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Abstract. Currently the most accurate WLAN positioning systems are
based on the fingerprinting approach, where a “radio map” is constructed
by modeling how the signal strength measurements vary according to
the location. However, collecting a sufficient amount of location-tagged
training data is a rather tedious and time consuming task, especially in
indoor scenarios — the main application area of WLAN positioning —
where GPS coverage is unavailable. To alleviate this problem, we present
a semi-supervised manifold learning technique for building accurate ra-
dio maps from partially labeled data, where only a small portion of the
signal strength measurements need to be tagged with the corresponding
coordinates. The basic idea is to construct a non-linear projection that
maps high-dimensional signal fingerprints onto a two-dimensional man-
ifold, thereby dramatically reducing the need of location-tagged data.
Our results from a deployment in a real-world experiment demonstrate
the practical utility of the method.
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1 Introduction

The need for special-purpose positioning systems for indoor use arises from the
failure of established technologies, such as GPS, to properly locate and track
objects in an indoor environment [8]. GPS signals tend to be weak when blocked
by building walls, and even when a position is triangulated the accuracy is not
sufficient for indoor use [4]. Several systems have been proposed that rely on the
localized object carrying some kind of transceiver (RFID) [9] or infrared sensors
built into the environment [14].

Recently, the interest in positioning based on wireless local area networks
(WLANs), in particular, has grown significantly. This can be attributed to their
wide use and distribution as well as the open standard which allows for request-
ing of signal strength information without separate authentication. WLAN-based
systems have come a long way since the pioneering work of Bahl and Padmanab-
han, who applied a nearest neighbor method on fingerprints composed of received
signal strength indicator (RSSI) values [1]. Many of the most successful methods
currently used in the field are probabilistic in nature ([6],[17], [23]). For a survey
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on indoor positioning techniques, see [8]; for recent work, we refer the reader
to [12],[22],[25].

Though WLAN fingerprinting approaches have achieved relatively good ac-
curacy, and have found their way into some commercial services (e.g. [5]), the
majority of location-based services are still based on GPS and other technolo-
gies [15]. One of the reasons to this is probably the manual effort required in
calibrating fingerprinting-based methods: before the system can be used, finger-
prints need to be recorded everywhere in the deployment area. Since the radio
map created through this effort needs to be tied to real-world coordinates, it
is also necessary to record the location of every fingerprint. This invariably re-
quires human presence or other external location information (e.g., GPS, camera
arrays) for the entirety of the calibration process.

We present a method for WLAN positioning wherein the fingerprinting ap-
proach is augmented with non-linear dimension reduction techniques. The main
idea is to learn a low-dimensional, non-linear manifold that can represent the ra-
dio map, enabling better statistical modeling of the signal properties in complex
multi-path environments. Once the manifold is constructed, we further propose
a very simple method for mapping observation points attached to the manifold
into geographical coordinates. Our approach is semi-supervised as the manifold
learning phase is based on observing plain RSSI vectors without their geograph-
ical coordinates. A small sample of key points whose location is recorded are
needed only to fix the mapping from the coordinate system of the manifold to
geographical coordinates.

Earlier related work has focused on localization in sensor-networks. In the
sensor-network localization problem a large set of sensor nodes communicate
with other nodes in their proximity: Shang et al. [19] use the Isomap algo-
rithm [21], and Patwari and Hero [13] use Laplacian eigenmaps to process bi-
nary connectivity data from each of the sensor nodes. Pan et al. [10, 11] apply
Laplacian regularized least squares regression [2], without explicitly constructing
a low-dimensional manifold; the drawback of this method is that the outcome is
highly sensitive to the choice of the parameters controlling the regularization [24].

The rest of this paper is organized as follows. In Section 2, we lay out the
basic concepts in semi-supervised learning, and in particular, manifold learning,
including the specific non-linear approach (Isomap) used in this paper. In Section
3, we present the empirical framework and the details of the testing environment.
Conclusions are summarized in Section 4.

2 The Semi-supervised Approach

Manifold learning methods attempt to find the defining features of a high-
dimensional data set by reducing the dimensions (number of features) of the data
to a more manageable level, usually two or three. The underlying assumption
is that most of the variability in the data is concentrated on a low-dimensional
(possibly non-linear) manifold embedded in the high-dimensional space. In our
case, this is natural assuming that the signal characteristics are determined by
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the location of the receiver, and that the dependency is smooth. If the possible
locations are constrained to a flat two-dimensional surface, the resulting mani-
fold is then two-dimensional as well. The crux of this approach is maintaining
the pairwise distances between the fingerprints, at least locally, when they are
mapped from the high-dimensional signal space to the low-dimensional manifold.

2.1 Isomap
One of the established manifold learning methods is the Isomap algorithm [21].
Isomap is based on the same principle as multidimensional scaling (MDS) in that,
given a dissimilarity matrix, it tries to find a lower dimensional representation
of the data such that the pairwise distances between the points are distorted
as little as possible. One way to cast this as an optimization problem is to
minimize the sum of squared deviations between the actual distances dX(i, j),
and the distances in the new representation dY (i, j):

min
Y

t∑
i=1

t∑
i=1

(dX(i, j)− dY (i, j))2, (1)

If the original distances, dX(i, j), are Euclidean, MDS reduces to principal com-
ponent analysis (PCA) [3]. Due to space limitations, we omit further details and
refer the interested reader to [7].

Given a set of m-dimensional column vectors X = (x′1, . . . ,x′n), we denote by
D = [dX(i, j)] the matrix defined by their Euclidean distances. Further, we define
B = HDH, where H is the symmetric centering matrix H = In − 1

n 11T , where
1 denotes the all-ones column matrix, and 1T its transpose. This implies that
both the vector and column sums of B are null. Letting B = V ΛV T , where Λ is
a diagonal matrix, be the eigendecomposition of B, we obtain the eigenvectors
as the columns of V , and the eigenvalues as the diagonal elements of Λ. The
reconstruction obtained by using the l ≥ 1 largest eigenvalues, Y = VpΛ

1
2
p is

optimal in the sense of Eq. (1). An important observation is that if we replace
the Euclidean distances dX(i, j) by arbitrary dissimilarity values, which may or
may not satisfy the properties of a valid distance metric, a solution can still be
obtained by setting all negative eigenvalues (if any) to zero.

In the Isomap algorithm, the distances dX(i, j) are obtained by construct-
ing a neighborhood graph where each point xi is connected to its K nearest
neighbors (in Euclidean distance). The length of an edge connecting two points
is defined as their distance, and the distance dX(i, j) between two points (that
need not be neighbors) is then calculated as the sum of edge lengths along the
shortest path connecting them. Applying the MDS algorithm as outlined above
to the resulting distance matrix, yields a low-dimensional representation where
the pairwise distances approximate path lengths along the neighborhood graph.

2.2 Manifold-Based Radio Map Learning
We now describe the application of Isomap in WLAN-based positioning. Con-
sider a sample S = (s′1, . . . , s′n) of fingerprints, each of which is represented as a
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vector si = (si1, . . . , sip) of RSSI values. The length of the vector, p, is defined
as the number of access points (APs) in the WLAN network. The distance ma-
trix X is then given by the Euclidean distance between the fingerprint vectors,
dX(i, j) = ‖si − sj‖2. One of the practical problems that need to be solved is
treating the occasionally unobserved RSSI values that show up as missing entries
in the fingerprint vectors. Since the unobserved values are usually caused by too
weak received signal, one reasonable solution is to replace all missing values by
a small dummy value. In practice, we found that missing values typically result
when the signal power drops below -100 dBm, and hence, we replaced all missing
values by the constant -100 dBm, see [10, 17].

Another technical detail, albeit one that has a dramatic effect on the quality
of the radio map produced by Isomap, is the choice of the neighborhood size,
K. There is no universally good value, as appropriate values are determined
by the variance of the observations perpendicular to the manifold relative to
its curvature, and the sparseness of the available data [18, 20]. For too small a
neighborhood, the neighborhood graph will not properly capture the geodesic
distances on the manifold. Too large a neighborhood, on the other hand, risks
creating “short circuits” that distort the topological properties of the manifold
and make the algorithm unstable.

We propose to solve the neighborhood selection problem by exploiting ad-
ditional information available in a set of fingerprints that are labelled by their
geographical coordinates, which we call the key points. The method we propose
below depends on being able to map points on the manifold onto a geographical
coordinate system; we first describe a method for doing this.

2.3 Calibrating the Manifold to Geographical Coordinates

While the manifold learned by Isomap will reflect the topological structure of the
area from which the data was collected, see Fig. 1a, it will usually not correctly
match its metric properties such as lengths, angles, and curvature, which makes it
unsuitable for positioning. This is corrected in what we call the calibration phase.
We have found that the following very straightforward method is effective.

Assume that we have access to the precise location of nkey fingerprints, which
we can without loss of generality assume to be the first nkey out of the total
sample size of n. We denote the geographical coordinates of these key points
by (g(x)

i , g
(y)
i )1≤i≤nkey . Denoting the manifold coordinates of the fingerprints by

(m(x)
i ,m

(y)
i )1≤i≤n, we map the manifold coordinates to geographical coordinates

via

g
(x)
i = βxm̃′i + ε

(x)
i

g
(y)
i = βym̃′i + ε

(y)
i , (2)

where βx and βy are both parameter vectors of length five, and

m̃i = (1,m(x)
i , (m(x)

i )2,m
(y)
i , (m(y)

i )2), (3)
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a) b)

Fig. 1. a) Manifold discovered by Isomap with the fingerprints on it, and b) the same
manifold calibrated with geographical coordinates of a subset of key points (fingerprints
marked with red stars).

are the regressor variables where we include the constant (intercept) term, both
the manifold coordinates, as well as their squares. Note that the labeling of the
manifold coordinates as x and y has no significance. The parameters βx and βy

can be estimated by the standard least squares technique to minimize the sum
of squares of the respective errors ε(x)

i and ε
(y)
i for the key points 1 ≤ i ≤ nkey.

This provides an efficient way to map any point on the manifold, expressed as
(m(x),m(y)) onto the corresponding geographical coordinates (g(x), g(y)).

Figure 1 illustrates the process. The fact that the squares of the manifold co-
ordinates are involved in Eq. (3) allows non-linear (namely quadratic) mappings,
which is important since there is no guarantee that the correspondence between
the learned manifold and the actual locations is linear. The non-linearity of the
fit is clearly visible in the distortion of the bounding box in Fig. 1b. If a more
generous set of key points is available, it may be useful to consider even more
flexible mappings such as nonparametric regression, see [16].

Finally, we can use the error in the calibration mapping (2) to adjust the
Isomap neighborhood size, K. We do this by trying different values between one
and the total number of fingerprints (minus one), and choosing the one that
leads to the mapping with the smallest error between the embedded key points
and their actual (known) geographical coordinates:

1
nkey

nkey∑
i=1

(
(g(x)

i − β̂xm̃′i)2 + (g(y)
i − β̂ym̃′i)2

)
.

2.4 Positioning

Positioning new fingerprints is relatively straightforward once the manifold has
been learned and calibrated with the key points. There are various ways to map
new fingerprints onto the manifold, and thence to geographic coordinates. We
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Fig. 2. Plot of embedded fingerprints

choose to use the k-nearest neighbors method, selecting the k nearest fingerprints
(not necessarily any of the key points), and then letting the manifold coordinates
of the new fingerprint be given by the average of the coordinates of the selected k
fingerprints. The latter are directly obtained from Isomap output. The resulting
manifold coordinates are then mapped to geographical coordinates, providing the
position estimate, by Eq. (2). A comparison of alternative positioning methods
in combination with manifold approaches is an interesting topic for future work.

3 Deployment and Results

We deployed the system in a real-world office building at the Department of
Computer Science, University of Helsinki. The deployment area covered hall-
ways and an adjoining open space used as a meeting space. The total area of
the environment was about 24 m × 7 m. The data recording, processing, and
most positioning tests were performed with a Samsung NC10 Netbook, running
Ubuntu Linux 9.10, equipped with an Atheros AR5007EG Wireless network
adapter, complying to the 802.11b/g standard. The total number of fingerprints
used for learning and calibrating the manifold was n = 437, of which nkey = 38
were used as key points. We reserved an additional ntest = 66 points for testing
purposes.

The Isomap neighborhood size that was found to minimize the error in map-
ping the key points was 15. This left the average error of 1.9 m. Among the 66
test fingerprints collected separately, the mean positioning error was 2.0 m, and
the median error was 1.5 m. Plotting the calibrated points onto the floor plan,
we can clearly see the shape of the hallway in the mass of points, see Fig. 2. A
majority of the points mapped to the hallway respect the infrastructure. It is
clear that the hallways insulate the WLAN signal and create unique signatures.
The mapping of fingerprints in the open space was not as distinct, however. This
was most likely caused by the lack of attenuating infrastructure, making it hard
to distinguish between the fingerprints from different ends of the space.

We have also carried out experiments in other environments with somewhat
varying results; details are omitted due to space restrictions. Future research will
benefit from an investigation of the factors most affecting the outcome.
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4 Conclusion

We presented a WLAN positioning approach where high-dimensional signal fin-
gerprints are represented as points on a two-dimensional manifold. For the man-
ifold learning phase, we used the Isomap algorithm. Our contributions include
a straightforward method for mapping points on the Isomap manifold to a geo-
graphical coordinate system by taking advantage of a relatively small subset of
the fingerprints whose precise location is known. This also allowed us to choose
the neighborhood size, a central (and only) parameter in Isomap, in a principled
way by minimizing the error in the resulting coordinate mapping.

The main benefits of our method are: more robust estimation of the RSSI
variability due to the lower dimensionality of the estimated model, and even more
importantly, reduction in the effort required to collect measurement data. The
latter feature boosts the cost-effectiveness of the fingerprinting approach both in
terms of initial set-up as well as maintenance, which may finally enable WLAN-
based indoor positioning to become the method of choice for future location-
based services. Exploring the exact tradeoff between the number of labelled
examples (and thus the deployment cost), and accuracy is a most urgent topic
for investigation, which, however, is beyond the scope of this paper.
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