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Abstract

The normalized maximum likelihood distribution achieves minimax coding (log-loss) re-
gret given a fixed sample size, or horizon, n. It generally requires that n be known in
advance. Furthermore, extracting the sequential predictions from the normalized maxi-
mum likelihood distribution is computationally infeasible for most statistical models. Sev-
eral computationally feasible alternative strategies have been devised. We characterize
the achievability of asymptotic minimaxity by horizon-dependent and horizon-independent
strategies. We prove that no horizon-independent strategy can be asymptotically minimax
in the multinomial case. A weaker result is given in the general case subject to a condition
on the horizon-dependence of the normalized maximum likelihood. Motivated by these
negative results, we demonstrate that an easily implementable Bayes mixture based on a
conjugate Dirichlet prior with a simple dependency on n achieves asymptotic minimaxity
for all sequences, simplifying earlier similar proposals. Our numerical experiments for the
Bernoulli model demonstrate improved finite-sample performance by a number of novel
horizon-dependent and horizon-independent algorithms.

Keywords: on-line learning, prediction of individual sequences, normalized maximum
likelihood, asymptotic minimax regret, Bayes mixture

1. Introduction

The normalized maximum likelihood (NML) distribution is derived as the optimal solution
to the minimax problem that seeks to minimize the worst-case coding (log-loss) regret with
fixed sample size n (Shtarkov, 1987). In this problem, any probability distribution can be
converted into a sequential prediction strategy for predicting each symbol given an observed
initial sequence, and vice versa. A minimax solution yields predictions that have the least
possible regret, i.e., excess loss compared to the best model within a model class.

The important multinomial model, where each symbol takes one of m > 1 possible
values, has a long history in the extensive literature on universal prediction of individual
sequences especially in the Bernoulli case, m = 2 (see e.g. Laplace, 1795/1951; Krichevsky
and Trofimov, 1981; Freund, 1996; Krichevsky, 1998; Merhav and Feder, 1998; Cesa-Bianchi
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and Lugosi, 2001). A linear time algorithm for computing the NML probability of any indi-
vidual sequence of full length n was given by Kontkanen and Myllymäki (2007). However,
this still leaves two practical problems. First, given a distribution over sequences of length
n, obtaining the marginal and conditional probabilities needed for predicting symbols before
the last one requires evaluation of exponentially many terms. Second, the total length of the
sequence, or the horizon, is not necessarily known in advance in so called online scenarios
(see e.g. Freund, 1996; Azoury and Warmuth, 2001; Cesa-Bianchi and Lugosi, 2001). The
predictions of the first ñ symbols under the NML distribution depend on the horizon n in
many models, including the multinomial. In fact, Bartlett et al. (2013) showed that NML is
horizon-dependent in this sense in all one-dimensional exponential families with three excep-
tions (Gaussian, Gamma, and Tweedy). When this is the case, NML cannot be applied, and
consequently, minimax optimality cannot be achieved without horizon-dependence. Simi-
larly, in a somewhat different adversarial setting, Luo and Schapire (2014) show a negative
result that applies to loss functions bounded within the interval [0, 1].

Several easily implementable nearly minimax optimal strategies have been proposed
(see Shtarkov, 1987; Xie and Barron, 2000; Takeuchi and Barron, 1997; Takimoto and
Warmuth, 2000; Kot lowski and Grünwald, 2011; Grünwald, 2007, and references therein).
For asymptotic minimax strategies, the worst-case total log-loss converges to that of the
NML distribution as the sample size tends to infinity. This is not equivalent to the weaker
condition that the average regret per symbol converges to zero. It is known, for instance,
that neither the Laplace plus-one-rule that assigns probability (k+ 1)/(n+m) to a symbol
that has appeared k times in the first n observations, nor the Krichevsky-Trofimov plus-one-
half-rule, (k + 1/2)/(n+m/2), which is also the Bayes procedure under the Jeffreys prior,
are asymptotically minimax optimal over the full range of possible sequences (see Xie and
Barron, 2000). Xie and Barron (2000) showed that a Bayes procedure defined by a modified
Jeffreys prior, wherein additional mass is assigned to the boundaries of the parameter space,
achieves asymptotic minimax optimality. Takeuchi and Barron (1997) studied an alternative
technique for a more general model class. Both these strategies are horizon-dependent. An
important open problem has been to determine whether a horizon-independent asymptotic
minimax strategy for the multinomial case exists.

We investigate achievability of asymptotic minimaxity by horizon-dependent and horizon-
independent strategies. Our main theorem (Theorem 2) answers the above open problem
in the negative: no horizon-independent strategy can be asymptotic minimax for multino-
mial models. We give a weaker result that applies more generally under a condition on
the horizon-dependence of NML. On the other hand, we show that an easily implementable
horizon-dependent Bayes procedure defined by a simpler prior than the modified Jeffreys
prior by Xie and Barron (2000) achieves asymptotic minimaxity. The proposed proce-
dure assigns probability (k + αn)/(n + mαn) to any outcome that has appeared k times
in a sequence of length n, where m is the alphabet size and αn = 1/2 − ln 2/(2 lnn) is a
prior mass assigned to each outcome. We also investigate the behavior of a generalization
of the last-step minimax algorithm, which we call the k-last-step minimax algorithm and
which is horizon-independent. Our numerical experiments (Section 5) demonstrate supe-
rior finite-sample performance by the proposed horizon-dependent and horizon-independent
algorithms compared to existing approximate minimax algorithms.

2



Achievability of Asymptotic Minimax Regret

2. Preliminaries

Consider a sequence xn = (x1, · · · , xn) and a parametric model

p(xn|θ) =
n∏
i=1

p(xi|θ),

where θ = (θ1, · · · , θd) is a d-dimensional parameter. We focus on the case where each xi is
one of a finite alphabet of symbols and the maximum likelihood estimator

θ̂(xn) = argmax
θ

ln p(xn|θ)

can be computed.
The optimal solution to the minimax problem,

min
p

max
xn

ln
p(xn|θ̂(xn))

p(xn)
,

assuming that the solution exists, is given by

p
(n)
NML(xn) =

p(xn|θ̂(xn))

Cn
, (1)

where Cn =
∑

xn p(x
n|θ̂(xn)) and is called the normalized maximum likelihood (NML)

distribution (Shtarkov, 1987). For model classes where the above problem has no solution
and the normalizing term Cn diverges, it may be possible to reach a solution by conditioning
on some number of initial observations (see Liang and Barron, 2004; Grünwald, 2007).
The regret of the NML distribution is equal to the minimax value lnCn for all xn. We

mention that in addition to coding and prediction, the code length − ln p
(n)
NML(xn) can be

used as a model selection criterion according to the minimum description length (MDL)
principle (Rissanen, 1996); (see also Grünwald, 2007; Silander et al., 2010, and references
therein).

In cases where the minimax optimal NML distribution cannot be applied (for reasons
mentioned above), it can be approximated by another strategy, i.e., a sequence of distri-
butions (g(n))n∈N. A strategy is said to be horizon-independent if for all 1 ≤ ñ < n, the
distribution g(ñ) matches with the marginal distribution of xñ obtained from g(n) by sum-
ming over all length n sequences that are obtained by concatenating xñ with a continuation
xnñ+1 = (xñ+1, · · · , xn):

g(ñ)(xñ) =
∑
xnñ+1

g(n)(xn). (2)

For horizon-independent strategies, we omit the horizon n in the notation and write g(xn) =
g(n)(xn). This also implies that the ratio g(xnñ+1|xñ) = g(xn)/g(xñ) is a valid conditional
probability distribution over the continuations xnñ+1 assuming that g(xñ) > 0.1

1. Note that even if a strategy is based on assuming a fixed horizon (or an increasing sequence or horizons
like in the so called doubling-trick, see Cesa-Bianchi et al., 1997), as long as the assumed horizon is
independent of the true horizon, the strategy is horizon-independent.
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A property of interest is asymptotic minimax optimality of g, which is defined by

max
xn

ln
p(xn|θ̂(xn))

g(xn)
≤ lnCn + o(1), (3)

where o(1) is a term converging to zero as n→∞.
Hereafter, we focus mainly on the multinomial model with x ∈ {1, 2, · · · ,m},

p(x|θ) = θx,
m∑
j=1

θj = 1, (4)

extended to sequences by the i.i.d. assumption. The corresponding conjugate prior is the
Dirichlet distribution. In the symmetric case where each outcome x ∈ {1, . . . ,m} is treated
equally, it takes the form

q(θ|α) =
Γ(mα)

Γ(α)m

m∏
j=1

θα−1
j ,

where Γ(x) =
∫∞

0 tx−1e−tdt is the gamma function and α > 0 is a hyperparameter. Proba-
bilities of sequences under Bayes mixtures with Dirichlet priors can be obtained from

pB,α(xn) =

∫ n∏
i=1

p(xi|θ)q(θ|α)dθ =
Γ(mα)

Γ(α)m

∏m
j=1 Γ(nj + α)

Γ(n+mα)
, (5)

where nj is the number of js in xn. The Bayes mixture is horizon-dependent if α depends
on n and horizon-independent otherwise.

The minimax regret is asymptotically given by Xie and Barron (2000),

lnCn =
m− 1

2
ln

n

2π
+ ln

Γ(1/2)m

Γ(m/2)
+ o(1). (6)

3. (Un)achievability of Asymptotic Minimax Regret

We now give our main result, Theorem 2, showing that no horizon-independent asymptotic
minimax strategy for the multinomial case exists. In the proof, we use the following lemma.
The proof of the lemma is given in Appendix A.

Lemma 1 Let

f(x) = ln Γ

(
x+

1

2

)
− x lnx+ x− 1

2
ln 2π,

for x > 0 and f(0) = − ln 2
2 . Then for x ≥ 0,

− ln 2

2
≤ f(x) < 0 (7)

and limx→∞ f(x) = 0.

Theorem 2 For the multinomial model in (4), no horizon-independent strategy is asymp-
totic minimax.
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Proof Let g be an arbitrary horizon-independent strategy satisfying (2). First, by the

properties of the Gamma function, we have ln Γ(n+ m
2 ) = ln Γ(n+ 1

2) + (m−1)
2 lnn+ o(1).

Applying this to (5) in the case of the Jeffreys mixture pB,1/2 yields

ln pB,1/2(xn) = ln
Γ(m/2)

Γ(1/2)m
+

m∑
j=1

{
ln Γ(nj + 1/2)

}
− ln Γ(n+ 1/2)− m− 1

2
lnn+ o(1). (8)

We thus have

ln
p

(n)
NML(xn)

pB,1/2(xn)
=

m∑
j=1

{
− ln Γ (nj + 1/2) + nj lnnj − nj +

1

2
ln 2π

}
+ ln Γ(n+ 1/2)− n lnn+ n− 1

2
ln 2π + o(1)

= −
m∑
j=1

f(nj) + f(n) + o(1). (9)

By Lemma 1, for the sequence of all js (for any j ∈ {1, 2, · · · ,m}),

ln
p

(n)
NML(xn)

pB,1/2(xn)
→ m− 1

2
ln 2 (n→∞),

which means that the Jeffreys mixture is not asymptotically minimax. Hence, we can
assume that g is not the Jeffreys mixture and pick ñ and xñ such that for some positive
constant ε,

ln
pB,1/2(xñ)

g(xñ)
≥ ε. (10)

By (9) and Lemma 1, we can find n0 such that for all n > n0 and all sequences xn,

ln
p

(n)
NML(xn)

pB,1/2(xn)
≥ −ε

2
. (11)

Then for all n > max{ñ, n0}, there exists a sequence xn which is a continuation of the xñ

in (10), such that

ln
p

(n)
NML(xn)

g(xn)
= ln

p
(n)
NML(xn)

pB,1/2(xn)
+ ln

pB,1/2(xn)

g(xn)

= ln
p

(n)
NML(xn)

pB,1/2(xn)
+ ln

pB,1/2(xnñ+1|xñ)

g(xnñ+1|xñ)
+ ln

pB,1/2(xñ)

g(xñ)

≥ −ε
2

+ ε =
ε

2
, (12)

where the identity ln g(xn) = ln g(xnñ+1|xñ) + ln g(xñ) implied by horizon-independence is
used on the second row. The last inequality follows from (10), (11) and the fact that
g(xnñ+1|xñ) is a conditional probability distribution of xnñ+1. Note that since (11) holds
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for all continuations of xñ, it is sufficient that there exists one continuation for which
pB,1/2(xnñ+1|xñ)/g(xnñ+1|xñ) ≥ 1 holds on the second row of (12).

It will be interesting to study whether similar results as above can be obtained for other
models than the multinomial. For models where the NML is horizon-dependent and the
Jeffreys mixture satisfies the convergence to NML in the sense of (11), we can use the same
proof technique to prove the non-achievability by horizon-independent strategies. Here we
provide an alternative approach that leads to a weaker result, Theorem 3, showing that
a slightly stronger notion of asymptotic minimaxity is unachievable under the following
condition on the horizon-dependence of the NML distribution.

Assumption 1 Suppose that for ñ satisfying ñ→∞ and ñ
n → 0 as n→∞ (e.g. ñ =

√
n),

there exist a sequence xñ and a unique constant M > 0 such that

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

→M (n→∞). (13)

Assumption 1 means that the NML distribution changes over the sample size n by
an amount that is characterized by M . The following theorem proves that under this
assumption, a stronger notion of asymptotic minimaxity is never achieved simultaneously
for the sample sizes ñ and n by a strategy g that is independent of n.

Theorem 3 Under Assumption 1, if a distribution g is horizon-independent, then it never
satisfies

lnCn −M + o(1) ≤ ln
p(xn|θ̂(xn))

g(xn)
≤ lnCn + o(1), (14)

for all xn and any M < M , where M is the constant appearing in Assumption 1 and o(1)
is a term converging to zero uniformly on xn as n→∞.

The proof is given in Appendix B.
The condition in (14) is stronger than the usual asymptotic minimax optimality in

(3), where only the second inequality in (14) is required. Intuitively, this stronger notion of
asymptotic minimaxity requires not only that for all sequences, the regret of the distribution
g is asymptotically at most the minimax value, but also that for no sequence, the regret is
asymptotically less than the minimax value by a margin characterized by M . Note that
non-asymptotically (without the o(1) terms), the corresponding strong and weak minimax
notions are equivalent.

The following additional result provides a way to assess the amount by which the NML
distribution depends on the horizon in the multinomial model. At the same time, it evaluates
the conditional regret of the NML distributions as studied by Rissanen and Roos (2007),
Grünwald (2007), and Hedayati and Bartlett (2012).

Let lj be the number of js in xñ (0 ≤ lj ≤ ñ,
∑m

j=1 lj = ñ). It follows that

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

= ln

∏m
j=1

(
lj
ñ

)lj∑
nj≥lj

(
n−ñ
nj−lj

)∏m
j=1

(nj
n

)nj + ln
Cn
Cñ

, (15)
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where
(
n−ñ
nj−lj

)
≡
(

n−ñ
n1−l1,···,nm−lm

)
is the multinomial coefficient and

∑
nj≥lj denotes the

summation over njs satisfying n1 + · · ·+ nm = n and nj ≥ lj for j = 1, 2, · · · ,m. Lemma 4
evaluates

Cn|xñ ≡
∑
nj≥lj

(
n− ñ
nj − lj

) m∏
j=1

(nj
n

)nj
in (15). The proof is in Appendix C.2

Lemma 4 Cn|xñ is asymptotically evaluated as

lnCn|xñ =
m− 1

2
ln

n

2π
+ ln C̃ 1

2
+ o(1), (16)

where C̃α is defined for α > 0 and {lj}mj=1 as

C̃α =

∏m
j=1 Γ(lj + α)

Γ(ñ+mα)
. (17)

Substituting (16) and (6) into (15), we have

ln
p

(ñ)
NML(xñ)

p
(n)
NML(xñ)

= −m− 1

2
ln

ñ

2π
+

m∑
j=1

lj ln
lj
ñ
− ln

∏m
j=1 Γ(lj + 1/2)

Γ(ñ+m/2)
+ o(1),

where p
(n)
NML(xñ) =

∑
xnñ+1

p
(n)
NML(xn). Applying Stirling’s formula to ln Γ(ñ+m/2) expresses

the right hand side as

−
m∑
j=1

f(lj) + o(1),

where f is the function defined in Lemma 1.

To illustrate the degree to which the NML distribution depends on the horizon, take

l1 = ñ, lj = 0 for j = 2, · · · ,m. By Lemma 1, we then have ln p
(ñ)
NML(xñ) − ln p

(n)
NML(xñ) =

1
2(m− 1) ln 2 + o(1).

4. Asymptotic Minimax via Simpler Horizon-Dependence

We examine the asymptotic minimaxity of the Bayes mixture in (5). More specifically, we
investigate the minimax optimal hyperparameter

argmin
α

max
xn

ln
p(xn|θ̂(xn))

pB,α(xn)
(18)

2. For the Fisher information matrix I(θ) whose ijth element is given by (I(θ))ij = −
∑
x p(x|θ)

∂2 ln p(x|θ)
∂θi∂θj

=

δi,j/θj , the constant C̃1/2 coincides with
∫ √
|I(θ)|

∏m
j=1 θ

ljdθ. This proves that the asymptotic expres-
sion of the regret of the conditional NML (Grünwald, 2007, Equation (11.47), p.323) is valid for the
multinomial model with the full parameter set rather than the restricted parameter set discussed by
Grünwald (2007).
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and show that it is asymptotically approximated by

αn =
1

2
− ln 2

2

1

lnn
. (19)

As a function of (n1, · · · , nm−1), the regret of pB,α is

ln
p(xn|θ̂(xn))

pB,α(xn)
=

m∑
j=1

{nj lnnj − ln Γ(nj + α)}+ κ (20)

where nm = n−
∑m−1

j=1 nj and κ denotes a constant that does not depend on (n1, · · · , nm−1).
We first prove the following lemma (Appendix D).

Lemma 5 The possible worst-case sequences in (18) have l nonzero counts (l = 1, 2, · · · ,m),
each of which is bnl c or bnl c + 1 with all the other counts are zeros. Here b·c is the floor
function, the largest integer not exceeding the argument.

From this lemma, we focus on the regrets of the two extreme cases of xn consisting of a
single symbol repeated n times and xn with a uniform number n/m of each symbol j. Let
the regrets of these two cases be equal,

Γ(α)m−1Γ(n+ α) = Γ(n/m+ α)mmn. (21)

Equating the regrets of these two cases also equates the regrets of (n/l, · · · , n/l, 0, · · · , 0) for
1 ≤ l ≤ m up to o(1) terms, which is verified by directly calculating the regrets. Note that
equating the regrets of the m possible worst-case sequences leads to the least maximum
regret. This is because the regrets at the m possible worst-case sequences are not equal,
we can improve by reducing the regret at the actual worst-case sequence until it becomes
equal to the other cases.

Taking logarithms, using Stirling’s formula and ignoring diminishing terms in (21), we
have

(m− 1)

(
α− 1

2

)
lnn− (m− 1) ln Γ(α)−m

(
α− 1

2

)
lnm+ (m− 1)

ln 2π

2
= 0. (22)

This implies that the optimal α is asymptotically given by

αn '
1

2
− a

lnn
, (23)

for some constant a. Substituting this back into (22) and solving it for a, we obtain (19).

We numerically calculated the optimal hyperparameter defined by (18) for the Bernoulli
model (m = 2). Figure 1 shows the optimal α obtained numerically and its asymptotic
approximation in (19). We see that the optimal hyperparameter is well approximated by
αn in (19) for large n. Note here the slow convergence speed, O(1/ lnn) to the asymptotic
value, 1/2.

The next theorem shows the asymptotic minimaxity of αn (the second inequality in (24)).
We will examine the regret of αn numerically in Section 5.1.
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Figure 1: Minimax optimal hyperparameter α for sample size n

Theorem 6 For the multinomial model in (4), the Bayes mixture defined by the prior
Dir(αn, · · · , αn) is asymptotic minimax and satisfies

lnCn −M + o(1) ≤ ln
p(xn|θ̂(xn))

pB,αn(xn)
≤ lnCn + o(1), (24)

for all xn where M = (m−1) ln 2/2, and lnCn is the minimax regret evaluated asymptotically
in (6).

The proof is given in Appendix E.

5. Numerical Results

In this section, we numerically calculate the maximum regrets of several methods in the
Bernoulli model (m = 2). The following two subsections respectively examine horizon-
dependent algorithms based on Bayes mixtures with prior distributions depending on n
and last-step minimax algorithms, which are horizon-independent.

5.1 Optimal Conjugate Prior and Modified Jeffreys Prior

We calculated the maximum regrets of the Bayes mixtures in (5) with the hyperparameter
optimized by the golden section search and with its asymptotic approximation in (19). We
also investigated the maximum regrets of Xie and Barron’s modified Jeffreys prior which is
proved to be asymptotic minimax (Xie and Barron, 2000). The modified Jeffreys prior is
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defined by

q
(n)
MJ(θ) =

εn
2

{
δ

(
θ − 1

n

)
+ δ

(
θ − 1 +

1

n

)}
+ (1− εn)b1/2(θ),

where δ is the Dirac’s delta function and b1/2(θ) is the density function of the beta distribu-
tion with hyperparameters 1/2, Beta(1/2, 1/2), which is the Jeffreys prior for the Bernoulli
model. We set εn = n−1/8 as proposed by Xie and Barron (2000) and also optimized εn by
the golden section search so that the maximum regret

max
xn

ln
p(xn|θ̂(xn))∫
p(xn|θ)q(n)

MJ(θ)dθ

is minimized.
Figure 2(a) shows the maximum regrets of these Bayes mixtures: asymptotic and opti-

mized Beta refer to mixtures with Beta priors (Section 4), and modified Jeffreys methods
refer to mixtures with a modified Jeffreys prior as discussed above. Also included for com-
parison is the maximum regret of the Jeffreys mixture (Krichevsky and Trofimov, 1981),
which is not asymptotic minimax. To better show the differences, the regret of the NML
distribution, lnCn, is subtracted from the maximum regret of each distribution.

We see that the maximum regrets of these distributions, except the one based on Jef-
freys prior, decrease toward the regret of NML as n grows as implied by their asymptotic
minimaxity. The modified Jeffreys prior with the optimized weight performs best of these
strategies for this range of the sample size. For moderate and large sample sizes (n > 100),
the asymptotic minimax hyperparameter, which can be easily evaluated by (19), performs
almost as well as the optimized strategies which are not known analytically. Note that
unlike the NML, Bayes mixtures provide the conditional probabilities p(xñ | x1, . . . , xñ−1)
even if the prior depends on n. The time complexity for online prediction will be discussed
in Section 5.3.

5.2 Last-Step Minimax Algorithms

The last-step minimax algorithm is an online prediction algorithm that is equivalent to the
so called sequential normalized maximum likelihood method in the case of the multinomial
model (Rissanen and Roos, 2007; Takimoto and Warmuth, 2000). A straightforward gener-
alization, which we call the k-last-step minimax algorithm, normalizes p(xt|θ̂(xt)) over the
last k ≥ 1 steps to calculate the conditional distribution of xtt−k+1 = {xt−k+1, · · · , xt},

pkLS(xtt−k+1|xt−k) =
p(xt|θ̂(xt))

Lt,k
,

where Lt,k =
∑

xtt−k+1
p(xt|θ̂(xt)). Although this generalization was mentioned by Takimoto

and Warmuth (2000), it was left as an open problem to examine how k affects the regret of
the algorithm.

Our main result (Theorem 2) tells that k-last-step minimax algorithm with k indepen-
dent of n is not asymptotic minimax. We numerically calculated the regret of the k-last-step
minimax algorithm with k = 1, 10, 100 and 1000 for the sequence xn = 1010101010 · · · since
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Figure 2: Maximum regret for sample size n. The regret of the NML distribution, lnCn, is
subtracted from the maximum regret of each strategy. The first two algorithms
(from the top) in each panel are from earlier work, while the remaining ones are
novel.

it is infeasible to evaluate the maximum regret for large n. The regret for this particular
sequence provides a lower bound for the maximum regret. Figure 2(b) shows the regret
as a function of n together with the maximum regret of the Jeffreys mixture. The theo-
retical asymptotic regret for the Jeffreys mixture is ln 2

2 ≈ 0.34 (Krichevsky and Trofimov,
1981), and the asymptotic bound for the 1-last-step minimax algorithm is slightly better,
1
2

(
1− ln π

2

)
≈ 0.27 (Takimoto and Warmuth, 2000). We can see that although the regret

decreases as k grows, it still increases as n grows and does not converge to that of the NML
(zero in the figure).

5.3 Computational Complexity

As mentioned above, in the multinomial model, the NML probability of individual sequences
of length n can be evaluated in linear time (Kontkanen and Myllymäki, 2007). However,
for prediction purposes in online scenarios, we need to compute the predictive probabili-

ties p
(n)
NML(xt|xt−1) by summing over all continuations of xt. Computing all the predictive

probabilities up to n by this method takes the time complexity of O(mn). For all the other
algorithms except NML, the complexity is O(n) when m is considered fixed. More specifi-
cally, for Bayes mixtures, the complexity is O(mn) and for k-laststep minimax algorithms,
the complexity is O(mkn).

We mention that it was recently proposed that the computational complexity of the
prediction strategy based on NML may be significantly reduced by representing the NML
distribution as a Bayes-like mixture with a horizon-dependent prior (Barron et al., 2014).
The authors show that for a parametric family with a finite-valued sufficient statistic, the

11
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exact NML is achievable by a Bayes mixture with a signed discrete prior designed depending
on the horizon n. The resulting prediction strategy may, however, require updating as many
as n/2 + 1 weights on each prediction step even in the Bernoulli case, which leads to total
time complexity of order n2.

6. Conclusions

We characterized the achievability of asymptotic minimax coding regret in terms of horizon-
dependency. The results have implications on probabilistic prediction, data compression,
and model selection based on the MDL principle, all of which depend on predictive mod-
els or codes that achieve low logarithmic losses or short code-lengths. For multinomial
models, which have been very extensively studied, our main result states that no horizon-
independent strategy can be asymptotic minimax. A weaker result involving a stronger
minimax notion is given for more general models. Future work can focus on obtaining
precise results for different model classes where achievability of asymptotic minimaxity is
presently unknown.

Our numerical experiments show that several easily implementable Bayes and other
strategies are nearly optimal. In particular, a novel predictor based on a simple asymptoti-
cally optimal horizon-dependent Beta (or Dirichlet) prior, for which a closed form expression
is readily available, offers a good trade-off between computational cost and worst-case regret.
Overall, differences in the maximum regrets of many of the strategies under the Bernoulli
model (Figure 2) are small (less than 1 nat). Such small differences may nevertheless be
important from a practical point of view. For instance, it has been empirically observed
that slight differences in the Dirichlet hyperparameter, leading to relatively small changes
in the marginal probabilities, can be significant in Bayesian network structure learning (Si-
lander et al., 2007). Furthermore, the differences are likely to be greater under multinomial
(m > 2) and other models, which is another direction for future work.
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Appendix A. Proof of Lemma 1

Proof The function f is non-decreasing since f ′(x) = ψ(x + 1/2) − lnx ≥ 0 where
ψ(x) = (ln Γ(x))′ is the digamma function (Merkle, 1998). limx→∞ f(x) = 0 is derived
from Stirling’s formula,

ln Γ(x) =

(
x− 1

2

)
lnx− x+

1

2
ln(2π) +O

(
1

x

)
.

It immediately follows from f(0) = − ln 2
2 and this limit that − ln 2

2 ≤ f(x) < 0 for x ≥ 0.

12
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Appendix B. Proof of Theorem 3

Proof Under Assumption 1, we suppose (14) holds for all sufficiently large n and derive
contradiction. The inequalities in (14) are equivalent to

−M + o(1) ≤ ln
p

(n)
NML(xn)

g(xn)
≤ o(1).

For a horizon-independent strategy g we can expand the marginal probability g(xñ) in terms
of the following sum and apply the above lower bound to obtain

g(xñ) =
∑
xnñ+1

g(xn) =
∑
xnñ+1

p
(n)
NML(xn)e

− ln
p
(n)
NML

(xn)

g(xn)

≤ eM+o(1)
∑
xnñ+1

p
(n)
NML(xn) (25)

for all xñ. Then we have

max
xñ

ln
p

(ñ)
NML(xñ)

g(xñ)
= max

xñ

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

+ ln

∑
xnñ+1

p
(n)
NML(xn)

g(xñ)


≥ max

xñ

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

−M + o(1)

≥ ε+ o(1),

where ε = M −M > 0. The first inequality follows from (25) and the second inequality

follows from Assumption 1, which implies maxxñ ln
p
(ñ)
NML(xñ)∑

xn
ñ+1

p
(n)
NML(xn)

≥M + o(1). The above

inequality contradicts the asymptotic minimax optimality in (14) with n replaced by ñ.

Appendix C. Proof of Lemma 4

Proof In order to prove Lemma 4, we modify and extend the proof in Xie and Bar-
ron (2000) for the asymptotic evaluation of lnCn = ln

∑
xn p(x

n|θ̂(xn)) given by (6) to

that of lnCn|xñ = ln
∑

xnñ+1
p(xn|θ̂(xn)), which is conditioned on the first ñ samples, xñ.

More specifically, we will prove the following inequalities. Here, pB,w denotes the Bayes
mixture defined by the prior w(θ), pB,1/2 and pB,αn are those with the Dirichlet priors,

Dir(1/2, · · · , 1/2) (Jeffreys mixture) and Dir(αn, · · · , αn) where αn = 1
2 −

ln 2
2

1
lnn respec-

tively.

m− 1

2
ln

n

2π
+ C̃ 1

2
+ o(1) ≤

∑
xnñ+1

pB,1/2(xnñ+1|xñ) ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
(26)
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≤ max
w

∑
xnñ+1

pB,w(xnñ+1|xñ) ln
p(xn|θ̂(xn))

pB,w(xnñ+1|xñ)

= max
w

min
p

∑
xnñ+1

pB,w(xnñ+1|xñ) ln
p(xn|θ̂(xn))

p(xnñ+1|xñ)

≤ min
p

max
xnñ+1

ln
p(xn|θ̂(xn))

p(xnñ+1|xñ)

= ln
∑
xnñ+1

p(xn|θ̂(xn)) = lnCn|xñ

≤ max
xnñ+1

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)

≤ m− 1

2
ln

n

2π
+ C̃ 1

2
+ o(1), (27)

where the first equality follows from Gibbs’ inequality, and the second equality as well as
the second to last inequality follow from the minimax optimality of NML (Shtarkov, 1987).
Let us move on to the proof of inequalities (26) and (27). The rest of the inequalities
follow from the definitions and from the fact that maximin is no greater than minimax. To

derive both inequalities, we evaluate ln p(xn|θ̂(xn))
pB,α(xnñ+1|xñ)

for the Bayes mixture with the prior

Dir(α, · · · , α) asymptotically. It follows that

ln
p(xn|θ̂(xn))

pB,α(xnñ+1|xñ)
= ln

∏m
j=1

(nj
n

)nj
Γ(ñ+mα)
Γ(n+mα)

∏m
j=1

Γ(nj+α)
Γ(lj+α)

=

m∑
j=1

nj lnnj − n lnn−
m∑
j=1

ln Γ(nj + α) + ln Γ(n+mα) + ln C̃α

=
m∑
j=1

{
nj lnnj − nj − ln Γ(nj + α) +

1

2
ln(2π)

}

+

(
mα− 1

2

)
lnn− (m− 1)

1

2
ln(2π) + ln C̃α + o(1), (28)

where C̃α is defined in (17) and we applied Stirling’s formula to ln Γ(n+mα).
Substituting α = 1/2 into (28), we have

ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
=

m∑
j=1

(
cnj +

ln 2

2

)
+
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1),

where

ck = k ln k − k − ln Γ(k + 1/2) +
1

2
lnπ, (29)

for k ≥ 0. Since from Lemma 1, − ln 2
2 < ck,

ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
>
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1),
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holds for all xn, which proves the inequality (26).

Substituting α = αn = 1
2 −

ln 2
2

1
lnn into (28), we have

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
=

m∑
j=1

{
nj lnnj − nj − ln Γ(nj + αn) +

1

2
lnπ

}
+
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1).

Assuming that the first l njs (j = 1, · · · , l) are finite and the rest are large (tend to infinity
as n→∞) and applying Stirling’s formula to ln Γ(nj + αn) (j = l + 1, · · · ,m), we have

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
=

l∑
j=1

cnj +
m∑

j=l+1

dnj +
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1), (30)

where ck is defined in (29) and

dk =
ln 2

2

(
ln k

lnn
− 1

)
for 1 < k ≤ n. Since ck ≤ 0 follows from Lemma 1 and dk ≤ 0, we obtain

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
≤ m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1), (31)

for all xn, which proves the inequality (27).

Appendix D. Proof of Lemma 5

Proof The summation in (20) is decomposed into three parts,

{n1 lnn1 − ln Γ(n1 + α)}+ {(n′ − n1) ln(n′ − n1)− ln Γ(n′ − n1 + α)}

+
m−1∑
j=2

{nj lnnj − ln Γ(nj + α)} ,

where n′ = n−
∑m−1

j=2 nj . We analyze the regret of the multinomial case by reducing it to
the binomial case since the summation in the above expression is constant with respect to
n1. Hence, we focus on the regret of the binomial case with sample size n′,

R(z) = z ln z − ln Γ(z + α) + (n′ − z) ln(n′ − z)− ln Γ(n′ − z + α),

as a function of 0 ≤ z ≤ n′

2 because of the symmetry. We prove that the maximum of R

is attained at the boundary (z = 0) or at the middle z = n′

2 . We will use the following
inequalities for z ≥ 0, (

Ψ′(z)
)2

+ Ψ(2)(z) > 0, (32)
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and

2
(
−Ψ(2)(z)

)3/2
−Ψ(3)(z) > 0, (33)

which are directly obtained from Theorem 2.2 of Batir (2007).
The derivative of R is

R′(z) = h(z)− h(n′ − z),

where
h(z) = ln z −Ψ(z + α).

We can prove that h′(z) = 1
z − Ψ′(z + α) has at most one zero since (32) shows that the

derivative of the function z − 1
Ψ′(z+α) is positive, which implies that it is monotonically

increasing from −1/Ψ′(α) < 0 and hence has at most one zero coinciding with the zero of
h′. Noting also that limz→0 h(z) = −∞ and limz→∞ h(z) = 0, we see that there are the
following two cases: (a) h(z) is monotonically increasing in the interval (0, n′), and (b) h(z)
is unimodal with a unique maximum in (0, n′). In the case of (a), R′ has no zero in the
interval (0, n′/2), which means that R is V-shaped, takes global minimum at z = n′

2 , and
has the maxima at the boundaries. In the case of (b), R′(z) = 0 has at most one solution
in the interval (0, n′/2), which is proved as follows.

The higher order derivatives of R are

R(2)(z) = h′(z) + h′(n′ − z),
R(3)(z) = h(2)(z)− h(2)(n′ − z),

where h(2)(z) = − 1
z2
− Ψ(2)(z + α). Let the unique zero of h′(z) be z∗ (if there is no

zero, let z∗ = ∞). If z∗ < n′

2 , since for z∗ ≤ z < n′/2, h′(z) ≤ 0 and h′(n′ − z) ≤ 0,

we have R(2)(z) ≤ 0, which means that R′(z) is monotonically decreasing to R′
(
n′

2

)
= 0.

That is, R′(z) > 0 for z∗ ≤ z < n′

2 . Hence, we focus on z ≤ z∗ and prove that R′(z)
is concave for z ≤ z∗, which, from limz→0R

′(z) = −∞, means that R′(z) has one zero if

R(2)
(
n′

2

)
= 2h′

(
n′

2

)
< 0, and R′(z) has no zero otherwise.3

For z ≤ z∗, since 1
z > Ψ′(z + α) holds, we have

h(2)(z) = − 1

z2
−Ψ(2)(z + α) < −Ψ′(z + α)2 −Ψ(2)(z + α) < 0, (34)

from (32). Define h̃(z) = z − 1√
−Ψ(2)(z+α)

, for which h̃(z) = 0 is equivalent to h(2)(z) = 0.

Then h̃(0) < 0 and it follows from (33) that

h̃′(z) = 1− Ψ(3)(z + α)

2
(
−Ψ(2)(z + α)

)3/2 > 0,

which implies that h̃(z) is monotonically increasing, and hence that h(2)(z) = 0 has at most
one solution. Let z∗∗ be the unique zero of h(2)(z) (if there is no zero, let z∗∗ =∞). Noting

3. In case (b) where h(z) is unimodal with a maximum in (0, n′), the condition that h′
(
n′

2

)
≥ 0 is

equivalent to z∗ ≥ n′

2
.
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that limz→0 h
(2)(z) = −∞, we see that h(2)(z) < 0 for z < z∗∗ and h(2)(z) > 0 for z > z∗∗.

From (34), z∗ < z∗∗ holds. For z < z∗∗, since h(2)(z) < 0 implies that − 1
z2
< Ψ(2)(z + α),

and hence 1
z >

√
−Ψ(2)(z + α) holds, it follows from (33) that

h(3)(z) =
2

z3
−Ψ(3)(z + α) > 2

(
−Ψ(2)(z + α)

)3/2
−Ψ(3)(z + α) > 0.

This means that h(2)(z) is monotonically increasing for z < z∗∗. Therefore, h(2)(z) is
negative and monotonically increasing for z < z∗∗, implying that R(3)(z) has no zero for
z ≤ z∗∗ since h(2)(z) < h(2)(n′ − z), that is, R(3)(z) < 0 holds. Thus R′(z) is concave for
z ≤ z∗ < z∗∗, and hence R′(z) has at most one zero between 0 and z∗.

Note that limz→0R
′(z) = −∞ and R′(n′/2) = 0. If R′(z) = 0 has no solution in

(0, n′/2), that is, if h′
(
n′

2

)
= 2

n′ − Ψ′
(
n′

2 + α
)
≥ 0, the regret function looks similarly to

the case of (a), and the maxima are attained at boundaries. If R′(z) = 0 has a solution

in (0, n′/2), that is, if 2
n′ − Ψ′

(
n′

2 + α
)
< 0, R′ changes its sign around the solution from

negative to positive as z grows. In this case, R is W-shaped with possible maximum at the
boundaries or at the middle.

We see that in any case, the maximum is always at the boundary or at the middle.
Therefore, as a function of the count n1, R(n1) is maximized at n1 = 0 or at n1 = bn′2 c (or

n1 = bn′2 c+1 if n′ is odd). The same argument applies to optimizing nj (j = 2, 3, · · · ,m−1).
Thus, if the counts are such that for any two indices, i and j, ni > nj + 1 > 1, then we can
increase the regret either by replacing one of them by the sum, ni+nj and the other one by
zero or by replacing them by new values n′i and n′j such that |ni − nj | ≤ 1. This completes
the proof of the lemma.

Appendix E. Proof of Theorem 6

Proof The proof of Lemma 4 itself applies to the case where ñ = 0 and lj = 0 for

j = 1, · · · ,m as well. Since, in this case, C̃1/2 = ln Γ(1/2)m

Γ(m/2) , the inequality (31) in the proof

gives the right inequality in (24).
Furthermore, in (30), we have

l∑
j=1

cnj +

m∑
j=l+1

dnj > −(m− 1)
ln 2

2
+ o(1). (35)

This is because, from Lemma 1 and definition, cnj , dnj > − ln 2
2 and for at least one of j, nj is

in the order of n since
∑n

j=1 nj = n, which means that dnj = o(1) for some j. Substituting

(35) into (30), we obtain the left inequality in (24) with M = 1
2(m− 1) ln 2.
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T. Silander, T. Roos, and P. Myllymäki. Learning locally minimax optimal Bayesian net-
works. International Journal of Approximate Reasoning, 51(5):544–557, 2010.

J. Takeuchi and A. R. Barron. Asymptotically minimax regret for exponential families. In
Proc. 20th Symposium on Information Theory and its Applications, pages 665–668, 1997.

E. Takimoto and M. K. Warmuth. The last-step minimax algorithm. In Algorithmic Learn-
ing Theory, Lecture Notes in Computer Science, volume 1968, pages 279–290, 2000.

Q. Xie and A. R. Barron. Asymptotic minimax regret for data compression, gambling, and
prediction. IEEE Trans. Information Theory, 46(2):431–445, 2000.

19


	Introduction
	Preliminaries
	(Un)achievability of Asymptotic Minimax Regret
	Asymptotic Minimax via Simpler Horizon-Dependence
	Numerical Results
	Optimal Conjugate Prior and Modified Jeffreys Prior
	Last-Step Minimax Algorithms
	Computational Complexity

	Conclusions
	Proof of Lemma 1
	Proof of Theorem 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Theorem 6

