
Monte Carlo Estimation of Minimax Regret with
an Application to MDL Model Selection

Teemu Roos
Department of Computer Science
University of Helsinki, Finland

teemu.roos@cs.helsinki.fi

Abstract— Minimum description length (MDL) model selec-
tion, in its modern NML formulation, involves a model complexity
term which is equivalent to minimax/maximin regret. When the
data are discrete-valued, the complexity term is a logarithm
of a sum of maximized likelihoods over all possible data-sets.
Because the sum has an exponential number of terms, its
evaluation is in many cases intractable. In the continuous case,
the sum is replaced by an integral for which a closed form is
available in only a few cases. We present an approach based
on Monte Carlo sampling, which works for all model classes,
and gives strongly consistent estimators of the minimax regret.
The estimates convergence almost surely to the correct value
with increasing number of iterations. For the important class of
Markov models, one of the presented estimators is particularly
efficient: in empirical experiments, accuracy that is sufficient for
model selection is usually achieved already on the first iteration,
even for long sequences.

I. I NTRODUCTION

The stochastic complexity of a sequence under a given
model class is a central concept in the Minimum Description
Length (MDL) principle [1], [2], [3], [4]. Its interpretation
as the length of the shortest achievable encoding makes it
a yardstick for the comparison of different model classes.
In recent formulations of MDL, stochastic complexity is
defined using the so called normalized maximum likelihood
(NML) model, originally introduced by Shtarkov [5] for data
compression; for the role of NML in MDL model selection,
see [3], [4], [6], [7], [8].

Since the introduction of the NML universal model in the
context of MDL, there has been significant interest in the eval-
uation of NML stochastic complexity for different practically
relevant model classes, both exactly and asymptotically. For
discrete models, exact evaluation is often intractable since
it involves a normalizing coefficient which is a sum over
all possible data-sets. For continuous cases, the normalizing
coefficient is an integral which can be solved in only a few
cases. Under certain conditions on the model class, different
versions of stochastic complexity (which include two-part,
mixture, and NML forms) have the same asymptotic form —
the so called Fisher information approximation, see e.g. [4],
[6], [7] However, for small data-sets and for model classes that
do not satisfy the necessary conditions, the asymptotic form
is not accurate [9].

Exact and computationally tractable formulas are rare:
results for multinomial models are given in [10], and for
Bayesian networks with structural restrictions in [11], [12],

[13]; more references can be found in [3] and [4]. Similarly to
the present work, in the context of structural equation models,
Preacher et al. [14] estimate the normalizing coefficient by
sampling random data-sets from a uniform distribution using
Markov chain Monte Carlo (MCMC) methods. Navarro [15]
and Giurc̆aneanu and Rissanen [16] use Monte Carlo methods
to estimate a Fisher information integral involved in the
asymptotic expansion of NML stochastic complexity (see
Sec. II). Kim et al. [17] use MCMC to quantify the complexity
of connectionist models in terms of the number of different
data patterns they can reproduce. Lafferty and Wasserman [18]
estimate minimaxrisk (instead of the regret) using an MCMC
version of the Blahut-Arimoto algorithm.

The contribution of this paper is to present estimators
of the normalizing coefficient in the NML model, which is
equivalent to the minimax and maximin regret (see Sec. II
below). The estimators are Monte Carlo estimators based
on sampling of random data-sets from suitable distributions.
They are shown to be (strongly) consistent in the sense that
they can be made arbitrarily accurate by sampling more and
more random data-sets. Our work differs from earlier work
by giving provably consistent recipes for estimating the NML
normalizing coefficient for general model classes directly, and
not through asymptotic expansions.

In Sec. II we review some basic properties of the well-
known NML model. Three general Monte Carlo methods
applicable to the estimation of complex sums and integrals
are briefly introduced in Sec. III. In order to demonstrate
the applicability of our methods, we apply them to the class
of Markov models (Sec. IV), and present some experimental
results (Sec. V).

II. NORMALIZED MAXIMUM L IKELIHOOD (NML)

Let xn = (x1, . . . , xn) ∈ Xn, n ∈ N be a sequence. We
consider a model classM = {p(· ; θ) : θ ∈ Θ}, i.e., a set of
probability mass or density functions over sequences inXn.
We denote the maximum likelihood parameters byθ̂(xn). The
ML parameters do not have to be unique – in fact the model
does not even have to be parametric – since we will only use
the maximized likelihoodp(xn ; θ̂(xn)).

The celebratednormalized maximum likelihood(NML) uni-



versal model [5], [6] is given by

pNML(xn) =
p(xn ; θ̂(xn))

Cn
, Cn =

∑

xn∈Xn

p(xn ; θ̂(xn)) ,

where the sum is over all possible sequences of lengthn, and
Cn is a normalizing constant ensuring that the result is indeed
a probability mass function. In the continuous case, the sum
is replaced by the corresponding integral. The NML model is
the unique minimax optimal universal model in the sense that
it minimizes the worst-case regret

max
xn

R(p, xn) = max
xn

log
p(xn ; θ̂(xn))

p(xn)
.

In fact, it directly follows from the definition that the regret
of NML is a constant dependent only on the model class and
the sample sizen:

R(pNML, xn) = log Cn = min
p

max
xn

R(p, xn) .

For some model classes, the normalizing coefficient is finite
only if the range of the data is restricted, see e.g. [6], [19],
[20]. The logarithm of the normalizing coefficient,log Cn, is
equal to both the minimax and maximin regret under log-loss,
see e.g. [19], [21], which makes the quantity interesting inits
own right.

The practical problem arising in applications of the NML
universal model is the evaluation of the normalizing constant.
For continuous models the integral can be solved in closed
form for only a few specific models. For discrete models,
the time complexity of the naive solution, i.e., summing over
all possible data-sets, grows exponentially in the sample size,
and quickly becomes intractable. Even the second-most naive
solution, summing over equivalence classes (ortypes), sharing
the same likelihood value, is usually intractable even though
often polynomial inn.

On the other hand, we have the usual Fisher information
approximation [6]

log Cn =
d

2
log

n

2π
+ log

∫

Θ

√

det I(θ) dθ + o(1) , (1)

where d is the dimension of the parameter space. It is also
non-trivial to apply due to the integral involving the Fisher
information I(θ). Using only the leading term (without2π),
i.e., the BIC criterion [22], gives a rough approximation. Even
if the Fisher information approximation can be used, there are
practical circumstances where it gives a very poor approxima-
tion [9]. Consequently, analytic approximations perform worse
in model selection tasks than more refined approximations, or
ideally, the exact solution, see e.g. [3, Chap. 9].

III. M ONTE CARLO APPROXIMATIONS

Monte Carlo methods provide a family of estimators of
integrals or sums (or averages) that are either analytically or
computationally hard to evaluate, see e.g. [23]. We give a very
brief review of the topic, with three examples of estimators.

The simplest way to estimate a sumS =
∑

z∈Z f(z) is
to draw a samplez(1), . . . , z(m), m ∈ N, uniformly from the

domainZ, and evaluate the sample average of|Z| f(z(t)), t ∈
{1, . . . , m}, where |Z| denotes the number of elements1 in
Z. This obviously requires that the domainZ is finite. The
expected value of|Z| f(z) is given by

Ez∼Uni(Z)[|Z| f(z)] =
∑

z∈Z

1

|Z|
|Z| f(z) =

∑

z∈Z

f(z) = S ,

where the notationz ∼ Uni(Z) implies thatz follows the
uniform distribution onZ.

The law of large numbers now guarantees almost sure
convergence of the sample average to the mean:

1

m

m
∑

t=1

|Z| f(z(t))
a.s.
−→ S , z(t) ∼ Uni(Z) (2)

as the number of samplesm goes to infinity. In the case
of the NML normalization term, letZ = Xn and f(xn) =
p(xn ; θ̂(xn)), so that we haveS = Cn.

The rate of convergence of the simple estimator (2) can be
very slow if the valuef(z) depends strongly onz since this
increases the variance

∑

z∈Z

1

|Z|
(|Z| f(z) − S)2 = |Z|

∑

z∈Z

f(z)2 − S2 .

In the discrete case wheref(z) are probability values, we have
∑

z∈Z f(z)2 ≤
∑

z∈Z f(z) = S. Hence, the variance is finite
whenever the sumS is finite.

A generalization of the simple estimator is obtained by
replacing the uniform sampling distribution by an arbitrary
distribution q on Z, and using theimportance-sampling esti-
mator:

1

m

m
∑

t=1

f(z(t))

q(z(t))
, z(t) ∼ q . (3)

The simple estimator is a special case withq(z) = 1/|Z| for
all z ∈ Z. Assuming thatq(z) > 0 wheneverf(z) > 0, the
expected value of each term is equal to the sum:

Ez∼q

[

f(z)

q(z)

]

=
∑

z∈Z

q(z)
f(z)

q(z)
=
∑

z∈Z

f(z) = S ,

which is again sufficient to guarantee almost sure convergence
to the desired sum.

If the shape ofq is similar to the shape off in the sense
that the variance

∑

z∈Z

q(z)

(

f(z)

q(z)
− S

)2

=
∑

z∈Z

f(z)2

q(z)
− S2 ,

is small, then the rate of convergence of the importance-
sampling estimator is fast. Under the assumptionf(z) > 0 ⇒
q(z) > 0, the variance is guaranteed to be finite for allfinite
domainsZ. Finding a distributionq which is as close as
possible to the NML model has to be done on a case-by-
case basis. Typically, good candidates can be found among
universal mixture models, see the following sections.

1When estimating an integral,|Z| is the volumeof Z, which has to be
finite so that the uniform distribution is well-defined.



Ideally, if we could chooseq(z) = f(z)/S for all z ∈
Z, then the variance of the importance-sampling estimator
becomes zero, and a single term in the sum (3) givesS
exactly. Unfortunately, this cannot be done when estimating
the normalizing constantCn since it requires that(i) we can
draw i.i.d. samples from the NML distributionpNML, and(ii)
the probabilitypNML(z) can be evaluated. Obviously, if this
was possible, there would be nothing to estimate.

However, as far as point(i) above is concerned, it is possible
to draw non-i.i.d. samples from distributionf/S without
knowing the normalizing constant by using MCMC tech-
niques, see [23], [24]. For instance, the Metropolis-Hastings
algorithm starts with an arbitrary valuez(0), and draws a
potential new valuez′ from someproposal distributionq,
which is accepted as the new value in a randomized fashion:

z(t+1) =







z′, with prob.
p(z′)q(z(t))

p(z(t))q(z′)
,

z(t), otherwise.

Under mild conditions on the proposal distribution, the chain
is ergodic and has as its stationary distributionp; in the long
run, averages computed from a sample drawn from the chain
converge to the population average underp. In practice, certain
design issues (most importantly, the choice of the proposal
distribution) must be dealt with carefully in order to avoid
convergence problems.

One way to estimate the sumS based on an MCMC sample
from the normalized distributionf/S is the harmonic mean
estimator[25]:

1

m

m
∑

t=1

1

f(z(t))
, z(t) ∼

f

S
. (4)

We easily get the expectation

Ez∼f/S

[

1

f(z)

]

=
∑

z∈Z

f(z)

S

1

f(z)
=
∑

z∈Z

1

S
= |Z|S−1 ,

which is seen to be finite for all finite domains. The ergodic
theorem (see e.g. [26]) then guarantees almost sure conver-
gence of the estimator (4) to its expectation. This implies that
that by dividing (4) by|Z| and taking the inverse gives a
(strongly) consistent estimator of the normalizing constant:

(

1

m|Z|

m
∑

t=1

1

f(z(t))

)−1

a.s.
−→ S . (5)

The variance of each term of the harmonic mean estima-
tor (4) is given by

∑

z∈Z

f(z)

S

(

1

f(z)
−

|Z|

S

)2

=
1

S

(

∑

z∈Z

1

f(z)
−

|Z|2

S

)

, (6)

where the sum is taken overz with f(z) > 0. If Z is finite, the
variance is finite. Note, however, that the variance of (5) may
be significantly larger than (6) since the former involves the
inverse, and hence, (6) is not comparable to the variances of
the other two estimators. In addition to higher variance of the

inverse, the the convergence of the harmonic mean estimator
may be slowed down due to the fact that the MCMC sample,
while ergodic, is not i.i.d.

IV. M ARKOV MODELS

The class of Markov models is widely studied in the
context of universal prediction and compression, see e.g. [27],
[28], [29], [30]. Under akth order Markov model, the joint
probability over sequencesxn ∈ Xn is given by

pk(xn) = p0(xk)
n
∏

t=k+1

p(xt | xt−1
t−k) , (7)

where the firstk observations follow the initial distributionp0,
and the distribution ofxk+1, . . . , xn is given by thetransition
probabilitiesp(xt | xt−1

t−k). We study the discrete case, where
each observationxt takes on values in a finite setX , and
both the initial and the transition probabilities are multinomial
distributions.

As is well known (see e.g. [29]), in the multinomial case
the maximized likelihoods are given by empirical frequencies:

p0(s ; θ̂(xn)) = I{xk
1=s} ,

p(u | s ; θ̂(xn)) =

∑n
t=k+1 I{xt−1

t−k
=s,xt=u}

∑n
t=k+1 I{xt−1

t−k
=s}

=
Nsu(xn)

Ns(xn−1)
,

for u ∈ X and s ∈ X k, whereI{·} is the indicator function,
andNs(y) denotes the number of occurrences of subsequence
s in sequencey; the transition probabilities are undefined
whenever the sum in the denominator equals zero.

For fixed xn, the maximized likelihood under akth order
Markov model is given by

p(xn ; θ̂(xn)) =

n
∏

t=k+1

Nxt
t−k

(xn)

Nxt−1
t−k

(xn−1)

=
∏

ak+1∈Xk+1

(

Nak+1(xn)

Nak(xn−1)

)N
ak+1(xn)

. (8)

In the latter product, terms withNak(xn−1) = 0 are omitted
in line with the convention(0

0 )0 = 1.
The time complexity of evaluating (8) isO(kn log n): we

can scan the sequence from left to right and keep a list of
states that occur at least once, in a balanced binary tree (such
as AVL or red-black, see e.g. [31]) where search and addition
operations can be performed in logarithmic time. In each
search operation we needO(k) operations to compare two
states, and hence, constructing the tree takes timeO(kn log n).
By also storing the countsNak andNak+1 together with the
statesak we can evaluate (8) in the end by visiting all the
nodes in the tree. Since the number of states with non-zero
count is bounded byn, the complexity of this phase isO(n).2

2Assuming that the size of the alphabetK = |X | is at most of order
k log n, the effect of the size of the alphabet to the total time complexity is
negligible: in the first phase, the symbols following each state can be kept in
a balanced binary tree in timeO(n log K), and in the second phase, visiting
each state–symbol pair takes timeO(nK). For moderate alphabet sizes, this
is dominated byO(kn log n).



On the other hand, if both the alphabet sizeK = |X |
and the model orderk are small, it may be faster to simply
tabulate the state–symbol pairs. The space and time complexity
of the table initialization and traversal is thenO(Kk+1),
while processing the actual sequence can be done in linear
time,O(nk) (for each symbol the table index depends on the
previousk symbols).

The normalizing constant of the NML distribution for the
kth order Markov model,Ck,n is obtained by normalizing (8)
overXn:

Ck,n =
∑

yn∈Xn

∏

ak+1∈Xk+1

(

Nak+1(yn)

Nak(yn−1)

)N
ak+1(yn)

.

In principle, the normalizing constant in the NML distribution
can be computed by summing over alltypes(possible sets of
counts) of sequences, which are polynomial in number with
respect ton, but exponential in both the size of the alphabet
|X | andk. This approach leads to the intricate combinatorial
problem of computing the number of sequences of each type.
Jacquet and Szpankowski give asymptotic expressions for the
normalizing constant by this method [27]. Unfortunately, their
asymptotic expressions are given in closed form only for
ordersk = 0 andk = 1.

V. EXPERIMENTS

We estimate the normalizing constantsCk,n for Markov
models using Monte Carlo methods, as discussed in Sec. III.
In the importance-sampling estimator (3), we use as the
sampling distribution a mixture model where all the parame-
ters were drawn from Dirichlet distributions with parameters
(1/2, 1/2, . . . , 1/2). This yields the well-known Krichevsky-
Trofimov3 universal model [32]. The resulting estimator was
observed to be superior compared to both the simple estima-
tor (2) using uniformly random sequences, and the harmonic
mean estimator (4) where the same Dirichlet-mixture model
was used as the proposal distribution of the MCMC sampler.
For this reason, we focus here on the importance-sampling
estimator.

Figures 1–3 illustrate the behavior of the importance-
sampling estimates oflog Ck,n for various combinations of
the sequence lengthn, model orderk, and the number of
iterations. In all figures, the size of the alphabet wasK =
|X | = 4, and the experiment was repeated 30 times in order
to get an idea of the variability of the estimates. In Fig. 1, it
can be seen that the 30 estimates oflog C5,15625, each based
on a single iteration (a single sampled sequence), vary within
the range[5450, 5650], but the range is much narrower for
estimates based on more iterations.

Most importantly, even the accuracy of the estimates based
on a single iteration is sufficient for model selection, where
the relative code-lengths of models with different order is

3We found that the Krichevsky-Trofimov model gives significantly faster
convergence to the correct value than, for instance, the Laplace predictor, i.e.,
a mixture with uniform prior. This is natural: for the multinomial model, the
K-T model is asymptotically equivalent to NML except at the boundaries of
the parameter simplex, see e.g. [21].

 5450

 5500

 5550

 5600

 5650

 5700

 5750

 78125 15625 3125 625 125 25 5 1

C
om

pl
ex

ity
 (

bi
ts

)

iterations

Fig. 1. Convergence of the importance-sampling estimator of log Ck,n with
k = 5, n = 15625. The gray box shows the first to third quartile range, the
black bar shows themedian, and the red line shows themeanover all 30
repetitions. Values outside the first to third median range are marked by red
crosses. Note the log-scale for the number of iterations.
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Fig. 2. Estimates oflog Ck,n for n = 15625 andk ∈ {0, 1, . . . , 15} based
on asingle iteration. The style is the same as in Fig. 1. The BIC complexity
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Kk(K − 1) log n is plotted with a blue line, and the black horizontal

bar shows the upper boundn log K.

important: Fig. 2 shows estimates oflog Ck,15625 for k ∈
{0, 1, . . . , 15}. These are based on a single iteration, but still
the variation over 30 repetitions is negligible compared tothe
relative differences between different order models.

Another observation in Fig. 2 is the “saturation” of the
NML complexity termlog Ck,n as the model orderk increases.
This can be explained by noting that the sum of maximized
likelihoods over all data-sets cannot be greater than the number
of data-sets, so that we havelog Cn ≤ log Kn = n log K.
This gives a uniform upper bound on the NML complexity
term which holds for all (discrete) models. In contrast, the
BIC complexity term1

2Kk(K − 1) log n overshoots both the
NML complexity term and the upper boundn log K by a large
margin for largek. In fact the inconsistency of NML (and
Bayesian) model selection [29], which occurs when the data
is uniformly random, can be traced to the fact that ask → n,
the maximized likelihood approaches one uniformly for all
sequences, and consequently, the NML distribution approaches
the uniform distribution. The over-penalization for complexity
by BIC, seen in Fig. 2, makes BIC consistent in all cases,
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Fig. 3. Estimates oflog Ck,n for k ∈ {0, 1, 2, 3, 4, 5} as a function of the
sequence lengthn. The blue line shows the BIC complexity term for the case
k = 5, and the black curve shows the upper boundn log K.

including the uniformly random one.
Figure 3 shows the growth oflog Ck,n as a function of

sequence lengthn for model ordersk ∈ {0, 1, 2, 3, 4, 5}.
Again, even though the estimates are based on a single itera-
tion, the variation over 30 repetitions is negligible compared
to the relative differences between different order models.
Asymptotically, asn grows, the BIC complexity term and
log Ck,n differ only by the constant involving the Fisher
information, recall Eq. (1), which can be seen in the figure
from the fact that the slope of thek = 5 curve approaches the
(constant) slope of the “BIC,k = 5” curve; note that while
both grow logarithmically inn, the log-scale on the vertical
axis makes the curves appear asymptotically linear. For small
n, the NML complexity terms are tightly bounded byn log K,
while BIC clearly overshoots both.
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