0.04
Boat (512 x 512)
c=0 36.2 33.2 35.1 35.9 32.9 39.2 40.3 + -
10 30.2 28.6 29.8 305 28.0 31.3 317 + 0.02
20 24.2 25.8 26.8 275 25.2 27.9 28.3 + 0.03
30 19.6 24.3 25.2 25.8 23.7 26.1 26.5 + 0.02
40 16.6 23.2 24.2 24.7 22.8 24.9 25.3 + 0.03
House £56 x 256)
c=0 41.4 36.7 42.5 435 41.0 47.4 54.2 + -
10 31.4 30.7 315 32.1 30.2 325 32.8 + 0.06
20 24.7 27.3 28.1 28.7 26.8 28.7 29.2 + 0.05
30 19.7 25.4 26.4 27.0 24.9 26.9 27.4 + 0.06
40 16.7 24.2 25.2 25.7 23.7 25.4 26.2 + 0.07
Peppers 56 x 256)
c=0 38.9 36.1 37.9 38.7 36.9 42.7 51.2 + -
10 30.7 29.3 30.3 31.0 28.6 315 315 + 0.04
20 24.7 25.9 26.9 27.6 25.1 27.1 27.9 + 0.05
30 19.9 23.9 249 25.5 23.1 24.6 25.9 + 0.05
40 16.8 22.4 23.3 23.9 21.6 22.8 24.4 + 0.08
the code length where tHegarithm of the integral is taken, REFERENCES
is one bit, i.e.In2 nats. [1] S. Mallat, A Wavelet Tour of Sgnal Processing. Academic Press, 1998.
[ ] [2] ——, “A theory for multiresolution signal decompositiothe wavelet
Proof of Eq. The relevant terms in the code |engfh(2), representation,TEEE Trans. Pattern Analysis and Machine Intelligence,
. . . vol. 11, pp. 674-693, 1989.
i.e. those depending dn for the index of the model class are [3] R.A. DeVore, B. Jawerth, and B. J. Lucier, “image compies through

wavelet transform coding,JEEE Trans. Information Theory, vol. 38,
—In(k!(n — k)!) = —In[k(k — 1)!(n — k)(n — k)] ho. 2. pp. 719746, Mar. 1992, y
= —1In(k(n —k)) —InT(k) —InT(n — k), [4] J. Villasenor, B. Belzer, and J. Liao, “Wavelet filter &vation for image
compression,1EEE Trans. Image Processing, vol. 4, no. 8, pp. 1053—
which gives after Stirling’s approximation (ignoring caoaust 1060, Aug. 1995. , o _
terms) [5] B. K. Natarajan, “Filtering random noise from deternsiti¢ signals via
data compressionJEEE Trans. Information Theory, vol. 43, no. 11, pp.
1 2595-2605, Nov. 1995.
_ _ _ - [6] M. Hansen and B. Yu, “Wavelet thresholding via MDL for nedl
1n(k(n k)) <k ) Ink +k images,”|EEE Trans. Information Theory (Special Issue on Information
1 Theoretic Imaging), vol. 46, pp. 1778-1788, 2000.
_ . = _ _ [7] J. Liu and P. Moulin, “Complexity-regularized image aésing,” IEEE
(n k 2) 1n(n k) + (n k) Trans. Image Processing, vol. 10, no. 6, pp. 841-851, June 2001.
1 [8] D. Donoho and I. Johnstone, “ldeal spatial adaptation wiavelet
ln(n _ k)2 4z 1nk(n _ k) +n. (22) shrinkage,”Biometrika, vol. 81, pp. 425-455, 1994.
2 [9] ——, “Adapting to unknown smoothness via wavelet shrigga J.
Amer. Satist. Assoc., vol. 90, no. 432, pp. 1200-1224, 1995.
B. Vidakovic, “Nonlinear wavelet shrinkage with Bayrdes and Bayes
factors,” J. Amer. Satist. Assoc., vol. 93, no. 441, pp. 173-179, 1998.
[11] F. Ruggeri and B. Vidakovic, “A Bayesian decision thetiz approach

to the choice of thresholding paramete#atistica Snica, vol. 9, pp.
ACKNOWLEDGMENT 183-197, 1999.
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_ K onzk
2

Adding this to Eq[B (without the constan) gives Eq. [B). [10]
|
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