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Abstract—TFitts’ law is a fundamental tool in measuring the
capacity of the human motor system. It measures information
throughput in terms of the tradeoff between the speed and
accuracy of aimed movements. However, it is, by definition,
confined to prescribed stimulus-response conditions and it leaves
out complex skilled performance produced irrespective of the
environment. We revisit the information-theoretic basis of Fitts’
law with the goal of generalizing it into unconstrained movement.
The proposed new metric is based on a subjects ability to
accurately reproduce a movement pattern. It can accommodate
recorded movement of any duration and composition, and in-
volving contributions of any part(s) of the body. We demonstrate
the metric by analyzing publicly available motion capture data.
Possible applications include human-computer interaction, sports
science, and clinical diagnosis.

Index Terms—Fitts’ law, information capacity, stochastic com-
plexity, human motor system, human-computer interaction

I. INTRODUCTION

The purpose of the human motor system is to transform
electro-chemical signals in the nervous system into physical
movement. The dominant paradigm for studying the informa-
tion capacity of the human motor system is based on the
pioneering work by Paul Fitts in the 1950s [6], [7], [16].
Its primary application is the analysis of user interfaces in
human-computer interaction (HCI) [10], [15], [17]; it was,
for instance, one of the main drivers in the development and
adoption of the computer mouse [3].

Fitts was interested in aimed movements; i.e., movement
where a pointer (finger, eye fixation, arm, mouse cursor etc.)
is moved on top of a spatially expanded target. A good
example is moving mouse cursor on top of a button on a
computer display. Fitts’ law describes the observation that
the relationship between movement time M7T and spatial
characteristics of the required movement is usually very well
characterized as:

D
MT = bl 1+ — 1
vonon(1:2). o

where D is the distance from the starting point to the center
of the target and W is the width of the target; a and b are
empirical parameters that depend on features of the pointing
device and the task. MT is typically measured in an empirical
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procedure involving rapid responses to spatial targets with
experimenter-controlled characteristics.

The information-theoretic basis of Fitts’ law is centered
around the tradeoff between the speed and accuracy of move-
ments produced by the motor system. In information-theoretic
terms, the capacity of the motor system as a channel of
communication is limited by this tradeoff. It is important
to note that measuring only the speed of movements is not
sufficient because, as Fitts points out,

“ [s]ince measurable aspects of motor responses,
such as their force, direction, and amplitude, are
continuous variables, their information capacity is
limited only by the amount of statistical variability,
or noise, that is characteristic of repeated efforts to
produce the same response. “ [6]

The information theoretic interpretation of Fitts’ law [6],
[7], [91, [16], [17], where the information throughtput is
defined by the channel capacity, has been immensely popular
since it enables the comparison of performance across situa-
tions with different characteristics. The index of performance
(IP) defines the information throughput in units of bits per
second (bps):

IP =1/b. 2)

IP is argued to be a good metric because it stays relatively
constant over a broad range of target characteristics [15], [17],
providing a natural basis for comparison of pointing devices.
The mouse, for example, typically reaches ca. 4 bps, and
joystick ca. 2 bps [15].

The motivation for the present work is that we believe
that important aspects of the information potential of human
motor system are not covered by the Fitts’ law paradigm,
and that consequently, the capacity of human motor system
is systematically underestimated. Fitts’ law, by definition, is
constrained to aimed movements in target conditions pre-
scribed by the environment. This leads to three shortcomings.
Firstly, the “information” that is measured is tantamount
to the subject’s ability to motorically conform to extrinsic
constraints, excluding entirely action, i.e., action produced
irrespective of its absolute position in respect to perceivable
environmental constraints. Such movements are important
in many skilled activities, such as conducting and dancing.
The issue of underestimation is exacerbated by the empirical



paradigm, which utilizes very simple repetitive movements
with simple trajectories. Seconly, Fitts’ law does not account
for information in simultaneous movement of multiple body
parts (for an exception, see [12]). There are 640 muscles,
200-300 joints, and 206 bones in the human body. Obviously
we are not able to independently control each of them, but
some separation is possible; for instance, the thumb and
the index finger can be moved relatively independently of
each other and the three other fingers [8]. Thirdly, most
skilled activities involve compound tasks, with multiple aimed
and other types of movement performed simultaneously and
sequentially. Due to these three limitations, we argue that the
Fitts’ law paradigm is not suitable for the study of skilled
motor action in unconstrained domains; i.e., precisely the ones
that can be expected to contain the most information!

Extending Fitts’ definition, we define information capacity
in terms of the ability to accurately reproduce any previously
performed movement pattern. An infant is a good example.
At any moment in time, the infant’s movement can appear
complex, but the fact that he or she cannot reproduce it at
will means that the motor system lacks information capacity.

Our formulation is based on subjects performing arbitrarily
complex un-prescribed movements; Fitts’ paradigm, involving
only experimenter-defined pointing tasks, is a special case.
The formulation can accommodate movement of any duration
and composition and involving contributions of any part of the
body.

The rest of the paper is organized as follows. In Sec. II,
we describe a measure of shared information between two
movement sequences.! The data and the preprocessing steps
are detailed in Sec. III, and the results of the experiments are
summarized in Sec. IV. To conclude, in Sec. V we discuss
potential applications and outline future work.

II. INFORMATION MEASURE

To quantify the information capacity, it is necessary to
separate the controlled aspects of the performed sequence of
movements from the unintentional aspects that are unavoid-
ably present in all motor responses. As discussed above, the
strictly defined range of admissible performances in Fitts’
paradigm has a similar function: it rules out apparently com-
plex, uncontrolled (random) sequences of movements. Instead
of restricting the allowed movements, we propose to solve
this task by having a sequence repeated as exactly as possible
by the same subject. This makes it possible to obtain an
estimate of the variability of the two patterns, and subtract
the complexity (entropy) due to it from the total complexity
of the repeated performance. In other words, information is
measured by two aspects of the performance: 7) the complexity
of a movement pattern, and 4:) the precision with which it can
be repeated.

For simplicity, we start by treating the one-dimensional case
where movements are characterized by a single measurement

IThe R code required to implement our method is available at http://www.
cs.helsinki.fi/teemu.roos/R/infocapacity.R.

per time frame. Let x = z_4,...,2, denote a sequence
where z; gives the value of the measured feature at time
t € {—1,...,n}. We start the sequence from z_; instead of
x1 for notational convenience: the first two entries guarantee
that an autoregressive model with a look-back (lag) of two
steps can be fitted to exactly n data points.

In order to define the complexity of x, we fit a second-order
autoregressive model

xy = Bo + Prxi—1 + PBoi—2 + €, 3)

where 3y, 81, B2 are real-valued parameters to be tuned using
least squares, and ¢; are assumed to be zero mean i.i.d.
Gaussian errors. The second-order model accounts for the
basic physical principle that once the movement vector (in-
cluding direction and velocity) is specified, constant movement
contains no information whatsoever. The complexity of x is
determined by the residuals

re=ar — & = x¢ — (Bo + Prxe_1 + Paxi_a),

where 2, denotes the predicted value based on the least squares
estimates Bo,Bl,BQ.

To quantify the complexity, we apply the classic two-part
approximation of Rissanen’s stochastic complexity [13]:

SC(x) = glogg (2me6?) + glogz n, 4)

where 62 = >°1" r?/n is the residual variance and k =
4 denotes the number of parameters, including the variance;
log, denotes the binary logarithm. The first term, which is
equal to n times the differential entropy of a Gaussian density
N(0,6?), can be interpreted as the ideal code-length of the
residual sequence under the fitted model, see [4]. The second
term, which increases with model complexity (measured by
the number of parameters), will act to balance the complexity
of the model and its ability to fit the data, see also [5].

In order to obtain a meaningful measure of the extent to
which the sequence x is controlled, we consider a second
sequence y = ¥1, . - - , Yn, of the same length as x. The idea is
that if sequence y is similar enough to x, we can improve the
fit of the simple autoregressive model, Eq. (3), by including
the ¢’th observation of y as a regressor in addition to x;_1
and x;_o:

Ty =10 + MTr—1 + N2 + N3yt + €4, ®)

where 19, ...,ns are real-value parameters, and ¢; are again
zero mean i.i.d. Gaussian errors.

We denote the residuals remaining after a least squares fit
by

st = o — Ee(Ye) = x¢ — (Mo + M1 + NoXr—2 + N3Ye),

where #4(y:) is the predicted value taking into account the
side-information ;. The stochastic complexity of x condi-
tioned on y is given by

!

. k
SC(x| y) = 5 logy(2mes™(y)) + 5 logym,  (6)



where 62 (y) denotes the residual variance of the residuals s;;
we now have k&’ = 5 due to the additional parameter in the
model compared to Eq. (3).

The difference between the stochastic complexity SC'(x),
and the conditional complexity SC(x | y) gives the shared
information® of x and y:

Sl(x;y) = SC(x)—-S5C(x|y)

n &2 1
= —1 — =1 7
2 089 <0A_2(y)> + 2 ogmn, ( )

where the last terms is due to the additional parameter, k' =
k + 1. Unlike the differential entropy, the shared information
has a direct interpretation in terms of the reduction in bits
required to encode the sequence x due to the side information
y being available. Since the shared information in x and
y excludes, with high probability, most of the uncontrolled
movements and inaccuracies, we argue that it provides a
measure of the controlled information in x. To achieve high
shared information, a movement has to be both complex and
accurately controlled so that it can be repeated with precision.
Finally, we define the throughput in a sequence x condi-
tioned on sequence y as the shared information per second:
y):RS_I'(x,y)7 )

TP(x |
n
where R denotes the frame rate (frames per second).

To handle k-dimensional sequences, where each time frame
x; is composed of k& measured components (features), z; =
(@M, 2™, we simpl he shared information of

LTy ), ply sum up the shared information o
each of the components separately. We note that this is likely
to exaggerate the throughput as redundant information that
is contained in more than one component is counted several
times. Hence, the present formulation can only be expected to
yield results that are qualitatively consistent (see Sec. IV). In

future work, we plan to explore ways to correct this bias.

III. DATA AND PREPROCESSING

In order to study unconstrained performances without limit-
ing ourselves to specific tasks or parts of the body, we consider
motion capture data. Motion capture data is typically obtained
by recording a subject by a set of cameras, and using special-
purpose image processing technologies to convert the recorded
video into variables such as locations and angles of joints
(wrists, elbows, shoulders, waist, knees, etc).

For a proof-of-concept study, we downloaded all the 20
motion capture sequences in the category Subject #5: modern
dance from the CMU Motion Capture Library?, see Table I and
Fig. 1. Some of the sequences are seemingly more complex
than others, and some pairs of sequences are similar enough

2Clearly, the shared information is closely related to mutual information,
I(x ; y) = h(x) — h(x | y), where h(-) denotes the (differential)
entropy. However, even if the two concepts are fundamentally similar, it is
important to note that the shared information is not necessarily symmetric in
the two arguments, can be negative, and lacks other key properties of mutual
information.

3 Available at http://mocap.cs.cmu.edu. The Library was supported by NSF
EIA-0196217.

TABLE I
SUMMARY OF THE DATA USED IN THE EXPERIMENTS. SEQUENCES
REFERRED TO IN SEC. IV ARE EMPHASIZED.

# LABEL n
1 walk 598
2 expressive arms, pirouette 1123
3 sideways arabesque, turn step, folding arms 434
4  sideways arabesque, folding arms, bending back 1199
5

quasi-cou-de-pied, raised leg above hip-height, jete en 915
tourant

6 cartwheel-like start, pirouettes, jete 885
7 small jetes, attitude/arabesque, shifted-axis pirouette, turn 1191
8 rond de jambe in the air, jete, turn 721
9 glissade devant, glissade derriere, attitude/arabesque 1143
10 glissade devant, glissade derriere, attitude/arabesque 817
11 sideways steps, pirouette 591
12 arms held high, pointe tendue a terre, upper body rotation 1354
13 small jetes, pirouette 1095
14 retire derriere, attitude/arabesque 642
15 retire derriere, attitude/arabesque 540
16 coupe dessous, jete en tourant 525
17 coupe dessous, grand jete en tourant 1043
18  attitude/arabesque, jete en tourant, bending back 1829
19  attitude/arabesque, jete en tourant, bending back 860
20  attitude/arabesque, jete en tourant, bending back 1095

to be considered repetitions of one another. Intuitively, it is
expected that the most accurate repetitions of complex pat-
terns reach the highest throughput values. The sequences are
recorded at frame rate 120 per second. For each frame, the data
contains the measured angles of 62 different angle features,
derived from 40 infrared cameras. We removed features with
zero or nearly zero variance (features 1,3,25,26,34,37,38,46)
in order to avoid indeterminacies in the fitting process.

The inherent problem in predicting one motion sequence by
another is the possible (and very common) misalignment of
the sequences in time. Usually, even very carefully repeated
movements are slightly out of synchronization, and hence
when predicting the ¢’th frame of sequence x, the most useful
frame of sequence y may not be the ¢’th frame but the ¢t +§’th
one with § # 0. Therefore, it is necessary to align the two
sequences to obtain a better synchronization.

We aligned each pair of sequences in the data set by
applying Canonical Time Warping (CTW)* [18], a state-of-
the-art technique for aligning sequences describing human be-
havior. CTW uses the more traditional Dynamic Time Warping
(DTW) [11] as an initial solution but improves it by adopting
features from Canonical Correlation Analysis (CCA) (see [2]).
This allows alignment based on a more flexible concept of
similarity than usually used in DTW. Since the implementation
provided by the authors (of [18]) had problems handling all
the features, we based the alignment on the first 25 features
which seemed to capture the synchronization properties of the
signals sufficiently well.

The result of a pairwise alignment of two sequences, with
possibly different lengths, is a new pair of aligned sequences
whose lengths are equal, such that each frame in one sequence
matches as well as possible with the same movement (similar

4Matlab code is available at www.humansensing.cs.cmu.edu/projects/
ctwCode.html.
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Data from the CMU Motion Capture Library. TOP-LEFT: An example of a motion capture situation on video. TOP-RIGHT: The plotted sequences of

two motion capture sequences after alignment — note the constant stretch in the first 150 frames of the lower sequence caused by the alignment. BOTTOM:
Three examples of animated motion capture sequences (unaligned). Each figure shows a frame at rate three frames per second, see Table I.

measured features) in the other. To achieve this, the CTW
algorithm duplicates some of the frames in each sequence so
as to “slow down” the sequence in question at suitable points;
see the example in Fig. 1. When measuring the throughput,
we skip the duplicated frames in order to avoid unnecessarily
magnifying their impact. Hence, if frame ¢ is duplicated in
sequence x so that in the aligned sequence, x’, frames ¢ and
t + 1 are identical, we skip the ¢ + 1’th frame (of both x’ and
y’) when evaluating the throughput, Eq. (8). The sequences
were also normalized so that each feature has mean zero and
unit variance.

An unwanted consequence of the use of alignment methods
in preprocessing the motion capture data is the loss of timing
information. Clearly, a significant amount of controlled infor-
mation are required for timing the motor responses. Working
with aligned sequences, there is no way to measure the
accuracy to which the repeated performance is synchronized
with the original performance. One possibility is to examine
the alignment itself to see how much information is required
to bring the two sequences in close agreement, and to add this
information to the information content due to spatial accuracy.

IV. RESULTS AND DISCUSSION

Of all the pairwise throughput values, C'(x | y), the highest
one, 103 bits per second (bps), is obtained for sequence

15 conditioned on sequence 14, see Fig. 1. Their similarity
is easily confirmed visually from the video recordings and
the animated reconstructions available in the CMU Motion
Capture Library. The second and third highest values are
achieved respectively by sequence 3 conditioned on sequence
4 (36 bps), and sequence 18 conditioned on sequence 19 (29
bps). The fourth highest value, 14 bps, is obtained by the
same pair as the highest value, in the other order, sequence 14
conditioned on sequence 15. In all cases, the similarity is can
be visually confirmed from the video or animation sequences.
The remaining values are all clearly below 10 bps, and in fact,
most of them are negative’. This is reasonable since most of
the sequences cannot be considered as being repetitions of the
others at all.

The maximum throughput value, 103 bps, is very likely to
be overestimated due to reasons discussed in Sec. II. However,
the relative magnitude of the values appears to consistently
reflect the similarity of the sequences. One thing that stands
out in the results is the tendency of shorter sequences to

5Negative values are possible due to the second term, = log, 1, in Eq. (7).
In terms of the Minimum Description Length (MDL) Principle [5], [13], this
would be taken to indicate that the model without y: as one of the independent
variables, Eq. (3) is superior to the model that includes y:, Eq. (5). This
is equivalent to model selection using the Bayesian Information Criterion
(BIC) [14].



achieve higher throughput. This requires further study but it
is likely explained, at least to some extent, by the higher
information content per second in more rapid performances.
In this light, it is even more curious that for the pair 18-
19 the longer sequence (18) achieves a significantly higher
throughput.

The data we used in our experiment serves to provide
a proof-of-concept, even though the data we used was not
specifically designed for our purpose. The pairs of sequences
for which the throughput values turn out to be non-negligible
(and non-negative) are clearly very similar. In the future, we
will collect data by having subjects repeat performances as
accurately as possible, thus maximizing the shared information
between the movement sequences. Subjects whose information
capacity is expected to be exceptional are of specific interest:
on one hand, artists and athletes, and on the other hand,
children, elderly people, and people with disabilities.

V. CONCLUSIONS AND FUTURE WORK

The experiment we have described demonstrates the
main idea in our framework, i.e., extending the prevailing
information-theoretic framework to allow completely uncon-
strained movements, and thereby, to determine the maximum
of the achievable information capacity. Motion capture data
provides the best way to characterize such movements in a
way that does not rule out any potentially informative aspects
in them.

That said, it will be interesting to compare the capacity
estimates obtained by other methods, such as pointing devices
(the traditional tool in Fitts’ paradigm), data gloves, etc., and
to see if the earlier results are replicated. For instance, it
is interesting to see if more information can be extracted
from Fitts’ original reciprocal pointing task by recording the
movements by a data glove or motion capture: the question is
whether the path along which the hand operating the pointer
moves between the two targets carries additional information
beyond the information provided by the end-points, and if yes,
how much.

The formalism we presented is one specific way to measure
the amount of controlled information in movement sequences.
Other, probably more accurate measures can be derived by
applying state-of-the-art universal modeling techniques, see
e.g. [5] and references therein. More specifically, it is neces-
sary to handle the correlations between the different features,
as pointed out in Sec. II. This will also tell us how much in-
dependent (non-redundant) information can be simultaneously
expressed by different parts of the motor system. Likewise,
a method to take into account higher level regularities, such
as repetitions, in the movement sequences. Compression algo-
rithms such as Lempel-Ziv encoding may be helpful in this
task.

Finally, achieving the goal of constructing a complete and
reliable measure of information capacity will lead to a wealth
of useful knowledge about the human motor system. We are
currently carrying out preliminary experiments with several
categories in the CMU Motion Capture Library, such as those

related to various sports (football, basketball, American foot-
ball). It will be exciting to be able to, even in principle, answer
questions like: who expresses most controlled information,
a ballet dancer performing Swan Lake, an expert pianist,
or Lionel Messi dribbling through the defence lines®. More
concrete utility is to be seen, for instance, in the study of
novel human-computer interfaces that involve free whole-body
expression. Possible applications in sports science include
training of complex motor schemas with reference models.
Potential new diagnostic tools based on monitoring changes
in the information capacity of the motor system may offer
great societal value through early identification of neurological
disorders related to motor dysfunction and in monitoring
recovery of neuroplasticity after lesions.
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SEspecially the latter performance, of course, is never exactly repeated as a
whole. The performance is, nevertheless, composed of smaller units that are
likely to stay the same or very similar over different repetitions.



