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Abstract— Minimum description length (MDL) model selec- [13]; more references can be found in [3] and [4]. Similady t
tion, in its modern NML formulation, involves a model complexity  the present work, in the context of structural equation nigde
term which is equivalent to minimax/maximin regret. When the Preacher et al. [14] estimate the normalizing coefficient by
data are discrete-valued, the complexity term is a logaritm . . . .
of a sum of maximized likelihoods over all possible data-set sampling ra_ndom data-sets from a uniform distribution gsin
Because the sum has an exponential number of terms, its Markov chain Monte Carlo (MCMC) methods. Navarro [15]
evaluation is in many cases intractable. In the continuousase, and Giur@neanu and Rissanen [16] use Monte Carlo methods
the sum is replaced by an integral for which a closed form is to estimate a Fisher information integral involved in the
available in only a few cases. We present an approach basedasymptotic expansion of NML stochastic complexity (see
on Monte Carlo sampling, which works for all model classes, . . .
and gives strongly consistent estimators of the minimax regt. Sec. ). K'r_n e_t al. [17] usg MCMC to quantify the complexny
The estimates convergence almost surely to the correct vadu of connectionist models in terms of the number of different
with increasing number of iterations. For the important class of data patterns they can reproduce. Lafferty and Wassern@jn [1

Markov models, one of the presented estimators is particully  estimate minimaxisk (instead of the regret) using an MCMC
efficient: in empirical experiments, accuracy that is suffieent for version of the Blahut-Arimoto algorithm.

model selection is usually achieved already on the first itation, o . . .
even for long sequences. The contribution of this paper is to present estimators

of the normalizing coefficient in the NML model, which is
equivalent to the minimax and maximin regret (see Sec. Il

The stochastic complexity of a sequence under a giveelow). The estimators are Monte Carlo estimators based
model class is a central concept in the Minimum Descriptiash sampling of random data-sets from suitable distribistion
Length (MDL) principle [1], [2], [3], [4]. Its interpretatin  They are shown to be (strongly) consistent in the sense that
as the length of the shortest achievable encoding makeshiéy can be made arbitrarily accurate by sampling more and
a yardstick for the comparison of different model classefore random data-sets. Our work differs from earlier work
In recent formulations of MDL, stochastic complexity ishy giving provably consistent recipes for estimating the INM

defined using the so called normalized maximum likelihoogormalizing coefficient for general model classes directhyd
(NML) model, originally introduced by Shtarkov [5] for datanot through asymptotic expansions.

compression; for the role of NML in MDL model selection, In Sec. Il we review some basic properties of the well-

see [3], [4], [6], [7], [8]- known NML model. Three general Monte Carlo methods

Since the introduction of the NML universal model in the,,jjicapie to the estimation of complex sums and integrals
context of MDL, there has been significant interest in thé-eva,re pyriefly introduced in Sec. IIl. In order to demonstrate

uation of NML stochastic complexity for different practita 1,4 applicability of our methods, we apply them to the class
relevant model classes, both exactly and asymptoticatly. F

- et . of Markov models (Sec. 1V), and present some experimental
discrete models, exact evaluation is often intractableesin g its (Sec. V).
it involves a normalizing coefficient which is a sum over
all possible data-sets. For continuous cases, the norimaliz
coefficient is an integral which can be solved in only a few
cases. Under certain conditions on the model class, differe
versions of stochastic complexity (which include two-part
mixture, and NML forms) have the same asymptotic form — Let 2" = (21,...,2,) € X", n € N be a sequence. We
the so called Fisher information approximation, see e.j. [#0nsider a model classt = {p(-; 0) : 6 € ©}, i.e., a set of
[6], [7] However, for small data-sets and for model clasées t Probability mass or density functions over sequence&’th
do not satisfy the necessary conditions, the asymptotim foNVe denote the maximum likelihood parametersoy™). The
is not accurate [9]. ML parameters do not have to be unique — in fact the model
Exact and computationally tractable formulas are rarf0es not even have to be parametric — since we will only use
results for multinomial models are given in [10], and fofhe maximized likelihoo(z" ; 6(2")).
Bayesian networks with structural restrictions in [11]2]1  The celebratedormalized maximum likelihoa@ML) uni-

I. INTRODUCTION

1. NORMALIZED MAXIMUM LIKELIHOOD (NML)



versal model [5], [6] is given by domainz, and evaluate the sample average®ff(z"),t €

(" ; O(™)) {1,...,m}, where |Z| denotes the number of elemehis
pauL(z"™) = T AT ) , Cn = Z p(z"; 0(z™)) , Z. This obviously requires that the domaih is finite. The
Cn znexn expected value ofZ| f(z) is given by

where the sum is over all possible sequences of lengnd

C,, is a normalizing constant ensuring that the result is indeed=~uni2) 121 f(2)] = Z

a probability mass function. In the continuous case, the sum =€z

is replaced by the corresponding integral. The NML model where the notatiorr ~ Uni(Z) implies thatz follows the

the unigue minimax optimal universal model in the sense thamiform distribution onZz.

it minimizes the worst-case regret The law of large numbers now guarantees almost sure
. convergence of the sample average to the mean:

p(a" ; 6(z"))

p(") LS zifG0) Es s 20w tni(2) ()
In fact, it directly follows from the definition that the regjr mi
of NML is a gonstant dependent only on the model class agd the number of samples goes to infinity. In the case
the sample size:: of the NML normalization term, leZ = X" and f(z") =
R(pxmr, ™) = log Cp, = minmax R(p, z") . p(z™ ;5 6(z")), so that we haves = C,.
pooan The rate of convergence of the simple estimator (2) can be

For some model classes, the normalizing coefficient is finitery slow if the valuef(z) depends strongly on since this
only if the range of the data is restricted, see e.g. [6], [19hcreases the variance
[20]. The logarithm of the normalizing coefficieritg C,,, is 1
equal to both the minimax and maximin regret under log-loss, Z @(|Z| f(2) = 8)* = |2] Z f(z)* = 5%
see e.g. [19], [21], which makes the quantity interestingsn z€2 z€2
own right. In the discrete case whey¢z) are probability values, we have

The practical problem arising in applications of the NMLY_, > f(2)? < 3", s f(z) = S. Hence, the variance is finite
universal model is the evaluation of the normalizing conista whenever the sun$ is finite.
For continuous models the integral can be solved in closedA generalization of the simple estimator is obtained by
form for only a few specific models. For discrete modelseplacing the uniform sampling distribution by an arbiyrar
the time complexity of the naive solution, i.e., summing rovelistribution ¢ on Z, and using thémportance-sampling esti-
all possible data-sets, grows exponentially in the samigks s mator. .
and quickly becomes intractable. Even the second-mosenaiv 1 Z f(z9) PO ©)

m t=1

azmz) =S 5 =5 .

zZEZ

max R(p,z") = maxlog
I’Vl I’Vl

(
solution, summing over equivalence classestypeg, sharing q(z®)
the same likelihood value, is usually intractable even ¢ou
often polynomial inn.

On the other hand, we have the usual Fisher informati
approximation [6]

n f(z) f(z)
log Cp, = glog% +1og/@ Vdet I(0)d6 +o(1) , (1) Eong {q(z)} => a2 ) Zezzf(z) =5,

zZEZ

The simple estimator is a special case wjth) = 1/|Z| for
& = € Z. Assuming thaty(z) > 0 wheneverf(z) > 0, the
expected value of each term is equal to the sum:

whered is the dimension of the parameter space. It is alsghich is again sufficient to guarantee almost sure convesyen
non-trivial to apply due to the integral involving the Fisheto the desired sum.

information 7(¢). Using only the leading term (withour), If the shape of; is similar to the shape of in the sense
i.e., the BIC criterion [22], gives a rough approximatiowel that the variance
if the Fisher information approximation can be used, thees a 2 9
practical circumstances where it gives a very poor appraxim Z a(2) (f(z) _ S) _ Z f(z) 52
tion [9]. Consequently, analytic approximations perfororse ez q(2) ez q(2)

in model selection tasks than more refined approximations,;g small, then the rate of convergence of the importance-

ideally, the exact solution, see e.g. [3, Chap. 9]. sampling estimator is fast. Under the assumptfén) > 0 =
I11. M ONTE CARLO APPROXIMATIONS q(z) > 0, the variance is guaranteed to be finite for falite
Monte Carlo methods provide a family of estimators o?om?'”sz- Finding a distributiong which is as close as
P y possible to the NML model has to be done on a case-by-

integrals or sums (or averages) that are either analyyiacall basis. Tvoicall d did be found
computationally hard to evaluate, see e.g. [23]. We giverg veFase basis. Typically, good candidates can be found among

brief review of the topic, with three examples of estimanrsun'Versal mixture models, see the following sections.

The simplest way to estimate a SLLﬁ’]z_ ZZGZ f(z) is lWhen estimating an integral 2| is the volumeof Z, which has to be
to draw a sample™, ... 2™ m € N, uniformly from the finite so that the uniform distribution is well-defined.




Ideally, if we could choose(z) = f(z)/S for all z € inverse, the the convergence of the harmonic mean estimator
Z, then the variance of the importance-sampling estimatoray be slowed down due to the fact that the MCMC sample,
becomes zero, and a single term in the sum (3) gi¥es while ergodic, is not i.i.d.
exactly. Unfortunately, this cannot be done when estingatin

the normalizing constarn,, since it requires thati) we can V. MARKOV MODELS

draw i.i.d. samples from the NML distributign., and (i7) The class of Markov models is widely studied in the
the probabilitypxw(z) can be evaluated. Obviously, if thisCONtext of universal prediction and compression, see EZj [
was possible, there would be nothing to estimate. [28], [29], [30]. Under akth order Markov model, the joint

However, as far as poirff) above is concerned, it is possiblg®robability over sequences’ € A™ is given by
to draw nori.i.d. samples from distributionf/S without . o b T oy
knowing the normalizing constant by using MCMC tech- pr(a™) =p°(a*) [] |22 )
nigques, see [23], [24]. For instance, the Metropolis-Haxti t=k+1
algorithm starts with an arbitrary value(®), and draws a where the first: observations follow the initial distributiop’,
pot_entl_al new valuez’ from some pro_posal d|str|put|onq, ~and the distribution 0y 1, ...,z is given by thetransition
which is accepted as the new value in a randomized fashigitobabilities p(; | z!~}). We study the discrete case, where
p(zl)q(z(t)) each observatiorr; takes on values in a finite set, and
t+1) _ ) 2, with prob. ) both the initial and the transition probabilities are nmudtmial
2D = p(z0)q(2') distributi
) . istributions.
2\, otherwise. . . . .
As is well known (see e.g. [29]), in the multinomial case
Under mild conditions on the proposal distribution, theiohathe maximized likelihoods are given by empirical frequesci
is ergodic and has as its stationary distributjgrin the long 0(s é( ") =1
run, averages computed from a sample drawn from the chain PS5 UWE)) = Hat=s}

converge to the population average ungllin practice, certain . PR Tt g aimy Ngy(z™)
design issues (most importantly, the choice of the proposalu | s ; 6(z")) = 5 IHC : = NS(“ 1)
distribution) must be dealt with carefully in order to avoid t=k+1"{z,", =s} s\¥
convergence problems. for w € X ands € X*, wherel, is the indicator function,

One way to estimate the sufibased on an MCMC sampleang v, () denotes the number of occurrences of subsequence
from the normalized distributiorf /S is the harmonic mean ¢ i sequencey; the transition probabilities are undefined

estimator[25]: whenever the sum in the denominator equals zero.
m For fixed ", the maximized likelihood under ath order
L > S e C o (4)  Markov model is given b
mia fz0) S g y
. B . X o N (@)
We easily get the expectation p(x™; 0(z™)) = H W
t—1 (T
1 f(Z) 1 1 . t:k+1 zt—k
Ez,\,f/s |:—:| = Z e Z - = |Z| S R Nak+1 (In) Nokt1(gn)
Ol" & $ 76 &3 - T (355 @
aktlexktl

which is seen to be finite for all finite domains. The ergodic _ _
theorem (see e.g. [26]) then guarantees almost sure conV@rthe latter product, terms wittV,.(z"~) = 0 are omitted
gence of the estimator (4) to its expectation. This implfet t in line with the conventior(§)° = 1. _
that by dividing (4) by|Z| and taking the inverse gives a The time complexity of evaluating (8) i©(knlogn): we
(strongly) consistent estimator of the normalizing consta  can scan the sequence from left to right and keep a list of
1 states that occur at least once, in a balanced binary treé (su
1 — 1 a.s. as AVL or red-black, see e.g. [31]) where search and addition
— ) %9 . (5) , : o
m|Z| &~ f(z®) operations can be performed in logarithmic time. In each
. =t _ ~ search operation we nee@(k) operations to compare two
The variance of each term of the harmonic mean estim&ates, and hence, constructing the tree takes@ie: log n).
tor (4) is given by By also storing the countd/,. and N,.+: together with the
2 9 statesa® we can evaluate (8) in the end by visiting all the
f(z) 1 |Z| 1 1 |Z| . : .
Z EARA - =) == Z — —— ], (6) nodes in the tree. Since the number of states with non-zero
o 9\ 8 S\ fx S count is bounded by, the complexity of this phase €(n).?

where the sum is taken ovewith f(z) > 0. If Zis finite, the 2Assuming that the size of the alphablt = |X| is at most of order
variance is finite. Note, however, that the variance of (5y ma:logn, the effect of the size of the alphabet to the total time cexipt is
be significantly larger than (6) since the former involves thedligible: in the first phase, the symbols following eaditestcan be kept in

. . . a balanced binary tree in tim@(n log K'), and in the second phase, visiting
inverse, and hence, (6) IS not comparable to the Var|ancese9b£1 state—symbol pair takes tif§n K'). For moderate alphabet sizes, this
the other two estimators. In addition to higher variancehef t is dominated by®(knlogn).



On the other hand, if both the alphabet size = |X| 5750 — , , , , , , ,
and the model ordek are small, it may be faster to simply | 1 1 1 ‘ 1 ‘ |

tabulate the state—symbol pairs. The space and time coityplex__ 5700
of the table initialization and traversal is theA(K*'), £ 5650
while processing the actual sequence can be done in linear
time, O(nk) (for each symbol the table index depends on thes 9600
previousk symbols). £ 5550

The normalizing constant of the NML distribution for the S
kth order Markov model(}, ,, is obtained by normalizing (8) 5500 i i i
over X™: 5450 L1 i i i i i i i

ny \ Nak+1(ym) 1 5 25 125 625 3125 1562578125
Crn = Z H (%) . iterations
a

YynEX™ gh+lgxk+1
L .. . L. Fig. 1. Convergence of the importance-sampling estimattdo®C}, ,, with
In principle, the normalizing constant in the NML distrilet ;= 5 ;, — 15625. The gray box shows the first to third quartile range, the

can be computed by summing over glpes(possible sets of black bar shows thenedian and the red line shows theeanover all 30
counts) of seqguences. which are polvnomial in number Wi{ﬁoetitions. Values outside the first to third median rangeraarked by red
q ’ Lo poly . crosses. Note the log-scale for the number of iterations.

respect ton, but exponential in both the size of the alphabet

|X| and k. This approach leads to the intricate combinatorial

problem of computing the number of sequences of each type. 40000 — T T T T T T T
Jacquet and Szpankowski give asymptotic expressions €or th 35000 [ o N S ‘
normalizing constant by this method [27]. Unfortunatefigit  — 30000

asymptotic expressions are given in closed form only fos 25000

ordersk =0 andk = 1. % 20000
V. EXPERIMENTS 2 15000
We estimate the normalizing constani% , for Markov 3 10000
models using Monte Carlo methods, as discussed in Sec. lll. 5000 ‘ ‘ ‘
In the importance-sampling estimator (3), we use as the 0 | | | | |
sampling distribution a mixture model where all the parame- 0 2 4 6 8 10 12 14
ters were drawn from Dirichlet distributions with paramste model order

(1/2,1/2,...,1/2). This yields the well-known Krichevsky- > Estimates oo (' | 15625 andk € {0,1 15} based
. . . . ig. 2. Estimates ofog C}, ,, for n = andk € {0,1,..., ase
Trofimov® universal model [32]' The resultlng estimator wa n asingle iteration The styTILe is the same as in Fig. 1. The BIC complexity

observed to be superior compared to both the simple estint@m L K% (K — 1) logn is plotted with a blue line, and the black horizontal
tor (2) using uniformly random sequences, and the harmoriig shows the upper boundlog K.

mean estimator (4) where the same Dirichlet-mixture model

was used as the proposal distribution of the MCMC sampler.

For this reason, we focus here on the importance-sampliffgPortant: Fig. 2 shows estimates @fg Ci 15625 for k €
estimator. {0,1,...,15}. These are based on a single iteration, but still

Figures 1-3 illustrate the behavior of the importancéhe variation over 30 repetitions is negligible comparedhi®

sampling estimates dbg Cy,., for various combinations of relative differences between different ordfr modgls.”
the sequence length, model orderk, and the number of Another 0b§ewat|on in Fig. 2 is the satura_tlon of the
iterations. In all figures, the size of the alphabet wids= NML complexity termlog Cj. ,, as the model order increases.

|X| = 4, and the experiment was repeated 30 times in Ord'_gpis_ can be explained by noting that the sum of maximized
to get an idea of the variability of the estimates. In Fig.t1, [ikelihoods over all data-sets cannot be greatSrthan theben
can be seen that the 30 estimateda@fCs 15625, each based Of data-sets, so that we haveg €, < log K" = nlogK.
on a single iteration (a single sampled sequence), varyiwithl NiS gives a uniform upper bound on the NML complexity
the range[5450, 5650], but the range is much narrower forterm which holds for all (discrete) models. In contrast, the
estimates based on more iterations. BIC complexity term K*(K — 1)logn overshoots both the
Most importantly, even the accuracy of the estimates bastiyIL complexity term and the upper boumdog K by a large
on a single iteration is sufficient for model selection, wherMargin for largek. In fact the inconsistency of NML (and

the relative code-lengths of models with different order ig3@yesian) model selection [29], which occurs when the data
is uniformly random, can be traced to the fact thatcas n,

3We found that the Krichevsky-Trofimov model gives signifitarfaster the maximized likelihood approaches one uniformly for all
convergence to the correct value than, for instance, théacegpredictor, i.e., sequences and consequently the NML distribution appmc
a mixture with uniform prior. This is natural: for the mulémial model, the . P . ’ . .
the uniform distribution. The over-penalization for cormyity

K-T model is asymptotically equivalent to NML except at theuhdaries of h A " ]
the parameter simplex, see e.g. [21]. by BIC, seen in Fig. 2, makes BIC consistent in all cases,



5000 [

4000 [0l
2
2
S 3000 [11]
x
8
= 2000 2]
]
O
1000
. [13)

25 125 625 3125 1562578125

sequence length (n)
[14]
Fig. 3. Estimates ofog Cy, ,, for k € {0,1,2,3,4,5} as a function of the
sequence length. The blue line shows the BIC complexity term for the case
k = 5, and the black curve shows the upper bounkbg K.
[15]

including the uniformly random one.

Figure 3 shows the growth dbgCj, , as a function of
sequence lengtm for model ordersk € {0,1,2,3,4,5}.
Again, even though the estimates are based on a single itﬂg]-
tion, the variation over 30 repetitions is negligible comgzh
to the relative differences between different order madels
Asymptotically, asn grows, the BIC complexity term and
log Cy. ., differ only by the constant involving the Fisheryg
information, recall Eq. (1), which can be seen in the figure
from the fact that the slope of the= 5 curve approaches the
(constant) slope of the “BICk = 5” curve; note that while [1g]
both grow logarithmically inn, the log-scale on the vertical
axis makes the curves appear asymptotically linear. Fotl smi3"]
n, the NML complexity terms are tightly bounded byog K,
while BIC clearly overshoots both.

[16]

[21]
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