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AbstractÐSome location estimation methods, such as the GPS satellite navigation system, require nonstandard features either in the

mobile terminal or the network. Solutions based on generic technologies not intended for location estimation purposes, such as the

cell-ID method in GSM/GPRS cellular networks, are usually problematic due to their inadequate location estimation accuracy. In order

to enable accurate location estimation when only inaccurate measurements are available, we present an approach to location

estimation that is different from the prevailing geometric one. We call our approach the statistical modeling approach. As an example

application of the proposed statistical modeling framework, we present a location estimation method based on a statistical signal power

model. We also present encouraging empirical results from simulated experiments supported by real-world field tests.

Index TermsÐLocation estimation, mobile terminals, signal propagation, statistical modeling.
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1 INTRODUCTION

LOCATION-AWARE computing is a recent interesting re-
search area that exploits the possibilities of modern

communication technology [6], [9], [14], [17]. Location-
aware devices can be located or can locate themselves,
while, by location-aware services, we mean services based
upon such location technologies. Location-aware comput-
ing has great potential in areas such as personal security,
navigation, tourism, and entertainment. The most obvious
location-based service is the one answering questions like
ªWhere am I?º and ªWhere is the nearest shop/bus-stop/
hospital?º Now that graphical and interactive applications
are technically feasible, it would even be easy to implement
an application that presents a map labeled with a mark
pointing ªYou are here.º On the other hand, location can be
regarded as a filter for the ever-increasing amount of
information available to us every day. For instance, people
probably do not want to know about daily offerings of
supermarkets located hundreds of kilometers away, but
information about the nearby supermarket might be of
interest.

Location information can also be useful for other people

than the user of the location-aware device. For instance,

people want to know where their friends are, companies

want to know where their delivery vehicles are, rescue

officials want to know where injured people are, etc. In the

United States, location-based services and, in particular,

location of the origin of emergency calls have been

considered so important that the service is becoming

obligatory the local network operators. This so-called

Enhanced-911 requirement was scheduled to become

effective in October 2001. Similar actions have been

considered in the European Union as well.

The location of a mobile terminal can be estimated using
radio signals transmitted or received by the terminal [2], [7],
[21], [26]. The problem is called by various names: location
estimation, geolocation, location identification, localization,
positioning, etc. Some location estimation methods, such as
GPS, are based on signals transmitted from satellites, while
others rely on terrestrial communication. Additional costs
to the service provider are minimal in systems based on
existing network infrastructure. However, with devices that
are not designed for location estimation purposes, the
measurements that can be exploited are often scarce. In
many networks, the only thing that is available is the
received signal strength indication (RSSI) value. Conse-
quently, the location estimation accuracy of such a system is
often inadequate for many location services.

Improving the accuracy and applicability of location
estimation systems based on the existing network infra-
structure would be very useful and it is the main motivation
of this work. We focus primarily on cellularÐespecially
GSM/GPRSÐnetworks, but most of the ideas and concepts
are applicable to many other networks where received
signal power or other suitable location-dependent quanti-
ties are available.

One of the most severe problems facing cellular tele-
phone systems is the complex propagation of radio waves
in environments with obstructions, reflecting objects, and
interference from adjacent cells. In order to ensure good
coverage in their cellular networks, operators use so-called
cell planning tools that are based on radio wave propaga-
tion models [19]. Such models use information about the
environment and combine it with knowledge about
phenomena such as signal attenuation, reflection, diffrac-
tion, and interference. The dependency between the
location of the receiver and observable signal properties is
important for location estimation as well. Despite this fact,
the fusion of propagation models and location estimation is
rarely mentioned in the literature.

The common, geometric approach to location estima-
tion is based on angle and distance estimates from which

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2002 1

. The authors are with the Complex Systems Computation Group, Helsinki
Institute for Information Technology, PO Box 9800, FIN-02015 HUT,
Finland. E-mail: {teemu.roos, petri.myllymaki, henry.tirri}@hiit.fi.

Manuscript received 5 Dec. 2001; revised 2 May 2002; accepted 3 May, 2002.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number 13-122001.

1536-1233/02/$17.00 ß 2002 IEEE



a location estimate is deduced using standard geometry.
We will discuss location estimation from a point of view
which is different from the geometric one. In particular, a
location estimation method based on a statistical propa-
gation model will be proposed.1 The basic idea is to
construct a statistical propagation model that describes
the distribution of received signal power at any given
location and to use the model for estimating the mobile
unit's location when the received power is observed. The
proposed approach renders the determination of the
user's location a statistical estimation problem. This
enables the use of a wealth of statistical machinery
designed to handle problems caused by uncertainty and
errors in measurements and missing data.

The paper is organized as follows: In Section 2, we
describe the statistical modeling approach and contrast it to
the geometric approach. A detailed description of a suitable
propagation model is given in Section 3. In Section 4, we
show how the model's parameters can be estimated from
empirical data with the expectation-maximization (EM)
algorithm [12], [18]. Section 5 discusses estimation of
location using the model after the parameter values have
been fixed and some encouraging empirical results are
reported in Section 6. Section 7 concludes and suggests
directions for future research.

2 STATISTICAL MODELING APPROACH

The conceptual development of location estimation methods
has been modest since the ancient Egyptians and Greeks
invented the art of triangulation. The problem has been
mostly considered by engineers familiar with geomatics and,
consequently, amajority of proposed solutions are geometric
in nature. For instance, the Angle of Arrival method is
nothingmore than triangulation. In addition to triangulation-
basedmethods, there are several geometric methods, such as
Time of Arrival and Time Difference of ArrivalÐwhich is
used in the GPS systemÐthat are based on distance
measurements rather than angle measurements. The geo-
metric solutionsworkverywell in ideal conditions.However,
if the signal propagation environment differs significantly
from ideal conditions, the distance or angle measurements
are unreliable. In such cases, serious problems occur because
the various measurements are inaccurate at best, incompa-
tible at worst. Special ad hoc heuristics have to be applied in
order to compensate for these errors.

Here, we take an alternative approach to the location
estimation problem. In this approach, which we call the
statistical modeling approach, signal properties, such as
received power, angle of arrival, and/or propagation delay,
are treated as random variables which are statistically
dependent on the locations of the transmitter, the receiver,
and the propagation environment. Because of this depen-
dency, an observation of the signal properties allows
inferences about the location. A similar idea has been
sketched independently in [16], [30].

The conceptual difference between the statistical model-
ing approach and the geometric approach is clear in the

following sense: In the geometric approach, all the interest

is in mapping measured signal properties to the location.

The same is true in some nongeometric methods also [24].

In contrast to this, the statistical modeling approach

emphasizes propagation modeling, which describes the

dependency of the measured signal properties on the

location variable, i.e., the reasoning proceeds from the

location to the signal properties. The location estimation

problem is then solved as an inverseÐor, rather, inference

Ðproblem, which is the kind of reasoning that is typical of

statistics, in general. In statistical terms, the propagation

model is a sampling distribution whose parametersÐin the

first phase, the propagation parameters and, in the second

phase, the location variableÐwe wish to estimate.
The problem of incompatiblemeasurements is not present

in the statistical modeling approach, unlike the geometric

one, because, no matter how unlikely the obtained measure-

ment results are, they are always possible. Of course, if the

propagation model does not fitl the actual propagation

phenomena and the environment well, the propagation

prediction accuracy and, accordingly, the location estimation

accuracy is poor. However, whereas the only possibility of

enhancing the accuracy of the geometric location estimation

methods is to increase the accuracy of the angle and distance

measurements, this is not the casewithmethods based on the

statistical modeling approach. Their accuracy can be en-

hanced also by switching to another propagation model that

is better suited for predicting the relevant signal properties in

the environment in question. One can even use very

sophisticated propagation modeling techniques, such as ray

tracing or neural networks (see [31]).
Having said this, we note that it is also possible to

combine some of the good aspects of both the statistical

modeling approach and the geometric approach. Namely,

one can use a propagation model for extracting accurate

range or angle estimates and then use these estimates for

geometric location determination. As a prime example,

consider the received signal power: It is impossible to

obtain any range estimates whatsoever without some kind

of a propagation model. A method where ranging is based

on propagation modeling and location determination is

based on geometry has been applied in ad hoc sensor

networks [25]. Such hybrid systems may lead to sufficient

accuracy with very small time consumption.
So-called empirical location estimation methods require

on-site calibration, but their accuracy is usually better than

the one of other methods. There are several empirical

methods for location estimation, such as RADAR [2], Nibble

[8], RadioCamera [15], and the ones developed in the

robotics community (see [28] and the references therein). In

a forthcoming paper [23], we discuss empirical location

estimation and present real-world results from a wireless

local area network (WLAN) trial. In the present paper, we

focus on an instance of the statistical modeling approach

where offsite calibration is necessary to tune the propaga-

tion parameters for the type of environment (rural, urban,

etc.) in question, but no onsite calibration is required.
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3 SIGNAL PROPAGATION MODEL

A propagation model is a mathematical model that predicts
some properties of a radio signal at a given location [1], [10],
[13], [22], [27], [31]. If the ªoutputº of the model is a
probability distribution of the signal's properties, the model
is statistical, as opposed to a deterministic model that gives a
point estimate for each of the predicted properties. Received
signal power, denoted by r, will be used throughout the
paper as the variable quantifying the observed radio signal,
although the approach is applicable to any observable
property or properties of the signal.

3.1 Single Transmitter Model

The so-called log-loss model (termed log-distance in [20])
can be used as a statistical propagation model as long as an
error term with a specified distribution is added. If a zero-
mean Gaussian distribution with a constant variance is used
for the error term, denoted by e, the model is a linear
regression model with three parameters: two regression
coefficients, �0 and �1, which define the mean value of the
received power at a given distance, and the variance of e,
denoted by �2. The mean value of the received power is
given by2

��d; p; �� � p� �0 � �1 ln d; �1�

where d is the transmitter-receiver distance, p is the
transmitted power in decibels, and � denotes the set of
parameters.

The transmitters of cellular networks are often directed
to some direction of transmission to which the transmitted
power is higher than to other directions. Therefore, the log-
loss model can be improved by adding a term which
depends on the deviation between the direction of the
receiver and the direction of transmission. Let the deviation
be denoted by �. The values of � are clearly between zero
and 180 degrees (see Fig. 1).

In addition to the parameters of the log-loss model, the
improved log-loss model has an additional parameter, �2,
that is associated with �. The mean value of r is given by

��d; �; p; �� � p� �0 � �1 ln d� �2� ln d

� p� �0 � ��1 � �2�� ln d:
�2�

It can be seen on the second line of (2) that, if the deviation,
�, is constant, the improved model is identical to the normal

log-loss model with �1 replaced by �1 � �2�. In other words,
attenuation obeys the log-loss model along any straight line
originating from the transmitter. Fig. 2 shows values of �
evaluated using (2).

The distribution of r is Gaussian with the following
p.d.f.:

f�rjd; �; p; �� � 1������
2�

p
�

�

�
rÿ ��d; �; p; ��

�

�
; �3�

where ��x� is just a short-hand notation defined as

��x� �df: exp ÿ 1

2
x2

� �
: �4�

3.2 Multiple Transmitters Model

We have now described how the distribution of the
received signal power is evaluated with respect to one
transmitter. Let us now extend the model to several
transmitters. First, because, in cellular networks, many
channels, each operating on a separate frequency range, are
used simultaneously, there are actually as many received
signal power variables as there are channels. Let rj denote
the received power of channel j and ci denote the channel of
transmitter i. Second, transmitters are classified depending
on their transmission properties and location with respect
to buildings. For instance, the signal received from an
indoor transmitter is usually weaker than the signal
received from an outdoor transmitter at the same distance
because of the attenuation caused by buildings. In order to
take these differences into account, we could use different
parameters for each transmitter type. This modification
would be straightforward, but, for the sake of simplicity, we
do not introduce it here. The details can be found in [29].

If there are two transmitters on the same channel, they
cause interference and it is difficult to predict the resulting
field strength. However, the situations in which two
transmitters on the same channel are close to each other
are intentionally avoided while planning the layout of the
network and, hence, the power received from no more than
one transmitter is likely to be significant. In most cases, a
good approximation is obtained by ignoring all transmitters
except the one whose mean power according to (2) is the
highest at the location in question.
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2. We denote the natural (base e) logarithm by ln .

Fig. 1. The deviation, �, between the direction of transmission and the

direction of the receiver as measured from the transmitter.

Fig. 2. An illustration of the average attenuation evaluated using (2). The

transmitter is located at the center of the area and its direction of

transmission is toward the upper right corner of the area.



Thus, each transmitter i has location, denoted by li,
direction of transmission, denoted by �i, and transmitted
power, denoted by pi. Let gj denote the p.d.f. of the received
power on channel j, given that the measurement is
performed at location l. It is given by the equation

gj�rjl; �� �df: f
ÿ
rjd�l; li�; ��l; li; �i�; pi; �

�
; �5�

where d�l; li� is the distance between locations l and li,
��l; li; �i� is the deviation at location l with respect to a
transmitter located at li and directed to �i. The index i is
chosen so that it maximizes the mean received power:

i � argmaxf i : ci�j g�
ÿ
d�l; li�; ��l; li; �i�; pi; �

�
; �6�

where function � is given by (2). Thus, when the
propagation parameters and the location, channel, direction
of transmission, and transmitted power of the transmitters
are fixed, an estimate of the distribution of the signal
strength rj, for each channel j, is available for every
location. We shall next consider how to deal with the
unknown propagation parameters.

4 ESTIMATION OF PROPAGATION PARAMETERS

In most propagation models, there are some parameters
whose values cannot be derived from the underlying
theory. These parameters are typically somehow related to
the environment and, hence, there are no universally good
values for them. In such cases, it is obligatory to use
empirical data to obtain information about the parameter
values. Note, however, that it is generally unjustified to
assume the existence of some true parameter values, which
are referred to in the following quote:

In many statistics problems, the probability distribution that
generated the experimental data is completely known except
for the values of one or more parameters. [11]

When modeling phenomena as complex as radio wave
propagation, the assumption is certainly incorrect. Instead
of trying to find the ªtrueº parameter values, a more
realistic goal would be to maximize the predictive accuracy.
A reasonable solution, frequently used in statistics, is to use
the maximum likelihood parameters. In the following, we will
show how to obtain the maximum likelihood parameters
for the presented propagation model.

In our case, the propagation parameters are estimated
from data consisting of n measurements of received signal
power, each labeled with the corresponding channel and
location of the receiver. The transmitter information consists
of the already mentioned properties, namely the location,
channel, direction of transmission, and transmitted power
of each transmitter. Based on the data, we need to estimate
the parameters �0; �1; �2, and � of (2) and (3).

As a preprocessing step, the transmitter information is
combined with the received power measurements in order
to produce a table consisting of the following columns:

1. received signal powers, r � �r�1�; . . . ; r�n��,
2. distances between the transmitter and the receiver,

d � �d�1�; . . . ; d�n��,
3. deviations between the direction of transmission and

the direction of the receiver, � � ���1�; . . . ; ��n��, and
4. transmitted powers, p � �p�1�; . . . ; p�n��.

Filling in fields 2-4 requires that the source of each
measured signal is identified, also in cases where there
are several transmitters on the same channel. In such cases,
we assume that the signal is coming from the transmitter
that is nearest to the receiver, although, in principle, (6)
should be used, and these two criteria do not always agree.
This is a deliberate pragmatic choice: Using (6) would
require treating the ambiguous cases as missing data
because �, whose value is unknown, appears in the
equation.

We shall next describe how to obtain maximum like-
lihood estimates (MLEs) of the parameters, or approxima-
tions thereof, from empirical data. First, the simple case
where none of the data is missing is discussed, after which a
solution to the realistic missing data case is presented.

4.1 Maximum Likelihood from Complete Data

Evaluating the MLEs from complete data can be performed
easily by exploiting the fact that what we have is, in effect, a
linear regression model and the standard methods for
solving MLEs for linear regression models can be applied.

Given n fully observed data vectors, r, d, �, and p, the
likelihood, L���, is a product of the conditional p.d.f.s of the
individual observations:

L��� �
Yn

i�1

f
ÿ
r�i�jd�i�; ��i�; p�i�; �

�

�
Yn

i�1

1������
2�

p
�

�

�
r�i� ÿ ��i�

�

�
;

�7�

where ��i� is given by

��i� �df: �
ÿ
d�i�; ��i�; p�i�; �

�
: �8�

The factorization of L��� is based on the assumption that the
variables r�1�; . . . ; r�n� are independent.

The likelihood function can be rewritten as

L��� �
�

1������
2�

p
�

�n

exp

�
ÿSSE

2 �2

�
; �9�

where the sum of squared errors, SSE, is given by

SSE �df:
Xn

i�1

ÿ
r�i� ÿ ��i��2: �10�

Without proofÐone can be found in [11]Ðwe state that
the maximum likelihood estimates3 b�0, b�1, and b�2 are
independent of b� and that they can be obtained by
minimizing SSE. Using matrix notation,4 the solution is
given by

b� �
ÿ
ZT Z

�ÿ1
ZT Y; �11�

where b�, Z, and Y are defined as

b� �df:
b�0
b�1
b�2

2

4

3

5; �12�
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Y �df:
r�1� ÿ p�1�

r�2� ÿ p�2�

..

.

r�n� ÿ p�n�

2

6664

3

7775; �13�

Z �df:
1 ln d�1� ��1� ln d�1�

1 ln d�2� ��2� ln d�2�

..

. ..
. ..

.

1 ln d�n� ��n� ln d�n�

2

6664

3

7775: �14�

Finally, the MLE of � can be obtained from

b� �
���������
SSE

n

r
: �15�

The value of SSE is obtained by fixing the values of the
�-parameters to their MLEs given by (11). Equations (11)
and (15) give us the MLEs of the parameter in closed form
when the data is complete. The somewhat more compli-
cated missing data case is discussed in the next section.

Example 1. Fig. 3 shows an artificial data set containing
66 observations. The path loss values plotted on the
vertical axis are the same values that are contained in
matrix Y. The data was generated by sampling from the
propagation model presented in this section. Table 1
shows the parameters used for generating the data and
the MLEs evaluated using (11) and (15).

4.2 Maximum Likelihood from Incomplete Data

In general, the received power values cannot be directly
observed because of physical restrictions. First, the received
power values have to be binned, i.e., rounded to finite
accuracy. Second, because of sensitivity limitations, the
received power on only some channelsÐthose with the
strongest signalÐis reported. Moreover, in the case of
GSM/GPRS telephones, the received power values of only

six to eight channels are available. The only information
about the other channels is that their received power does
not exceed the power on any of the reported channels. In
such cases, we say that the received power variable is
truncated at a point given by the smallest of the known
values. We will now present a method for handling binned
and truncated variables.

Let the random vector o � o�1�; . . . ; o�n� denote the
observations. For simplicity, we assume that the observa-
tions are labeled in such a way that the first m variables
correspond to binned observations and the nÿm other
ones correspond to truncated observations. Thus, the
relationship between o and r is defined by

o�i� ÿ �
2
� r�i� < o�i� � �

2
for i 2 f1; . . . ;mg

r�i� � o�i� � �
2

for i 2 fm� 1; . . . ; ng; �16�

where the accuracy is determined by �, whose value can be,
for instance, 1:0 dBm.

The likelihood function for incomplete data, LI (the I
stands for incomplete), for an observation vector o is given by

LI ��� �
Ym

i�1

Z o�i���
2

o�i�ÿ�
2

f
ÿ
rjd�i�; ��i�; p�i�; �

�
dr

Yn

i�m�1

Z o�i���
2

ÿ1
f�rjd�i�; ��i�; p�i�; �

�
dr:

�17�

The equation is analogous to the likelihood function for
complete data given by (7). However, it is not straightfor-
ward to derive a closed form solution analogous to the
complete-data solution. Instead, there is a method which
can be used to approximate a local maximum of the
likelihood function from incomplete data, namely the
Expectation±Maximization (EM) algorithm [12], [18].

The EM algorithm can be applied whenever it is possible
to evaluate the expected value of the logarithm of the
complete data likelihood (log-likelihood). In order to
evaluate the expected log-likelihood, we need a probability
distribution for the missing received power values. In the
EM algorithm, the distribution is obtained by fixing the
parameters to some hypothetical values, say �t. The
expectation of the log-likelihood function, denoted by
Q��; �t�, is then evaluated in the expectation step using the
equation:5
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5. The notation E�t denotes the conditional expectation given �t.

Fig. 3. Mean path loss curves obtained from sample data. Small blots represent observed path loss values at varying distances from the transmitter.

The two curves show the mean path loss to the direction of transmissions �� � 0�� and to the opposite direction �� � 180��.

TABLE 1
The Actual Parameter Values Used when Generating

the Data Set of Example 1 and the Corresponding MLEs



Q��; �t� �df: E�t lnL���; �18�

where L��� is the complete-data likelihood, given by (7). In
the maximization step, the parameter values are replaced by
ones which maximize the expected log-likelihood, thus
giving

�t�1 � argmax�Q��; �t�; �19�
where �t denotes the parameters on step t. The algorithm
consists of repeating these two steps, one after the other. It
can be shown that the likelihood of the parameter values
never decreases during an iteration. Thus, if the algorithm
converges, it converges to a local maximum of the like-
lihood function.

It now remains to be shown how to obtain a set of
parameter values from (19). By taking the logarithm of L���,
given by (7), and substituting it into (18), we get

Q��; �t� � E�t

Xn

i�1

"
ÿ 1

2
ln 2�ÿ ln�

ÿ 1

2

�
r�i� ÿ ��i�

�

�2
#

:

�20�

By switching the order of the expectation and sum
operators and taking terms that are independent of r
outside of the expectation, the equation becomes

Q��; �t� �
Xn

i�1

h
ÿ 1

2
ln 2�ÿ ln�

ÿ 1

2 �2
E�t

ÿ
r�i� ÿ ��i��2

i
:

�21�

Further rewriting yields

Q��; �t� � n ÿ 1

2
ln 2�ÿ ln�

� �

ÿ 1

2 �2
SESE;

�22�

where SESE is the sum of expected squared errors given by

SESE �df:
Xn

i�1

E�t

ÿ
r�i� ÿ ��i��2: �23�

The value of � maximizing (22) is given by (see [29] for a
proof)

b� �
ÿ
ZT Z

�ÿ1
ZT Y; �24�

where b�,6 and Z are defined by (12) and (14), and Y is
defined as

Y �df:
E�tr

�1� ÿ p�1�

E�tr
�1� ÿ p�2�

..

.

E�tr
�n� ÿ p�n�

2

6664

3

7775: �25�

Thus, in order to obtain estimates of the �-parameters, we
need to evaluate the expected value of r�i� for each
i 2 f1; . . . ; ng. For binned observations, the expected value
of r�i� is (see [29] for a proof)

E�tr
�i� �

ÿ
��a�i�� ÿ ��b�i��

�
�t������

2�
p

���b�i�� ÿ ��a�i���
� �

�i�
t ; �26�

where � is the cumulative distribution function of a
Gaussian distribution with zero mean and unity variance;
�
�i�
t is the mean received power value according to the log-

loss model with parameters �t:

�
�i�
t �df: �

ÿ
d�i�; ��i�; p�i�; �t

�
; �27�

and a�i� and b�i� are given by

a�i� �df: o
�i� ÿ �

2
ÿ �

�i�
t

�t

; �28�

b�i� �df: o
�i� � �

2
ÿ �

�i�
t

�t

: �29�

Because the value of r�i� is known to be within the range
o�i� � �

2
, its expected value must also be within the same

range. The difference between the exact solution and o�i� is
bound by the equation

��E�tr
�i� ÿ o�i�

�� � �

2
: �30�

Thus, the expectation can be approximated by o�i�.
For truncated observations, the expectation of r�i� is

given by (see [29] for a proof)

E�tr
�i� � ÿ ��b�i�� �t������

2�
p

��b�i�� � �
�i�
t

; �31�

where b�i� is given by (29).
The value of � maximizing (22) is given by (see [29] for a

proof)

b� �
������������
SESE

n

r
: �32�

In order to evaluate SESE that appears in (32), we need a
closed form solution for the expected squared error
E�t�r�i� ÿ ��i��2. For binned observations, it is given by (see
[29]for a proof)

E�t

ÿ
r�i� ÿ ��i��2 �

�2
t

ÿ
a�i���a�i�� ÿ b�i���b�i��

�
������
2�

p
���b�i�� ÿ ��a�i���

� �2
t

� 2 �t

ÿ
�
�i�
t ÿ ��i�� ÿ��a�i�� ÿ ��b�i��

�
������
2�

p
���b�i�� ÿ ��a�i���

�
ÿ
�
�i�
t ÿ ��i��2;

�33�

where a�i� and b�i� are given by (28) and (29) and ��i� is
obtained by using the estimates of the �-parameters given
by (24). A reasonable approximation to (33) is given by
�o�i� ÿ ��i��2 because r�i� is known to be within the range
o�i� � �

2
.7

For truncated observations, the expected squared error is
given by (see [29] for a proof):
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6. The notation b� is used, although strictly speaking, the solution is the
maximizer of Q��; �t�, not the (incomplete-data) likelihood.

7. Such an approximation is, in fact, implicity used every time finite-
precision values are treated as real values. This was the case in the
complete-data case of the previous section.



E�t

ÿ
r�i� ÿ ��i��2 �

ÿ �2
t b

�i���b�i��������
2�

p
��b�i��

� �2
t

ÿ 2 �t

ÿ
�
�i�
t ÿ ��i�� ��b�i��
������
2�

p
��b�i��

�
ÿ
�
�i�
t ÿ ��i��2:

�34�

By looking at (34), one can see that the last two terms can be
ignored if we assume that the difference j��i�

t ÿ ��i�j, i.e., the
difference between two consecutive estimates of the mean
received power is very small. Unless the EM-algorithm does
not converge at all, this is guaranteed to be the case in the
long run.

We now have closed form solutions for the parameters
maximizing (22): (24) for � and (32) for �. By using them, we
obtain the parameters � maximizing (18). This is all that is
needed to solve (19) and, in fact, all that is needed to
perform an iteration of the EM algorithm. To run the
algorithm, in practice, we still need to determine the initial
parameter values �0 and, as EM converges only to a local
optimum, it is obvious that this choice may have a strong
effect on the final result. This issue is not addressed in this
paper, but, for the remainder of the paper, we assume that
the initial parameter values are computed from the
nontruncated observations by using (11) and (15)Ða choice
we have found to work quite well in practice.

Example 2. Fig. 4 shows an artificial data set containing
66 observations, 37 of which are binned, while the
29 other ones are truncated. For truncated observations,
the figure shows the truncation point which is known to
be higher than the unknown path loss value. Table 2
shows the parameters used for generating the data and
estimates obtained with the EM-algorithm. The data set
of Example 2 is the same as the one used in Example 1
with the exception that, in Example 2, some of the
observations are truncated.

The EM algorithm scales efficiently to large data sets. We
generated a data set with 40,320 observations (5,040 binned,
35,280 truncated) with the same parameter values as in
Examples 1 and 2. The algorithm converged in 573
iterations producing parameter estimates �ÿ32:03, ÿ9:73,

ÿ0:0398, 10:00�. Thus, the differences between the actual

values and the ones obtained in Examples 1 and 2 were

mainly caused by the relatively small sample size, not the

estimation method.

5 LOCATION ESTIMATION

Given the estimates of the propagation parameters �̂, the

p.d.f. of the received power on channel j at location l is

given by gj�rjjl; �̂�, where gj is defined by (5). The posterior

p.d.f. of the location variable l is given by the Bayes rule:8

p�ljr; �̂� � g�rjl; �̂� ��l�
R

g�rjl0; �̂���l0�dl0
; �35�

where r is a vector consisting of the received power values

rj for each channel j and g�rjl; �̂� is the likelihood function

given by

g�rjl; �̂� �
Y

j

gj�rjjl; �̂� �36�

and � is the prior p.d.f. of the location variable.
However, (36) is not directly applicable for practical

location estimation purposes if some of the received power

observations are truncated.9 It is not the actual received

power vector, r, that is observed, but the observation vector,

o, whose relation to r is the following:

oj ÿ �
2
� rj < oj � �

2
if j 2 B

rj � oj � �
2

if j 2 T ;
�37�

where B is the set of binned channels and T is the set of

truncated channels and the accuracy of the measurements is

determined by �.
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Fig. 4. Mean path loss curves obtained from sample data. Small symbols represent binned (4) and truncated (+) path loss values at varying

distances from the transmitter. The two curves show the mean path loss to the direction of transmission (� � 0�), and to the opposite direction

8. The application of the Bayes rule might be opposed by some people
who prefer the frequentist statistical theory over its Bayesian correspondent
[4], [5]. The primary concern of the opponent is usually related to the
concept of prior distributions. However, in this case, the results obtained
with frequentist statistical methods would be similar to the ones presented
here, as we will note later.

9. If there are no truncated observations, i.e., all the observations are
binned, (36) is applicable because one can use the center points of the bins
as approximations to the actual values of the received power variables
unless the bins are very wide.



Now that the propagation parameters, �̂, are fixed, the

likelihood function is defined with respect to the location

variable, l, and, thus, the likelihood function is given by

g�ojl; �̂� �
Y

j2B

Z oj��
2

ojÿ�
2

gj�rjl; �̂� dr

Y

j2T

Z oj��
2

ÿ1
gj�rjl; �̂� dr:

�38�

The corresponding posterior p.d.f. of the location variable is

then

p�ljo; �̂� � g�ojl; �̂� ��l�
R
g�ojl0; �̂� ��l0� dl0

: �39�

The denominator of the right-hand side of (39) is

constant with respect to l and, thus, the posterior p.d.f. of

the location variable is proportional to the numerator:

p�ljo; �̂� / g�ojl; �̂� ��l�: �40�

In theory, the location variable might be continuous in IR2.

In that case, no proper uniform prior � would exist.10 In

practice, however, the location variable is always restricted

to some area and, thus, a uniform prior can be used. Of

course, if an informative prior is available, it should be used
instead.

A location estimate is chosen depending on the penalty
function, which defines how different errors are penalized.
Two reasonable estimates are the maximum a posteriori
location, i.e., the location maximizing (40), and the expected
value of the location variable. The latter minimizes the
expected value of the squared error of the location estimate.
If a uniform prior is used, the maximum a posteriori
location is the same as the maximum likelihood estimate of
l, which would probably be the solution preferred by
advocates of the frequentist statistical theory.

No closed form solution for either the maximum
a posteriori value or the expected value is available.
Therefore, one has to resort to some numerical method in
order to obtain an approximate solution. One can, for
instance, discretize the location variable into squares of
fixed size, say 50� 50 meters, and use the center point of
each square to evaluate the distribution of the received
power in that particular square. After discretization, the
maximum a posteriori value can be obtained simply by
going through each of the squares and choosing the value
that maximizes (40). The expected value of the location
variable can be obtained by calculating an average of the
location variable weighted by (40).

6 SIMULATION RESULTS

We have evaluated the empirical performance of the
presented method in a proprietary real-life test case with
two industrial partners. As we are, however, not at liberty
to present the details of that trial, we will, in this paper,
present illustrative examples using an artificial network
layout, shown in the background of Fig. 6. The simulation
environment was designed to correspond to our real-life
test case as closely as possible so that the simulation results
are practically equivalent to the real-world results.

Example 3. Assuming a hypothetical network layout, Fig. 5
shows four examples of the posterior p.d.f. of the
location variable, the resulting maximum a posteriori
location estimate, and the expected value of the location
variable with artificial received power measurement
results. In Fig. 5a, the received power on channel 14 is
known to be ÿ65 dBm and information concerning the
other channels is nonexistent. In Fig. 5b, in addition to
channel 14, the received power on channel 13 is observed
to be ÿ65 dBm. The posterior density is much more
concentrated in Fig. 5b than in Fig. 5a.

Figs. 5c and 5d illustrate the effect of truncated
observations. The measurement data is the same as in
Figs. 5a and 5b, respectively. By comparing, in particular,
Fig. 5a to Fig. 5c, one can see that the truncated
observations can be useful when estimating location;
more posterior probability is concentrated near trans-
mitter 14 because other transmitters should be observed
elsewhere. The location estimates in Figs. 5b, 5c, and 5d
are intuitively sensible because the estimated location is
within the region where the transmitters on channels 13
and 14 are located.
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TABLE 2
The Values of the Parameter Estimates for EM-Iterations 1-25

with the Data Set of Example 2

The algorithm has converged with the precision used in the table by
iteration 25. The actual parameter values used when generating the
data set are shown at the bottom of the table.

10. A prior ��x� is proper if it is nonnegative, ��x� � 0, for all x, and it
integrates to one,

R
��x�dx � 1. A uniform prior ��x� � c, where c is

constant, violates the latter condition unless the range of x is finite.



Example 3 gives an indication of the feasibility of the
statistical modeling approach. However, the most impor-
tant point was still missing because we actually had no
means to evaluate the location estimation accuracy. This
was because there was no correct location to which the
estimate could have been compared. We now present
results from a more complete simulation.

We constructed an imaginative trajectory of a mobile
terminal. In order to obtain received power measure-
ments, we sampled the improved log-loss model pre-
sented above. Parameter values used for sampling were
�ÿ30:00, ÿ10:00, ÿ0:0400, 10:0� (see Table 2). The
presented location estimation method was then used for
location estimation and the location estimates were
compared to the trajectory. The parameter values given
to the location estimation method were the ones actually
obtained with the EM algorithm, i.e., �ÿ32:03, ÿ9:73,
ÿ0:0398, 10:0� (see Section 4.2).

Example 4. Using the same network layout as in Example 3
and an imaginary trajectory, a location estimation
simulation was performed. As the mobile terminal
moved along the trajectory, a sample of received power
measurements, each measurement labeled with the
correct location, was drawn from the improved log-loss
model. The simulated measurements were fed to the
location estimation method described in this work.
Finally, the location estimates (in particular, the expected
value of the location variable, denoted by E in Fig. 5)
were compared to the correct coordinates. For compar-
ison purposes, the same data was also used to measure
the performance of the standard cell-ID location method
in which the location of the transmitter of the channel on
which the highest signal power is received is used as a

location estimate.11 Figs. 6 and 7 and Table 3 present a

summary of the results.

In the simulated test case with the presented location

estimation method, 67 percent of the location errors were

less than 320 meters, the average error being 279 meters. In

our real-life trial, we obtained similar (even somewhat
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Fig. 5. Examples of the posterior p.d.f. of the location variable with sets
of received power observations described in Example 3. Labels indicate

the maximum a posteriori estimate (ªMAPº), and the expected value

(ªEº) of the location varaible. In (d), they are practically identical.

11. To be precise, in the cell-ID method, the location of the serving cell is
used as a location estimate. The transmitter with the strongest signal might
not be chosen as the serving cell if the received power it signals varies
much. However, in most cases, the serving call is associated with the
transmitter with the strongest signal.

Fig. 6. A hypothetical network layout consisting of 64 transmitters. (The
same layout is in the background of both images.) Arrows indicate
direction of transmission and labels indicate channels. The super-
imposed lines correspond to error vectors on an imaginative trajectory of
Example 4. The endpoints of each line are located at the correct and the
estimated coordinates. (a) Location estimated using the statistical
modeling approach. (b) Location estimated using the standard cell-ID
method.



better) accuracy. In the same setting, the corresponding

values for the cell-ID method were 1,262 and 1,092 meters,

respectively. It is possible to further enhance the accuracy

by Kalman filtering or other tracking methods (see, e.g., [3]).

7 CONCLUSIONS

We have presented a statistical location estimation method

based on a propagation prediction model. To conclude, we
shall now repeat the central aspects of our work.

The advantages of the statistical modeling approach
include certain types of flexibility that presented itself in the

present work. In some mobile networks (e.g., GSM/GPRS),

the observations made by a mobile unit in order to be

located are associated with one set of channels whose

received power is known and another set of channels whose
received power is only bounded from above. We called the

latter kind of partial observations truncated. The geometric

approach provides no principled way of exploiting the

information contained in the truncated observations. How-

ever, as we showed, the statistical modeling approach lends

itself easily to exploiting any kind of observations, partial or
complete.

The empirical performance of the presented method has

been evaluated in a real-life environment provided by two

industrial partners. However, as we are not at liberty to

present the details of the proprietary field tests in this

paper, we presented illustrative examples using an artificial

network layout. The simulation environment was designed
to correspond to the real-life environment as closely as

possible so that the simulation results are practically

equivalent to the real-world results. The resulting location

estimation error was approximately 70-75 percent lower

than the location estimation error obtained by the cell-ID
method.

Although the empirical results are already encouraging,
the proposed approach provides a theoretical framework

for developing more sophisticated techniques with even

better accuracy. For instance, the approach is by no means

restricted to the use of received signal power measure-

ments: One could also use angle or timing measurements as
long as the used propagation model is capable of handling

them. The flexibility of the approach also allows the fusion

of different types of measurement results, for instance,

received power and timing information.

The propagation model considered in this work does not

take into account the effect of the heterogeneity of the

propagation environment. Location estimation based on

empirical propagation prediction methods that avoid this

weakness through onsite calibration is another interesting

line of investigation for future research. Our preliminary

empirical results [23] suggest that such solutions produce

very accurate location estimation at the cost of onsite

calibration, whereas the method presented in this paper is

based on a more general-purpose model that is less accurate,

but can be calibrated offsite with very little effort.
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