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Abstract—We study BIC-like model selection criteria. In par-
ticular, we approximate the lower-order terms, which typically
include the constant log

∫ √
det I(θ) dθ, where I(θ) is the Fisher

information at parameter value θ. We observe that the constant
can sometimes be a huge negative number that dominates the
other terms in the criterion for moderate sample sizes. At least
in the case of Markov sources, including the lower-order terms
in the criteria dramatically degrades model selection accuracy.
A take-home lesson is to keep it simple.

I. INTRODUCTION

Many generally applicable model selection criteria such as
the Bayesian information criterion (BIC) [14] and Akaike’s
information criterion (AIC) [1] are large-sample asymptotic
formulas. Consider, for instance, the BIC criterion

BIC(xn ; M) = log
1

p(xn ; θ̂M(xn))
+
dM
2

log n, (1)

where M is a model, xn is a data sample of size n, θ̂M(xn)
denotes the maximum likelihood (ML) parameters, and dM is
the number of free parameters in the model. The BIC is an
asymptotic approximation of the Bayesian marginal likelihood
where the terms independent of n are omitted: this is done
because, first, the lower-order terms depend on the prior
distribution, second, their evaluation is often mathematically or
computationally hard, and third, because the terms depending
on n will eventually begin to dominate.

A particularly important case is obtained by using the
Jeffreys prior

p(θ) =

√
det I(θ)

FII(M)
,

where I(θ) denotes the Fisher information matrix; the normal-
izing factor, which we call the Fisher information integral, is
given by

FII(M) =

∫
ΘM

√
det I(θ) dθ,

where ΘM denotes the parameter space corresponding to
model M. The Jeffreys prior was originally justified by
invariance arguments [6] but it has also been shown to have
several minimax properties [2], [10].

Under regularity conditions on the model class, a more exact
formula for the Bayesian marginal likelihood with the Jeffreys
prior (of which BIC is an asymptotic version) is given by the

following expression (which we decorate with frames as it will
be mentioned several times in what follows):

log
1

p(xn ; θ̂(xn))
+
d

2
log

n

2π
+log FII(M)+o(1). (2)

There are also other model selection criteria that have the
same asymptotic form, for instance, Shtarkov’s [15] normal-
ized maximum likelihood (NML) criterion which is used in the
recent formulations of the minimum description length (MDL)
principle, see [5], [11].

It appears to be generally held that omitting the lower-order
terms (terms independent of n) is bad but often unavoidable,
and that whenever they are available, they should be included.
Consequently, a great deal of work has been done to obtain
as precise approximate formulas as possible; see, e.g., [9]
and references therein. We mention that the factor 2π in the
above criterion has been briefly discussed (without a definite
conclusion) in [3]; see also references therein.

In this work, we study the behaviour FII(M) by means of a
simple Monte Carlo approximation of the NML criterion [13].
This leads to some interesting observations: first, the value
of log FII(M), which appears in Eq. (2), can sometimes
be a huge negative number that dominates all the other
terms for small to moderate sample sizes, and second, quite
surprisingly, the inclusion of the lower order terms in the
criterion dramatically degrades model selection performance
in the case of Markov sources where the task is to identify
the correct model order.

II. A MONTE CARLO APPROXIMATION

We start by introducing the normalized maximum likelihood
(NML) universal model. It involves a normalizing factor that
under suitable regularity conditions is asymptotically given by
the terms following the first one in Eq. (2). Therefore, we can
use the NML model as a means to approximate log FII(M).

Let M = {p(· ; θM) : θM ∈ ΘM} be a model class, i.e.,
a set of probability distributions indexed by parameter(s) θM.
Given a model class, the NML universal model is defined
in terms of the maximized likelihood, p(xn ; θ̂M(xn)) =
maxθM p(xn ; θM):

NML(xn ; M) =
p(xn ; θ̂M(xn))

CMn
, (3)



where the normalizing factor CMn is given by

CMn =
∑
xn

p(xn ; θ̂M(xn)). (4)

The NML model and the normalizing factor CMn have
several interesting properties. The NML model is the unique
minimax optimal distribution in the sense that it minimizes the
worst case regret when the loss is measured using logarithmic1

loss (code length),

max
xn
R(q(·), xn) = max

xn
log

p(xn ; θ̂M(xn))

q(xn)
,

over all choices of the distribution q(·). The worst case regret
of NML is in fact a constant for all xn and it is given
by logCMn . The latter is also the minimax and maximin
regret [17], which makes the quantity interesting in its own
right.

Under regularity conditions on the model class, the negative
logarithm (ideal code length) of the NML distribution is given
by Eq. (2) [10]. Therefore, recalling the definition of NML,
Eq. (3), we have

log FII(M) = logCMn −
d

2
log

n

2π
+ o(1). (5)

Unfortunately, computing the actual value of the normal-
izing factor CMn tends to be infeasible. An important excep-
tion is the linear-time algorithm for the multinomial (i.i.d.)
case [7]. However, from [13], we have a straightforward Monte
Carlo approximation that consists of sampling m data sets
xn1 , . . . , x

n
m from distribution q(·), which acts as a proxy for

NML, and using the importance sampling estimator

1

m

m∑
t=1

p(xnt ; θ̂M(xnt ))

q(xnt )

a.s.−→ CMn as m→∞. (6)

Almost sure consistency as m → ∞ holds for all finite
alphabets.

Intuitively, the idea in the above importance sampling
estimator is to consider |X |−nCMn , where |X | denotes the
cardinality of the source alphabet, as an average (rather
than a sum) over all data sets, of which an approximation
can be obtained by sampling random data sets. The case
q(xnt ) = |X |−n gives the simple (uniform) sample average.
Drawing the random data sets from a non-uniform q does not
affect the mean of the estimator (6) but significantly reduces its
variance if q is appropriately chosen; for more details, see [13].

Finally, we remark that the definition of CMn as a sum over
all possible data sets immediately yields the following uniform
bound

logCMn ≤ n log |X |, (7)

that follows from the obvious fact that the sum of maximized
likelihoods over all data sets cannot be greater than the number
of data sets. While this upper bound may appear trivial, it can
be used to deduce some properties of the lower-order terms in
BIC-like criteria, as we will see in the next section.

1Throughout, we denote base 2 logarithms by log which corresponds to
measuring code length in bits.

III. MARKOV SOURCES

Markov sources are an important model class that has
been extensively studied from both Bayesian and information
theoretic perspectives. The main difficulty in obtaining precise
results concerning the asymptotic behavior of the marginal
likelihood and related quantities is that the regularity condi-
tions employed in many of the known results do not hold at
the boundaries of the parameter space. If the parameters are
restricted to compact subsets in the interior of the parameter
space (i.e., away from the boundaries) the minimax optimal
coding rate is given by Eq. (2) which is also the asymptotic
code length by the mixture with Jeffreys prior as well as NML,
see [16] and references therein.

Jacquet and Szpankowski [9] obtain an expression for
the NML code length that applies uniformly over the full
parameter space. Their formula is similar to Eq. (2) with the
exception of the constant term which they give in terms of
an integral that, however, can be evaluated in closed form
only in the simplest case of first order Markov sources on a
binary alphabet.2 Takeuchi, Kawabata and Barron [16] show
that the NML code length is uniformly bounded from above
by Eq. (2). In contrast, the Bayesian marginal likelihood with
Jeffreys prior is not asymptotically minimax optimal as it fails
to achieve the optimal code length, Eq. (2), for sequences
for which the maximum likelihood parameters are on the
boundary of the parameter space.

For the sake of simplicity, we ignore the issues with the
parameter space boundary in the following, and assume that
the necessary regularity conditions hold for both the mixture
with Jeffreys prior and NML. More careful treatment of the
boundaries will be a topic for future research.

IV. THE FISHER INFORMATION INTEGRAL FII(M)

We now use the Monte Carlo approximation of the NML
normalizer, CMn , for Markov sources to illustrate some fea-
tures of the Fisher information integral FII(M) via Eq. (5). In
all what follows, we use alphabet sizes |X | = 2 and |X | = 4,
which is sufficient to prove our point.

First of all, we reproduce Fig. 1 from [13]. It clearly
shows how the simple upper bound, Eq. (7), tightly squeezes
logCMn down towards zero for the shown models (Markov
order k = 1, . . . , 5) and small sample sizes. Since logCMn and
the corresponding BIC complexity penalty dM

2 log n asymp-
totically differ by a constant, they have the same asymptotic
slope when the sample size is plotted on a logarithmic scale
(as in Fig. 1). As one can see in the figure for k = 5, the
constant appears to be quite large even for relatively simple
models.

2The constant corresponding to log FII(M) in [9] (see their Thm. 3) is
logA1

2 = log 16G ≈ 3.873, where G is the Catalan constant.We note
that a similar result is obtained by Giurcaneanu et al. [4] who, however,
give a slightly different constant, log 8G ≈ 2.873. It would be interesting
to investigate whether this is due to a different definition of the constant—
Jacquet and Szpankowski mainly study actual codes where codeword lengths
are integers—or something else. Our Monte Carlo approximation converges
to 2.873.
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Fig. 1. Estimates of logCMn for alphabet size |X | = 4 and Markov orders
k = 1, . . . , 5 as a function of the sample size n. The red lines connect
estimates of logCMn for each value of k. The solid black curve shows the
upper bound n log |X |, and the blue line shows the BIC complexity penalty
for order k = 5. Note the log-scale for n. Figure source: [13]

To investigate the behavior of log FII(M), we plug in
the estimated logCMn values in Eq. (5) for models of order

TABLE I
ESTIMATED VALUES OF log FII(M) AND OTHER RELATED QUANTITIES

FOR MARKOV SOURCES OF ORDER k = 0, . . . , 10 ON SOURCE ALPHABET
OF SIZE |X | = 2 WITH SAMPLE SIZES n ∈ {104, 105}.

|X | = 2,n = 104

k log FII ∗ d
2
log n

2π
sum ∗ logCn ∗

0 1.647 5.318 6.965 6.977

1 2.873 10.64 13.51 13.53

2 3.514 21.27 24.78 24.82

3 −2.008 42.54 40.54 44.75

4 −5.748 85.09 79.34 79.87

5 −29.96 170.2 140.2 141.6

6 −95.80 340.4 244.6 248.6

7 −260.4 680.7 420.3 431.2

8 −659.8 1361 701.6 736.2

9 −1602 2723 1121 1230

10 −3735 5446 1711 1979

|X | = 2,n = 105

k log FII ∗ d
2
log n

2π
sum ∗ logCn ∗

0 1.647 6.979 8.626 8.633

1 2.873 13.96 16.83 16.84

2 3.514 27.92 31.43 31.43

3 −2.008 55.83 53.83 57.95

4 −5.748 111.7 105.9 106.2

5 −29.96 223.3 193.4 193.2

6 −95.80 446.7 350.9 352.4

7 −260.4 893.3 632.9 638.0

8 −659.8 1787 1127 1139

9 −1602 3573 1971 2013

10 −3735 7147 3412 3517

*) Monte Carlo estimates (4 significant digits)

1, . . . , 10; see the second columns in Tables I and II (the
estimated values are given twice in both tables as they are
independent of the sample size). In the tables, values that are
based on Monte Carlo approximation are reported with four
significant digits to emphasize the fact that they come without
a precise guarantee about their accuracy. We estimated the
log FII(M) values at sample size n = 107 (except for the
three largest models where we used n = 109) for which we
found that Eq. (5) seemed to have converged well enough, and
used m ≥ 1000 Monte Carlo samples in each case; see [13]
for discussion about the convergence rate of the Monte Carlo
estimator.3

Remark 1 (Very large absolute values): The most signifi-
cant observation is that in the case where |X | = 4, the
log FII(M) values quickly become very large in absolute
value as the model order is increased. The tables also give
the second term in Eq. (2), d

2 log n
2π . Comparing the second

and the third columns, we notice that log FII(M) dominates

3For the 0th order (i.i.d.) models, the estimates match those obtained using
an exact formula [7].

TABLE II
ESTIMATED VALUES OF log FII(M) AND OTHER RELATED QUANTITIES

FOR MARKOV SOURCES OF ORDER k = 0, . . . , 10 ON SOURCE ALPHABET
OF SIZE |X | = 4 WITH SAMPLE SIZES n ∈ {104, 105}.

|X | = 4,n = 104

k log FII ∗ d
2
log n

2π
sum ∗ logCn ∗

0 3.293 15.95 19.25 19.27

1 1.876 63.82 65.69 65.95

2 −44.81 255.3 210.5 212

3 −380.7 1021 640.4 656

4 −2319 4084 1765 1888

5 −12 420 16 337 3917 4870

6 −62 050 65 349 3299 10 370

7 −296 900 261 396 −35 500 16 100

8 −1 392 000 1 045 583 −346 400 18 900

9 −6 350 000 4 182 330 −2 168 000 19 800

10 −28 490 000 16 729 322 −11 760 000 19 950

|X | = 4,n = 105

k log FII ∗ d
2
log n

2π
sum ∗ logCn ∗

0 3.293 20.94 24.23 24.25

1 1.876 83.75 85.62 85.7

2 −44.81 335 290.2 291

3 −380.7 1340 959.3 961

4 −2319 5360 3041 3070

5 −12 420 21 440 9020 9320

6 −62 050 85 759 23 710 25 990

7 −296 900 343 035 46 140 64 070

8 −1 392 000 1 372 141 −19 860 123 900

9 −6 350 000 5 488 566 −861 400 172 200

10 −28 494 000 21 954 263 −6 539 000 192 400

*) Monte Carlo estimates (4 significant digits)



the other term for higher order models, so that their sum (the
fourth column in the tables) suddenly dips as the model order
exceeds a certain point.

Remark 2 (Complex models always win): To get some per-
spective on the magnitude of the dip, notice that for the used
alphabet size |X | = 4, the first part of the marginal likelihood
approximation, Eq. (2), is bounded between 0 and 2n since
each observation can always be encoded using log |X | = 2
bits in the worst case. In other words, the higher order models
will always be chosen by the criterion (2) for sample sizes at
least up to 105. No matter what the observed data!

Remark 3 (Exact criterion still works): To see that the
above failure (highest order model is always chosen) is not
inherent to the used criterion (NML or the Bayesian marginal
likelihood), we give the values of the normalizing constant
logCn in the last column of the tables. It is interesting to see
how the sum of the penalty terms in Eq. (2) (fourth column)
is rather a good approximation of logCn for alphabet size
|X | = 2. However, in the |X | = 4 case, the approximation
completely breaks down at model orders k > 5.

From a practical point of view, it appears that the ap-
proximation should only be used for sample sizes that are
unrealistically large in most application domains or for models
so simple that they can be considered trivial. As an example,
for alphabet size |X | = 4 and sample size n = 104, the
approximation assigns a larger penalty (3917 bits) to the
model of order k = 5 than to the model of order k = 6 (3299
bits) even though the former is clearly a subset of the latter!4

The same “inverted complexity penalization” phenomenon
occurs for all models with k > 5 at sample size n = 104

and for all models with k > 7 at sample size n = 105.

V. A MODEL SELECTION EXPERIMENT

To illustrate the practical significance of the above observa-
tions, we conduct a simulation experiment where we compare
the model selection performance of criteria of varying level
of approximation. We include BIC as well as the criterion
based on the Fisher information approximation in Eq. (2) to
gauge the effect the lower-order terms. We also include a
recent sequential variant of NML, called the sequential NML
(sNML) [12], which is much easier to compute than the exact
NML criterion. To implement the Fisher information approx-
imation, we need to resort to Monte Carlo approximation as
explained above. We also tried AIC, which gave results that
were in most cases slightly better than BIC but clearly worse
than SNML (results not shown for the sake of clarity).

Lastly, we also include a theoretical Bayes factor criterion
based on the Bayesian marginal likelihood where the used
prior matches the one used for generating the simulated data
sequences. Such a criterion is clearly not available in practice
because the prior generating the data—the “true” prior, if
such a thing exists at all—is not known. Including it in the
experiment provides a way to get an idea of the hardness of

4For a similar case in the context of psychological models where a simpler
model is assigned higher complexity penalty than a complex one for sample
sizes up to n = 2095, see [8].

the model selection problem in each case, and a yardstick to
which the practical criteria can be compared.

Data was generated by picking a model order between
0, . . . , 10 and drawing all model parameters independently
from Dirichlet distribution Dir( 1

2 ,
1
2 ) in the binary alphabet

case and Dir( 1
2 ,

1
2 ,

1
2 ,

1
2 ) in the case |X | = 4.

Figures 2–3 show the results. The main observation is that
the Fisher information approximation fails except in the binary
alphabet case with sample sizes n ≥ 104. In such cases all
criteria achieve nearly perfect accuracy (with the exception
of BIC for orders k ≥ 9). Note in particular that the results
for order k = 10 where the Fisher information approximation
achieves 100 % accuracy are due to the phenomenon men-
tioned in Remark 2: the criterion simply lead to the choice
of the most complex available model which in this case just
happened to be the correct one.

The well-known under-fitting tendency of BIC is also evi-
dent in that BIC works better than the other criteria only for
model orders k = 1 and k = 2. For alphabet size |X | = 4,
BIC completely fails except for low model orders and large
samples.

VI. DISCUSSION: POSSIBLE ISSUES AND FUTURE WORK

Based on the above observations, we argue that including
the lower-order terms in BIC-like model selection criteria is
harmful. This may or may not come as a surprise: On one
hand, more refined approximations of criteria tend to behave
more similarly to the exact versions than coarse approxima-
tions, which would suggest that including the lower-order
terms is beneficial. On the other hand, some of the models we
use (Markov sources of order 1–10) have an exorbitant number
of parameters (e.g., with alphabet size |X | = 4, order k = 8,
the number of parameters is d = 196608) which suggests
that any approximation even at sample size n = 105 < d is
likely to be inaccurate. Still, the fact that using BIC, which
is a very coarse approximation, works much better than the
more refined Fisher information approximation is somewhat
surprising. In any case, we emphasize the necessity to be
careful when applying any approximation (such as BIC) when
in problems with large d and small n.

There are a couple of potential weaknesses in this work.
First, the Fisher information approximation of the Bayesian
mixture with Jeffreys prior, Eq. (2), does not hold for Markov
sources when the parameters are not bounded away from the
boundaries of the parameter space. Hence, the asymptotics
may be somewhat different for strings for which the maximum
likelihood parameters converge onto the boundaries. While
such cases may be exceptional in many model classes, in
Markov sources they in fact become more and more typical
as the model order increases.

Regarding other model classes, we are unaware of how
easily the break-down of the Fisher information approximation
occurs, and whether it pertains to situations where the data
is continuous. Hence, the generalizability of our results is
presently unknown. A similar earlier result [8] suggests that
that the problem may in fact be more a rule than an exception.
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Fig. 2. Model selection experiment. Model orders k = 0, ..., 5. Bars show percentage of correctly identified model order for four different criteria as a
function of sample size (n ∈ {10, 102, 103, 104, 105, 106}). Alphabet size is X| = 2 on the left, and |X | = 4 on the right. Criteria are FIA: Fisher
information approximation, Eq. (2), BIC: Eq. (1), SNML: sequential NML [12], BF: ideal Bayes factor (Bayesian marginal likelihood with “true” prior).
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Fig. 3. Model selection experiment. (cont’d from Fig. 2): Model orders k = 6, ..., 10.



In future work, we plan to extend this work to other
practically relevant model classes such as context tree models.
It will also be interesting to consider whether it is possible
to construct a correction term to compensate for the error in
the Fisher information approximation; in other words, whether
the o(1) term in Eq. (2) could be broken down to obtain an
accurate approximation also for small sample sizes.

VII. CONCLUSION

Keep it simple.
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[7] P. Kontkanen and P. Myllymäki, “A linear-time algorithm for computing
the multinomial stochastic complexity,” Inform. Process. Lett., vol. 103,
no. 6, pp. 227–233, 2007.

[8] D. Navarro, “A note on the applied use of MDL approximations,” Neural
Comput., vol. 16, no. 9, pp. 1763–1768, 2004.

[9] P. Jacquet and W. Szpankowski, “Markov types and minimax redundancy
for Markov sources,” IEEE Trans Inform. Theory vol. 50, no. 7,
pp. 1393–1402, 2004.

[10] J. Rissanen, “Fisher information and stochastic complexity,” IEEE Trans
Inform. Theory vol. 42, no. 1, pp. 40–47,1996.

[11] J. Rissanen, Information and Complexity in Statistical Modeling,
Springer, 2007.

[12] J. Rissanen and T. Roos, “Conditional NML universal models,” in
Proc. 2007 Information Theory and Applications Workshop, IEEE Press,
pp, 337–341, 2007.

[13] T. Roos, “Monte Carlo estimation of minimax regret with an application
to MDL model selection,” in Proc. 2008 IEEE Inform. Theory Workshop,
IEEE Press, pp. 284–288, 2008.

[14] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol.
6, pp. 461–464, 1978.

[15] Y. M. Shtarkov, “Universal sequential coding of single messages,” Probl.
Inform. Transm., vol. 23, no. 3, pp. 3–17, 1987.

[16] J.-I. Takeuchi, T. Kawabata and A. R. Barron, “Properties of Jeffreys
mixture for Markov sources,” IEEE Trans. Inform. Theory, vol. 59, no.
1, pp. 438–457, 2013.

[17] Q. Xie and A. R. Barron, “Asymptotic minimax regret for data com-
pression, gambling, and prediction,” IEEE Trans. Inform. Theory, vol.
46, no. 2, pp. 431–445, 2000.


