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Abstract

We analyze classification error on unseen cases, i.e. cases that are differ-
ent from those in the training set. Unlike standard generalization error,
this off-training-set errormay differ significantly from the empirical er-
ror with high probability even with large sample sizes. We derive a data-
dependent bound on the difference between off-training-set and standard
generalization error. Our result is based on a new bound on the missing
mass, which for small samples is stronger than existing bounds based
on Good-Turing estimators. As we demonstrate on UCI data-sets, our
bound gives nontrivial generalization guarantees in many practical cases.
In light of these results, we show that certain claims made inthe No Free
Lunch literature are overly pessimistic.

1 Introduction

A large part of learning theory deals with methods that boundthe generalization error of
hypotheses in terms of their empirical errors. The standarddefinition of generalization
error allows overlap between the training sample and test cases. When such overlap is
not allowed, i.e., when consideringoff-training-set error[1]–[5] defined in terms of only
previously unseen cases, usual generalization bounds do not apply. The off-training-set
error and the empirical error sometimes differ significantly with high probability even for
large sample sizes. In this paper, we show that in many practical cases, one can nevertheless
bound this difference. In particular, we show that with highprobability, in the realistic
situation where the number ofrepeatedcases, or duplicates, relative to the total sample size
is small, the difference between the off-training-set error and the standard generalization
error is also small. In this caseanystandard generalization error bound, no matter how it is
arrived at, transforms into a similar bound on the off-training-set error.

Our Contribution We show that with probability at least1−δ, if there arer repetitions in
the training sample, then the difference between the off-training-set error and the standard

generalization error is at most of orderO
(
√

1
n

(

log 4
δ + r log n

)

)

(Thm. 2). Our main
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result (Corollary 1 of Thm. 1) gives a stronger non-asymptotic bound that can be evaluated
numerically. The proof of Thms. 1 and 2 is based on Lemma 2, which is of independent
interest, giving a new lower bound on the so-calledmissing mass, the total probability of as
yet unseen cases. For small samples and few repetitions, this bound is significantly stronger
than existing bounds based on Good-Turing estimators [6]–[8].

Properties of Our Bounds Our bounds hold (1)uniformly, are (2)distribution-freeand
(3) data-dependent, yet (4)relevant for data-sets encountered in practice. Let us consider
these properties in turn. Our bounds hold uniformly in that they hold forall hypotheses
(functions from features to labels) at the same time. Thus, unlike many bounds on standard
generalization error, our bounds do not depend in any way on the richness of the hypothesis
class under consideration measured in terms of, for instance, its VC dimension, or the
margin of the selected hypothesis on the training sample, orany other property of the
mechanism with which the hypothesis is chosen. Our bounds are distribution-free in that
they hold no matter what the (unknown) data-generating distribution is. Our bounds depend
on thedata: they are useful only if the number of repetitions in the training set is very small
compared to the training set size. However, in machine learning practice this is often the
case as demonstrated in Sec. 3 with several UCI data-sets.

RelevanceWhy are our results interesting? There are at least three reasons, the first two of
which we discuss extensively in Sec. 4: (1) The use of off-training-set error is an essential
ingredient of the No Free Lunch (NFL) theorems [1]–[5]. Our results counter-balance some
of the overly pessimistic conclusions of this work. This is all the more relevant since the
NFL theorems have been quite influential in shaping the thinking of both theoretical and
practical machine learning researchers (see, e.g., Sec. 9.2 of the well-known textbook [5]).
(2) The off-training-set error is an intuitive measure of generalization performance. Yet in
practice it differs from standard generalization error (even with continuous feature spaces).
Thus, we feel, it is worth studying. (3) Technically, we establish a surprising connection
between off-training-set error (a concept from classification) and missing mass (a concept
mostly applied in language modeling), and give a new lower bound on the missing mass.

The paper is organized as follows: In Sec. 2 we fix notation, including the various error
functionals considered, and state some preliminary results. In Sec. 3 we state our bounds,
and we demonstrate their use on data-sets from the UCI machine learning repository. We
discuss the implications of our results in Sec. 4. Postponedproofs are in Appendix A.

2 Preliminaries and Notation

Let X be an arbitrary space of inputs, and letY be a discrete space of labels. A learner
observes a randomtraining sample, D, of sizen, consisting of the values of a sequence
of input–label pairs((X1, Y1), ..., (Xn, Yn)), where(Xi, Yi) ∈ X × Y. Based on the
sample, the learner outputs a hypothesish : X → Y that gives, for each possible input
value, a prediction of the corresponding label. The learneris successful if the produced
hypothesis has high probability of making a correct prediction when applied to a test case.
(Xn+1, Yn+1). Both the training sample and the test case are independently drawn from a
commongenerating distributionP ∗. We use the following error functionals:

Definition 1 (errors). Given a training sampleD of sizen, the i.i.d., off-training-set,and
empirical errorof a hypothesish are given by

Eiid(h) := Pr[Y 6= h(X)] i.i.d. error,
Eots(h, D) := Pr[Y 6= h(X) | X /∈ XD] off-training-set error,
Eemp(h, D) := 1

n

∑n
i=1 I{h(Xi) 6=Yi} empirical error,

whereXD is the set ofX-values occurring in sampleD, and the indicator functionI{·}
takes value one if its argument is true and zero otherwise.
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The first one of these is just the standard generalization error of learning theory. Following
[2], we call it i.i.d. error. For general input spaces and generating distributionsEots(h, D)
may be undefined for someD. In either case, this is not a problem. First, ifXD has measure
one, the off-training-set error is undefined and we need not concern ourselves with it; the
relevant error measure isEiid(h) and standard results apply1. If, on the other hand,XD has
measure zero, the off-training-set error and the i.i.d. error are equivalent and our results (in
Sec. 3 below) hold trivially. Thus,if off-training-set error is relevant, our results hold.

Definition 2. Given a training sampleD, thesample coveragep(XD) is the probability
that a newX-value appears inD: p(XD) := Pr[X ∈ XD], whereXD is as in Def. 1. The
remaining probability,1 − p(XD), is called themissing mass.

Lemma 1. For any training setD such thatEots(h, D) is defined, we have

a) |Eots(h, D) − Eiid(h)| ≤ p(XD) ,

b) Eots(h, D) − Eiid(h) ≤ p(XD)

1 − p(XD)
Eiid(h) .

Proof. Both bounds follow essentially from the following inequalities2:

Eots(h, D) =
Pr[Y 6= h(X), X /∈ XD]

Pr[X /∈ XD]
≤ Pr[Y 6= h(X)]

Pr[X /∈ XD]
∧ 1 =

Eiid(h)

1 − p(XD)
∧ 1

=

( Eiid(h)

1 − p(XD)
∧ 1

)

(1 − p(XD)) +

( Eiid(h)

1 − p(XD)
∧ 1

)

p(XD)

≤ Eiid(h) + p(XD) ,

where∧ denotes the minimum. This gives one direction of Lemma 1.a (an upperbound on
Eots(h, D)); the other direction is obtained by using analogous inequalities for the quantity
1 − Eots(h, D), with Y 6= h(X) replaced byY = h(X), which gives the upper bound
1 − Eots(h, D) ≤ 1 − Eiid(h) + p(XD). Lemma 1.b follows from the first line by ignoring
the upper bound 1, and subtractingEiid(h) from both sides.

Given the value of (or an upper bound on)Eiid(h), the upper bound of Lemma 1.b may
be significantly stronger than that of Lemma 1.a. However, inthis work we only use
Lemma 1.a for simplicity since it depends onp(XD) alone. The lemma would be of little
use without a good enough upper bound on the sample coveragep(XD), or equivalently, a
lower bound on the missing mass. In the next section we obtainsuch a bound.

3 An Off-training-set Error Bound

Good-Turing estimators [6], named after Irving J. Good, andAlan Turing, are widely used
in language modeling to estimate the missing mass. The knownsmall bias of such estima-
tors, together with a rate of convergence, can be used to obtain lower and upper bound for
the missing mass [7, 8]. Unfortunately, for the sample sizeswe are interested in, the lower
bounds are not quite tight enough (see Fig. 1 below). In this section we state a new lower
bound, not based on Good-Turing estimators, that is practically useful in our context. We
compare this bound to the existing ones after Thm. 2.

Let X̄n ⊂ X be the set consisting of then most probable individual values ofX . In case
there are several such subsets any one of them will do. In caseX has less thann elements,
X̄n := X . Denote for short̄pn := Pr[X ∈ X̄n]. No assumptions are made regarding the
value of p̄n, it may or may not be zero. The reason for us being interested in p̄n is that

1Note however, that a continuous feature space does not necessarily imply this, see Sec. 4.
2This neat proof is due to Gilles Blanchard (personal communication).

3



it gives us an upper boundp(XD) ≤ p̄n on the sample coverage that holds for allD. We
prove that when̄pn is large it is likely that a sample of sizen will have several repeatedX-
values so that the number of distinctX-values is less thann. This implies that if a sample
with a small number of repeatedX-values is observed, it is safe to assume thatp̄n is small
and therefore, the sample coveragep(XD) must also be small.

Lemma 2. The probability of obtaining a sample of sizen ≥ 1 with at most0 ≤ r < n
repeatedX-values is upper-bounded byPr[“at mostr repetitions”] ≤ ∆(n, r, p̄n), where

∆(n, r, p̄n) :=

n
∑

k=0

(

n

k

)

p̄k
n(1 − p̄n)n−kf(n, r, k) (1)

and f(n, r, k) is given byf(n, r, k) :=

{

1 if k < r

min
(

(

k
r

)

n!
(n−k+r)!n

−(k−r), 1
)

if k ≥ r.

∆(n, r, p̄n) is a non-increasing function of̄pn.

For a proof, see Appendix A. Given a fixed confidence level1 − δ we can now define a
data-dependent upper bound on the sample coverage

B(δ, D) := arg min
p

{p : ∆(n, r, p) ≤ δ} , (2)

wherer is the number of repeatedX-values inD, and∆(n, r, p) is given by Eq. (1).

Theorem 1. For any0 ≤ δ ≤ 1, the upper boundB(δ, D) on the sample coverage given
by Eq. (2) holds with at least probability1 − δ:

Pr [p(XD) ≤ B(δ, D)] ≥ 1 − δ .

Proof. Consider fixed values of the confidence level1 − δ, sample sizen, and probability
p̄n. LetR be the largest integer for which∆(n, R, p̄n) ≤ δ. By Lemma 2 the probability of
obtaining at mostR repetitions is upper-bounded byδ. Thus, it is sufficient that the bound
holds whenever the number of repetitions is greater thanR. For any suchr > R, we have
∆(n, r, p̄n) > δ. By Lemma 2 the function∆(n, r, p̄n) is non-increasing in̄pn, and hence
it must be that̄pn < arg minp{p : ∆(n, r, p) ≤ δ} = B(δ, D). Sincep(XD) ≤ p̄n, the
bound then holds for allr > R.

Rather than the sample coveragep(XD), the real interest is often in off-training-set error.
Using the relation between the two quantities, one gets the following corollary that follows
directly from Lemma 1.a and Thm. 1.

Corollary 1 (main result: off-training-set error bound). For any0 ≤ δ ≤ 1, the difference
between the i.i.d. error and the off-training-set error is bounded by

Pr [∀h |Eots(h, D) − Eiid(h)| ≤ B(δ, D)] ≥ 1 − δ .

Corollary 1 implies that the off-training-set error and thei.i.d. error are entangled, thus
transforming all distribution-free bounds on the i.i.d. error to similar bounds on the off-
training-set error. Since the probabilistic part of the result (Lemma 1) does not involve a
specific hypothesis, Corollary 1 holds for all hypotheses atthe same time, and does not
depend on the richness of the hypothesis class in terms of, for instance, its VC dimension.

Figure 1 illustrates the behavior of the bound (2) as the sample size grows. It can be seen
that for a small number of repetitions the bound is nontrivial already at moderate sample
sizes. Moreover, the effect of repetitions is tolerable, and it diminishes as the number of
repetitions grows. Table 1 lists values of the bound for a number of data-sets from the UCI
machine learning repository [9]. In many cases the bound is about 0.10–0.20 or less.

Theorem 2 gives an upper bound on the rate with which the bounddecreases asn grows.
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Figure 1: Upper boundB(δ, D) given by Eq. (2) for samples with zero (r = 0) to ten
(r = 10) repeatedX-values on the 95 % confidence level (δ = 0.05). The dotted curve
is an asymptotic version forr = 0 given by Thm. 2. The curve labeled ‘G-T’ (forr = 0)
is based on Good-Turing estimators (Thm. 3 in [7]). Asymptotically, it exceeds ourr = 0
bound by a factorO(log n). Bound for the UCI data-sets in Table 1 are marked with small
triangles (▽). Note the log-scale for sample size.

Theorem 2(a weaker bound in closed-form). For all n and all p̄n, all r < n, the function

B(δ, D) has the upper boundB(δ, D) ≤ 3
√

1
2n

(

log 4
δ + 2r log n

)

.

For a proof, see Appendix A. Let us compare Thm. 2 to the existing bounds onB(δ, D)
based on Good-Turing estimators [7, 8]. For fixedδ, Thm. 3 in [7] gives an upper bound
of O (r/n + log n/

√
n). The exact bound is drawn as the G-T curve in Fig. 1. In contrast,

our bound givesO
(√

C + r log n/
√

n
)

, for a known constantC > 0. For fixedr and
increasingn, this gives an improvement over the G-T bound of orderO(log n) if r = 0,
andO(

√
log n) if r > 0. Forr growing faster thanO(

√
log n), asymptotically our bound

becomes uncompetitive3. The real advantage of our bound is that, in contrast to G-T, it
gives nontrivial bounds for sample sizes and number of repetitions that typically occur in
classification problems. For practical applications in language modeling (large samples,
many repetitions), the existing G-T bound of [7] is probablypreferable.

The developments in [8] are also relevant, albeit in a more indirect manner. In Thm. 10
of that paper, it is shown that the probability that the missing mass is larger than its ex-
pected value by an amountǫ is bounded bye−(e/2)nǫ2 . In [7], Sec. 4, some techniques
are developed to bound the expected missing mass in terms of the number of repetitions in
the sample. One might conjecture that, combined with Thm. 10of [8], these techniques
can be extended to yield an upper bound onB(δ, D) of orderO(r/n + 1/

√
n) that would

be asymptotically stronger than the current bound. We plan to investigate this and other
potential ways to improve the bounds in future work. Any advance in this direction makes
the implications of our bounds even more compelling.

3If data are i.i.d. according to a fixedP ∗, then, as follows from the strong law of large numbers,
r, considered as a function ofn, will either remain zero for ever or will be larger thancn for some
c > 0, for all n larger than somen0. In practice, our bound is still relevant because typical data-sets
often haver very small compared ton (see Table 1). This is possible because apparentlyn ≪ n0.

5



Table 1: Bounds on the difference between the i.i.d. error and the off-training-set error
given by Eq. (2) on confidence level 95% (δ = 0.05). A dash (-) indicates no repetitions.
Bounds greater than 0.5 are in parentheses.

DATA SAMPLE SIZE REPETITIONS BOUND

Abalone 4177 - 0.0383
Adult 32562 25 0.0959
Annealing 798 8 0.3149
Artificial Characters 1000 34 (0.5112)
Breast Cancer (Diagnostic) 569 - 0.1057
Breast Cancer (Original) 699 236 (1.0)
Credit Approval 690 - 0.0958
Cylinder Bands 542 - 0.1084
Housing 506 - 0.1123
Internet Advertisement 2385 441 (0.9865)
Isolated Letter Speech Recogn. 1332 - 0.0685
Letter Recognition 20000 1332 (0.6503)
Multiple Features 2000 4 0.1563
Musk 6598 17 0.1671
Page Blocks 5473 80 0.3509
Water Treatment Plant 527 - 0.1099
Waveform 5000 - 0.0350

4 Discussion – Implications of Our Results

The use of off-training-set error is an essential ingredient of the influential No Free Lunch
theorems [1]–[5]. Our results imply that, while the NFL theorems themselves are valid,
some of the conclusions drawn from them are overly pessimistic, and should be recon-
sidered. For instance, it has been suggested that the tools of conventional learning theory
(dealing with standard generalization error) are “ill-suited for investigating off-training-
set error” [3]. With the help of the little add-on we provide in this paper (Corollary 1),
anybound on standard generalization error can be converted to abound on off-training-set
error. Our empirical results on UCI data-sets show that the resulting bound is often not
essentially weaker than the original one. Thus, the conventional tools turn out not to be so
‘ill-suited’ after all. Secondly, contrary to what is sometimes suggested4, we show that one
canrelate performance on the training sample to performance onas yet unseen cases.

On the other side of the debate, it has sometimes been claimedthat the off-training-set error
is irrelevant to much of modern learning theory where often the feature space is continuous.
This may seem to imply that off-training-set error coincides with standard generalization
error (see remark after Def. 1). However, this is true only ifthe associateddistribution is
continuous:thenthe probability of observing the sameX-value twice is zero. However,
in practice even when the feature space has continuous components, data-sets sometimes
contain repetitions (e.g., Adult, see Table 1), if only for the reason that continuous features
may be discretized or truncated. In practice repetitions occur in many data-sets, implying
that off-training-set error can be different from the standard i.i.d. error. Thus, off-training-
set error isrelevant. Also, it measures a quantity that is in some ways close to themeaning
of ‘inductive generalization’ – in dictionaries the words ‘induction’ and ‘generalization’
frequently refer to ‘unseen instances’. Thus, off-training-set error is not just relevant but
also intuitive. This makes it all the more interesting that standard generalization bounds
transfer to off-training-set error – and that is the centralimplication of this paper.

4For instance, “if we are interested in the error for [unseen cases], the NFL theorems tell us that
(in the absence of prior assumptions) [empirical error] is meaningless” [2].
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A Postponed Proofs

We first state two propositions that are useful in the proof ofLemma 2.
Proposition 1. LetXm be a domain of sizem, and letP ∗

Xm
be an associated probability

distribution. The probability of getting no repetitions when sampling1 ≤ k ≤ m items
with replacement from distributionP ∗

Xm
is upper-bounded by

Pr[“no repetitions”| k] ≤ m!
(m−k)!mk .

Proof Sketch of Proposition 1.By way of contradiction it is possible to show that the prob-
ability of obtaining no repetitions is maximized whenP ∗

Xm
is uniform. After this, it is

easily seen that the maximal probability equals the right-hand side of the inequality.

Proposition 2. LetXm be a domain of sizem, and letP ∗
Xm

be an associated probability
distribution. The probability of getting at mostr ≥ 0 repeated values when sampling
1 ≤ k ≤ m items with replacement from distributionP ∗

Xm
is upper-bounded by

Pr[“at mostr repetitions”| k] ≤
{

1 if k < r

min
(

(

k
r

)

m!
(m−k+r)!m

−(k−r), 1
)

if k ≥ r.

Proof of Proposition 2.The casek < r is trivial. For k ≥ r, the event “at mostr repeti-
tions ink draws” is equivalent to the event that there is at least one subset of sizek − r of
theX-variables{X1, . . . , Xk} such that all variables in the subset take distinct values. For
a subset of sizek − r, Proposition 1 implies that the probability that all valuesare distinct
is at most m!

(m−k+r)!m
−(k−r). Since there are

(

k
r

)

subsets of theX-variables of sizek − r,

the union bound implies that multiplying this by
(

k
r

)

gives the required result.
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Proof of Lemma 2.The probability of getting at mostr repeatedX-values can be upper
bounded by considering repetitions in the maximally probable setX̄n only. The probability
of no repetitions inX̄n can be broken inton + 1 mutually exclusive cases depending on
how manyX-values fall into the set̄Xn. Thus we get

Pr[“at mostr repetitions inX̄n” ] =
n

∑

k=0

Pr[“at mostr repetitions inX̄n” | k] Pr[k] ,

wherePr[· | k] denotes probability under the condition thatk of the n cases fall into
X̄n, andPr[k] denotes the probability of the latter occurring. Proposition 2 gives an up-
per bound on the conditional probability. The probabilityPr[k] is given by the binomial
distribution with parameter̄pn: Pr[k] = Bin(k ; n, p̄n) =

(

n
k

)

p̄k
n(1 − p̄n)n−k . Com-

bining these gives the formula for∆(n, r, p̄n). Showing that∆(n, r, p̄n) is non-increasing
in p̄n is tedious but uninteresting and we only sketch the proof: Itcan be checked that
the conditional probability given by Proposition 2 is non-increasing ink (themin opera-
tor is essential for this). From this the claim follows sincefor increasingp̄n the binomial
distribution puts more weight to terms with largek, thus not increasing the sum.

Proof of Thm. 2.The first three factors in the definition (1) of∆(n, r, p̄n) are equal to a
binomial probabilityBin(k ; n, p̄n), and the expectation ofk is thusnp̄n. By the Hoeffd-
ing bound, for allǫ > 0, the probability ofk < n(p̄n − ǫ) is bounded byexp(−2nǫ2).
Applying this bound withǫ = p̄n/3 we get that the probability ofk < 2

3 p̄n is bounded by
exp(− 2

9np̄2
n). Combined with (1) this gives the following upper bound on∆(n, r, p̄n):

exp
(

− 2
9np̄2

n

)

max
k<n 2

3
p

n

f(n, r, k)+ max
k≥n 2

3
p

n

f(n, r, k) ≤ exp
(

− 2
9np̄2

n

)

+ max
k≥n 2

3
p

n

f(n, r, k)

(3)
where the maxima are taken over integer-valuedk. In the last inequality we used the fact
that for alln, r, k, it holds thatf(n, r, k) ≤ 1. Now note that fork ≥ r, we can bound

f(n, r, k) ≤
(

k

r

) k−r−1
∏

j=0

n − j

n
≤

(

n

r

) k
∏

j=0

n − j

n

k
∏

j=k−r

n

n − j
≤

(

n

r

) k
∏

j=1

n − j

n

(

n

n − k

)r+1

≤ n2r n

n − k

k
∏

j=1

n − j

n
. (4)

If k < r, f(n, r, k) = 1 so that (4) holds in fact for allk with 1 ≤ k ≤ n. We bound
the last factor

∏k
j=1

n−j
n further as follows. The average of thek factors of this product is

less than or equal ton−k/2
n = 1 − k

2n . Since a product ofk factors is always less than or

equal to the average of the factors to the power ofk, we get the upper bound
(

1 − k
2n

)k ≤
exp

(

−k·k
2n

)

≤ exp
(

− k2

2n

)

, where the first inequality follows from1 − x ≤ exp(−x)

for x < 1. Plugging this into (4) givesf(n, r, k) ≤ n2r n
n−k exp

(

− k2

2n

)

. Plugging

this back into (3) gives∆(n, r, p̄n) ≤ exp(− 2
9np̄2

n) + maxk≥n 2

3
p

n
3n2r exp

(

− k2

2n

)

≤
exp(− 2

9np̄2
n) + 3n2r exp(− 2

9np̄2
n) ≤ 4n2r exp(− 2

9np̄2
n).

Recall thatB(δ, D) := argminp {p : ∆(n, r, p) ≤ δ}. Replacing∆(n, r, p) by the above
upper bound, makes the set ofp satisfying the inequality smaller. Thus, the minimal mem-
ber of the reduced set is greater than or equal to the minimal member of the set with
∆(n, r, p) ≤ δ, giving the following bound onB(δ, D):

B(δ, D) ≤ argminp

{

p : 4n2r exp
(

− 2
9np2

)

≤ δ
}

= 3
√

1
2n

(

log 4
δ + 2r log n

)

.
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