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PREFACE

The Eighth Workshop on Information Theoretic Methods in Science and Engineering
(WITMSE 2015) took place on June 24–26, 2015, in Copenhagen, Denmark. The workshop
was organized jointly by the Department of Computer Science of the University of Helsinki,
the Helsinki Institute for Information Technology HIIT, Niels Brock, Copenhagen Business
College, and the Danish Technical University.

The WITMSE series started in 2008 and has continued annually at locations in
Tampere (2008–2009), Helsinki (2011), Amsterdam (2012), Tokyo (2013), and Honolulu
(2014). As the title of the workshop suggests, WITMSE seeks speakers from a variety of
disciplines with emphasis on both theory and applications of information and coding theory
with special interest in modeling. Since the beginning our plan has been, and still is, to
keep the number of the participants small and to ensure the highest possible quality, which
has been accomplished by inviting distinguished scholars as speakers.

The workshop programme included seventeen invited talks, and two plenary talks
that were given by Steffen Lauritzen and Gerhard Kramer. In addition there was a mini-
tutorial on the Minimum Description Length principle by Teemu Roos, and an informal
recent results session.

Outside the technical sessions the program included a guided tour and a welcom-
ing reception at the historial Rundetårn tower and a banquet dinner at the Trekroner
sea fortress. An optional excursion to Roskilde Viking Ship Museum and Cathedral was
organized on Saturday, June 27.

We would like to thank all the participants to the workshop. We hope to see many
of you again next year.

October 8, 2015
San Jose, Copenhagen, and Helsinki

Workshop Co-Chairs

Jorma Rissanen,
Peter Harremoës,

Søren Forchhammer,
Teemu Roos,

& Petri Myllymäki
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UPPER BOUNDS ON THE CAPACITY OF FIBER CHANNELS

Gerhard Kramer

Technical University of Munich

ABSTRACT

The capacity of optical fiber channels seems difficult to compute or even bound. The best capacity lower bounds are
based on numerical simulations using the split-step Fourier method. We review a recent capacity upper bound that applies
two basic tools to this method: maximum entropy under a correlation constraint and Shannon’s entropy power inequality
(EPI). The main insight is that the non-linearity that is commonly used to model optical fiber propagation does not change
the differential entropy of a signal. As a result, the spectral efficiency of fiber is at most log(1 + SNR), where SNR is the
receiver signal-to-noise ratio. The results extend to other channels, including multi-mode fiber.
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PROPER LOCAL SCORING RULES

Steffen Lauritzen

University of Copenhagen

ABSTRACT

A scoring rule is a loss function measuring the quality of a quoted probability distribution Q for a random variable X , in
the light of the realized outcome x of X; it is proper if the expected score, under any distribution P for X , is minimized
by quoting Q = P . Using the fact that any differentiable proper scoring rule on a finite sample space X is the gradient
of a concave homogeneous function, we consider when such a rule can be local in the sense of depending only on the
probabilities quoted for points in a nominated neighborhood of x. Under mild conditions, we characterize such a proper
local scoring rule in terms of a collection of homogeneous functions on the cliques of an undirected graph on the space X .
We also mention proper scoring rules for continuous distributions on the real line. Here we allow further dependence on
a finite number m of derivatives of the density at the outcome, and describe a large class of such m-local proper scoring
rules.
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REGULAR HILBERG PROCESSES:
NONEXISTENCE OF UNIVERSAL REDUNDANCY RATIOS

Łukasz Dębowski

Institute of Computer Science, Polish Academy of Sciences,
ul. Jana Kazimierza 5, 01-248 Warszawa, POLAND, ldebowsk@ipipan.waw.pl

ABSTRACT

A regular Hilberg process is a stationary process that sat-
isfies both a power-law growth of topological entropy and
a hyperlogarithmic growth of maximal repetition. Such
processes may arise in statistical modeling of natural lan-
guage. A puzzling property of ergodic regular Hilberg
processes is that the length of the Lempel-Ziv code is or-
ders of magnitude larger than the block entropy. This is
possible since regular Hilberg processes have a vanishing
entropy rate. In this paper, we provide some constructive
example of regular Hilberg processes, which we call ran-
dom hierarchical association (RHA) processes. We show
that for those RHA processes, the expected length of any
uniquely decodable code is orders of magnitude larger
than the block entropy of the ergodic component of the
RHA process. Our proposition complements the classi-
cal result by Shields concerning nonexistence of universal
redundancy rates.

1. REGULAR HILBERG PROCESSES

Consider a measurable space of infinite sequences (AN,AN)
from a finite alphabet A ⊂ N. The random symbols will
be denoted as ξk : AN 3 (xi)i∈N 7→ xk ∈ A, whereas
blocks of symbols will be denoted as xk:l = (xi)

l
i=k. We

define two functions of an individual sequence ξ1:∞. The
first one is the maximal repetition

L(ξ1:k) := max {m : x1:m is repeated in ξ1:k} (1)

[1, 2, 3, 4, 5], whereas the dual one is the topological en-
tropy

Htop(m|ξ1:∞) := log card {x1:m : x1:m @ ξ1:∞} , (2)

where we write a @ b when a is a subword of b.
The maximal repetition and the topological entropy

are linked by the following simple proposition:

Theorem 1 ([6]) If Htop(m|ξ1:∞) < log(k −m+ 1)
then L(ξ1:k) ≥ m.

In particular, using the Big O notation, we have

Htop(m|ξ1:∞) = O
(
mβ
)
⇒ L(ξ1:m) = Ω

(
(logm)1/β

)
,

L(ξ1:m) = O
(

(logm)1/β
)
⇒ Htop(m|ξ1:∞) = Ω

(
mβ
)
.

There is a hypothesis, based on experimental measure-
ments of maximal repetition, that for texts in natural lan-
guage (such as English, French and German), scaling

L(ξ1:m) = Θ
(

(logm)1/β
)
, (3)

Htop(m|ξ1:∞) = Θ
(
mβ
)

(4)

holds with β ≈ 0.5 [6, 7]. Moreover, the lower bound
for the maximal repetition and the upper bound for the
topological entropy seem to be text-independent.

The goal of the present paper is to investigate some ab-
stract stationary processes that satisfy conditions (3) and
(4) almost surely. We hope that our examples may inspire
some progress in statistical modeling of natural language,
as explained in the final Section 3. Throughout this pa-
per we identify stationary processes with their distribu-
tions (stationary measures) and we use terms “measure”
and “process” interchangeably.

Definition 1 (a variation of a definition in [7]) A station-
ary measure µ on the measurable space of infinite se-
quences (AN,AN) is called a regular Hilberg process with
an exponent β ∈ (0, 1) if it satisfies conditions (3)–(4)
µ-almost surely, where the lower bound for the maximal
repetition and the upper bound for the topological entropy
are uniform in ξ1:∞.

We call these processes “regular Hilberg processes” to
commemorate the research by Hilberg [8], who was the
first one to notice the power-law scaling of the entropy of
natural language.

It can be seen easily that so defined regular Hilberg
processes have a vanishing entropy rate. To demonstrate
this result, let us introduce some notation. The expectation
with respect to a stationary measure µ is denoted as Eµ.
We also use shorthand µ(x1:m) = µ(ξ1:m = x1:m). The
block entropy of measure µ is

Hµ(m) := Eµ [− logµ(ξ1:m)] , (5)

and the entropy rate of µ is the limit

hµ := inf
m∈N

Hµ(m)

m
= lim
m→∞

Hµ(m)

m
. (6)

Now will show the mentioned result.

Theorem 2 hµ = 0 for a regular Hilberg process µ.
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Proof: The argument involves the random ergodic mea-
sure F = µ(·|I), where I is the shift-invariant algebra
[9, 10]. By the ergodic theorem [9], we have µ-almost
surely

HF (m) ≤ Htop(m|ξ1:∞), (7)

so hF = 0, whereas as shown in [10] we have

hµ = Eµ hF , (8)

from which hµ = 0 follows. �

The vanishing entropy rate is equivalent to the process
being asymptotically deterministic and infinitely compress-
ible in the following sense. Firstly, the process µ will be
called asymptotically deterministic when each symbol ξi
is µ-almost surely a function of the infinite past ξ−∞:i−1,
cf. [11]. Secondly, the process µ will be called infinitely
compressible when for every universal code C the com-
pression rate |C(ξ1:m)| /m tends to zero µ-almost surely
for the block length m tending to infinity.

Let us note, however, that processes with a vanishing
entropy rate may be practically very difficult to predict or
to compress if we do not know their exact distribution.
Ergodic regular Hilberg processes fall exactly under this
case. In fact, these processes have a notable counterin-
tuitive compression property. Namely, the length of the
Lempel-Ziv code for a block ξ1:m, which is a universal
code [12], is orders of magnitude larger than the block en-
tropy Hµ(m). Precisely, we have:

Theorem 3 Let |C(ξ1:m)| be the length of the Lempel-
Ziv code for a block ξ1:m. For an ergodic regular Hilberg
process µ with exponent β, µ-almost surely

|C(ξ1:m)| /Hµ(m) = Ω

(
m1−β

(logm)1/β−1

)
. (9)

Proof: By ergodicity, we have µ = F . Thus, by (7) and
(4), we obtain

Hµ(m) = HF (m) ≤ Htop(m|ξ1:∞) = O
(
mβ
)
. (10)

On the other hand, the length of the Lempel-Ziv code
|C(ξ1:m)| for a block ξ1:m, by (3), µ-almost surely sat-
isfies

|C(ξ1:m)| ≥ m

L(ξ1:m) + 1
log

m

L(ξ1:m) + 1

= Ω

(
m

(logm)1/β−1

)
. (11)

The first inequality in (11) stems from a simple obser-
vation in [7] that the length of the Lempel-Ziv code is
greater than V log V , where V is the number of Lempel-
Ziv phrases, whereas the Lempel-Ziv phrases may not be
longer than the maximal repetition plus 1. �

In view of Theorem 3, we cannot estimate the block
entropy of an ergodic regular Hilberg process by the length

of the Lempel-Ziv code! We will show that a similar state-
ment holds in expectation for an arbitrary uniquely de-
codable code and some specific regular Hilberg processes.
These processes, called RHA process, will be introduced
in Section 2. As we will see later in Section 3, our im-
possibility result for the RHA processes strengthens the
classical result by Shields concerning nonexistence of uni-
versal redundancy rates [13].

2. THE RHA PROCESSES

In this section we will construct some examples of regular
Hilberg processes. The processes will be called random
hierarchical association (RHA) processes. The RHA pro-
cesses are parameterized by certain free parameters which
we will call perplexities (a name borrowed from compu-
tational linguistics). Approximately, perplexity kn is the
number of distinct blocks of length 2n that appear in the
process realization. It occurs that controlling perplexities,
we can control the value of block entropy and force the
entropy rate to be zero. It occurs as well that we can con-
trol the value of the topological entropy and the maximal
repetition to obtain regular Hilberg processes.

The RHA processes are formed in two steps. First,
we sample recursively random pools of kn distinct blocks
of length 2n, which are formed by concatenation of ran-
domly selected kn pairs chosen from kn−1 distinct blocks
of length 2n−1 (the recursion stops at blocks of length 1,
which are fixed symbols). Second, we obtain an infinite
sequence of random symbols by concatenating blocks of
lengths 20, 21, 22, ... randomly chosen from the respective
pools. As a result there cannot be more that k2n distinct
blocks of length 2n that appear the final process realiza-
tion. The selection of these blocks is however random and
we do not know them a priori.

Now we write down the construction using symbols.
Step 1: Formally, let perplexities (kn)n∈{0}∪N be some

sequence of strictly positive natural numbers that satisfy

kn−1 ≤ kn ≤ k2n−1. (12)

Next, for each n ∈ N, let (Lnj , Rnj)j∈{1,...,kn} be an
independent random combination of kn pairs of numbers
from the set {1, ..., kn−1} drawn without repetition. That
is, we assume that each pair (Lnj , Rnj) is different, the el-
ements of pairs may be identical (Lnj = Rnj), and the se-
quence (Lnj , Rnj)j∈{1,...,kn} is sorted lexicographically.
Formally, we assume that random variables Lnj and Rnj
are supported on some probability space (Ω,J , P ) and
have the uniform distribution

P ((Ln1, Rn1, ..., Lnkn , Rnkn) = (ln1, rn1, ..., lnkn , rnkn))

=

(
k2n−1
kn

)−1
. (13)

Subsequently we define random variables

Y 0
j = j, j ∈ {1, ..., k0} , (14)

Y nj = Y n−1Lnj
× Y n−1Rnj

, j ∈ {1, ..., kn} , n ∈ N, (15)
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where a × b denotes concatenation. Hence Y nj are kn
distinct blocks of 2n natural numbers, selected by some
sort of random hierarchical concatenation.

Step 2: Variables Y nj will be the building blocks of yet
another process. Let (Cn)n∈{0}∪N be independent ran-
dom variables, independent from (Lnj , Rnj)n∈N,j∈{1,...,kn},
with uniform distribution

P (Cn = j) = 1/kn, j ∈ {1, ..., kn} . (16)

Definition 2 The random hierarchical association (RHA)
process X with perplexities (kn)n∈{0}∪N is defined as

X = Y 0
C0
× Y 1

C1
× Y 2

C2
× ... . (17)

This completes the construction of the RHA processes but
it is not the end of our story yet.

It is convenient to define a few more random variables
for the RHA process. First, sequence X will be parsed
into a sequence of numbers Xj , where

X = X1 ×X2 ×X3 × ..., (18)

and, second, we denote blocks starting at any position as

Xk:l = Xk ×Xk+1 × ...×Xl. (19)

The RHA processes defined in Definition 2 are not sta-
tionary but they possess a stationary mean, which is a con-
dition related to asymptotic mean stationarity. Let us in-
troduce shift operation T : AN 3 (xi)i∈N 7→ (xi+1)i∈N ∈
AN. We recall this definition:

Definition 3 A measure ν on (AN,AN) is called asymp-
totically mean stationary (AMS) if limits

µ(A) := lim
N→∞

1

N

N∑

i=1

ν(T−iA) (20)

exist for every event A ∈ AN [14].

For an AMS measure ν, function µ is a stationary measure
on (AN,AN), called the stationary mean of ν. Moreover,
measures µ and ν are equal on the shift invariant algebra
I =

{
A ∈ AN : T−1A = A

}
, i.e., µ(A) = ν(A) for all

A ∈ I.
Now, let A+ =

⋃
n∈N An. There is a related relaxed

condition of asymptotic mean stationarity:

Definition 4 A measure ν on (AN,AN) is called asymp-
totically mean stationary with respect to blocks (AMSB)
if limits

µ(x1:m) := lim
N→∞

1

N

N∑

i=1

ν(ξi:i+m−1 = x1:m) (21)

exist for every block x1:m ∈ A+.

For an AMSB measure ν over a finite alphabet A, func-
tion µ, extended via µ(ξ1:m = x1:m) := µ(x1:m), is
also a stationary measure on (AN,AN). We shall con-
tinue to call this µ a stationary mean of ν. However, an

AMSB measure need not be AMS, cf. [15, Example 6.3].
In particular, for an AMSB measure ν we need not have
µ(A) = ν(A) for shift invariant events A ∈ I.

It turns out that the RHA processes are AMSB.

Theorem 4 The RHA processes are AMSB. In particular,
for m ≤ 2n and k ∈ N, the stationary mean is

µ(x1:m) =
1

2n

2n−1∑

j=0

P (Xk2n+j:k2n+j+m−1 = x1:m).

(22)

We suppose that the RHA processes are also AMS but
we could not prove it so far. However, we have been able
to show that certain RHA processes are regular Hilberg
processes:

Theorem 5 For perplexities

kn =
⌊
exp

(
2βn
)⌋
, (23)

where β ∈ (0, 1), the stationary mean µ of the RHA pro-
cess constitutes a regular Hilberg process with the expo-
nent β, whereas its block entropy is sandwiched by

C1m

(logm)α
≤ Hµ(m) ≤ C2m

(
log logm

logm

)α
, (24)

where α = 1/β − 1.

The measure µ for perplexities (23) is nonergodic and
the entropy of the shift invariant algebra Hµ(I), as de-
fined in [11], is infinite. If we need an ergodic process,
however, we may consider the random ergodic measure
F = µ(·|I). The measure F is µ-almost surely an ergodic
regular Hilberg process with the exponent β.

3. CONCLUDING REMARKS

Having Theorem 5, we may return to the question of nonex-
istence of universal redundancy rates. Shields [13] showed
that for any uniquely decodable code C and any sublinear
function ρ(m) = o(m) there exists such an ergodic source
F that

lim sup
m→∞

[EF |C(ξ1:m)| −HF (m)− ρ(m)] > 0. (25)

Shields’ result concerns nonexistence of a universal sub-
linear bound for the difference EF |C(ξ1:m)| − HF (m).
Some way of strengthening this result is to investigate ra-
tio EF |C(ξ1:m)| /HF (m). Although this ratio is asymp-
totically equal to 1 for universal codes and processes with
a positive entropy rate hF > 0, Shields’ result does not
predict how the ratio behaves for processes with a vanish-
ing entropy rate hF = 0.

Now we will show that there may be no universal sub-
linear bound for the ratio EF |C(ξ1:m)| /HF (m), either.
Precisely, we obtain a weaker result in expectation:

9



Theorem 6 Let |C(ξ1:m)| be the length of an arbitrary
uniquely decodable code for a block ξ1:m. For the sta-
tionary mean µ of the RHA process with perplexities (23)
and its random ergodic measure F = µ(·|I), we have

Eµ
EF |C(ξ1:m)|
HF (m)

= Ω

(
m1−β

(logm)1/β−1

)
, (26)

Ratio (26) can be larger than any function o(m1−ε).

Proof: The claim follows by (7), (4), (24), and the source
coding inequality

EµEF |C(ξ1:m)| = Eµ |C(ξ1:m)| ≥ Hµ(m). (27)

�

We hope that our example of the RHA processes may
also stimulate some progress in statistical modeling of nat-
ural language. Let us recall that Hilberg [8] replotted
Shannon’s seminal estimates of block entropy of printed
English [16] in a doubly logarithmic scale and observed
relationship

Hµ(m) = Θ(mβ), (28)

which implies vanishing entropy rate hµ = 0. So far we
have not been aware of any explicit construction of a sta-
tionary process with a similar asymptotics of block en-
tropy. In [17, 18], some stationary processes were con-
structed which satisfy a relaxed condition

2Hµ(m)−Hµ(2m) = Θ
(
mβ
)

(29)

with an entropy rate hµ > 0. In contrast, in this paper, we
have introduced the class of RHA processes which satisfy
the regular Hilberg conditions (3)–(4) and therefore they
obey hµ = 0. Possibly, the ergodic components of these
processes satisfy also condition (28).

Seen from a larger perspective, we have shown that
processes satisfying regular Hilberg conditions (3) and (4)
arise in a quite simple setting of random sampling of texts
from a restricted random hierarchical pool. Such scheme
of sampling may arise in the course of human cultural evo-
lution, since humans tend to copy existing texts, phrases,
or words at least as much as to create new instances of
them. The question remains how much randomness there
is in the process of cultural evolution. Is it more or less
than in the RHA processes? The point of view suggested
by the mainstream information theory is that the entropy
rate of natural language is strictly positive. In contrast,
the analysis of empirical data by [8, 6] suggests that nat-
ural language may be a regular Hilberg process—with a
vanishing entropy rate. Further research is required to de-
termine which of these two hypotheses is true.
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DISTRIBUTED SOURCE CODING OF VIDEO 
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ABSTRACT 

A foundation for distributed source coding was estab-
lished in the classic papers of Slepian-Wolf  (SW) [1] 
and Wyner-Ziv (WZ) [2]. This has provided a starting 
point for work on Distributed Video Coding (DVC), 
which exploits the source statistics at the decoder side 
offering shifting processing steps, conventionally per-
formed at the video encoder side, to the decoder side. 
Emerging applications such as wireless visual sensor 
networks and wireless video surveillance all require 
lightweight video encoding with high coding efficiency 
and error-resilience. The video data of DVC schemes 
differ from the assumptions of SW and WZ distributed 
coding, e.g. by being correlated in time and non-
stationary. Improving the efficiency of DVC coding is 
challenging. This paper presents some selected tech-
niques to address the DVC challenges. Focus is put on 
pin-pointing how the decoder steps are modified to pro-
vide adaptive decoding in distributed coding. 

1. INTRODUCTION 
Conventional video coding employs temporal predic-

tion of frames to be coded. The apparent motion is repre-
sented by displacement vectors of blocks from previous-
ly coded data. This provides efficient coding, but also 
puts a heavy processing load on the encoder. In DVC an 
important issue is to use distributed techniques to encode 
the video frames individually, but utilize the temporal 
correlation on the decoder side for efficient video cod-
ing. 

The Slepian-Wolf and Wyner-Ziv theorems address-
es distributed coding in a set-up with two sequences, X 
and Y, each independent and identically distributed (iid), 
but jointly statistically dependent. The Slepian-Wolf 
theorem states that X can be independently encoded but 
decoded given the side-information (SI) Y at the same 
rate, H(X|Y), as an optimal encoder having access to Y, 
under certain conditions. The Wyner-Ziv theorem ex-
tends this to the lossy case in a rate-distortion setting 
again under certain conditions.  

We shall take this mind set but investigate it for real 
data in DVC were the assumptions of iid sequences do 
not hold. We shall use the term Side Information Gen-
eration to the processing of decoded data at a given point 
to provide estimates of the data, X, to be decoded. A 
prominent approach to DVC is Transform domain 
Wyner-Ziv (TDWZ) video coding [3], where a feedback 

channel is employed to let the decoder control the rate by 
requests. In the basic setting (called GOP2) every other 
frame (called Key Frames) is coded using intra-coding 
and the frames in between are coded using distributed 
techniques and decoded using the two surrounding 
frames as side information and called WZ frames. The 
feedback introduced serves to adapt the bit-rate as the 
required number of bits is varying and not known.  

The TDWZ DVC coding architecture employs a 
DCT like transform on 4 x 4 blocks. While providing 
some decorrelation, there is still significant correlation in 
the transformed data. The coding efficiency has been 
improved considerably by a number of techniques.  

 
In Sec. 2, we present a basic TDWZ DVC architec-

ture as in [3] and improved in the DISCOVER codec [4]. 
In Sec. 3, improvements by making the decoder adaptive 
based on reestimations are presented. First to capture  
crossband correlations [5] and extended in the side in-
formation and noise learning (SING) codec [6] introduc-
ing an optical flow technique for motion estimation to 
compensate the weaknesses of the block based SI gener-
ation and in the motion and reconstruction reestimation 
(MORE) [7] codec, where the updated information is 
used to iteratively reestimate the motion and reconstruc-
tion. Finally, an adaptive mode decision (AMD) is inves-
tigated to take advantage of skip and intra mode in DVC 
by deciding the coding modes based on the quality of 
key frames and rate of WZ frames. Benchmark results of 
the resulting MORE-AMD [8] and the other techniques 
are briefly presented in Sec. 4. In Sec. 5, the SW coding 
based on rate-adaptive error-correcting techniques is re-
visited [9].  

2. DISTRIBUTED VIDEO CODING 
The architecture of a TDWZ video codec [4] is depicted 
in Fig. 1. In this codec, the sequence of frames is split in-
to key frames and Wyner-Ziv (WZ) frames. Key frames 
are intra coded using conventional video coding tech-
niques such as H.264/AVC intra coding. The Wyner-Ziv 
frames are transformed (4×4 DCT), quantized and de-
composed into bitplanes. 

 

11



 
Figure 1. The architecture of TDWZ video codec. 

 
Each bitplane is fed to a rate-compatible LDPC Ac-

cumulate (LDPCA) encoder [10] from most significant 
bitplane to least significant bitplane. The corresponding 
error correcting information is stored in a buffer and re-
quested by the decoder through a feedback channel. The 
WZ frame is predicted at the decoder side by using de-
coded frames as references. The predicted frame, called 
the SI frame, is an estimate of the original WZ frame. 
Given the available SI, soft-input information (condi-
tional probabilities Pr for each bit) within each bitplane 
is estimated using a noise model. Thereafter the LDPCA 
decoder starts to decode the bitplanes selected by the 
quantizer, ordered from most to least significant bit-
plane, to correct bit errors. The decoder requests bits 
from the buffer until the bitplane is decoded. Thereafter 
CRC check bits are sent for confirmation. After all bit-
planes are successfully decoded, the WZ frame can be 
decoded through combined de-quantization and recon-
struction followed by an inverse transform. 

3. ADAPTIVE DVC USING REESTIMATIONS 
Adaptive coding in distributed source coding is enabled 
by the feedback based request of parity bits for rate-
adaptation. After a successful decoding of a code block, 
the decoder can update the side information and thereby 
the soft-information for decoding the next block. Thus 
the side-information used in the decoding may generally 
be seen as a mapping of the causal data and the frame 
level approach presented in Sec. 2 may be extended to 
(sub)band level and bit-plane level, where a code block 
in this section is given by the information required to de-
code a bit-plane of one coefficient subband. This adapta-
tion using decoded blocks may also be applied in the 
motion estimation step using partially decoded frames. 
We shall first focus on how the decoder may introduce 
adaptive coding, while the encoder remains the same.  

3.1. Crossband correlations in DVC 
The Crossband DVC scheme [5] enhances the 
DISCOVER architecture using previously decoded sub-
bands in the noise modeling for the next subbband. Spe-
cifically after decoding a subband, a classification is per-
formed. When modeling a new subband one or two pre-
vious subbands are used to predict the classification. 
This subband level adaptive processing is combined with 
a bit-plane level updating of estimates for each coeffi-
cient.   

3.2. Multi-hypotheses decoding using optical flow 
In the SING codec [6] multi-hypothesis decoding was 
used integrate a number of decoder-side adaptive tech-
niques.  

3.2.1. Dense motion fields using optical flow 
The motion field in the side information generation is 
backward adaptive in the DVC scheme, thus the motion 
(vectors) are not coded. This allows using a dense mo-
tion field. In the SING codec [6], global optical flow 
(OF) was used to calculate dense motion fields to sup-
plement a more conventional overlapping block motion 
compensation (OBMC).  

3.2.2. Multi-hypotheses decoding 
The rate-adaptive LDPCA decoder may be fed with mul-
tiple sets of soft-information, and terminate and ‘select-
ing’ the set first to decode (subject to a CRC). This pro-
vides a generic approach to decoder side adaptation in 
distributed coding. SI based on both optical flow and 
block-based OBMC can e.g. be combined to provide 
multiple hypotheses [6]. 

3.2.3. Adaptive noise modeling 
Different noise modeling may also be adaptively select-
ed using the multi-hypothesis approach. In SING, tech-
niques based on clustering of DCT blocks, calculating 
feature vectors and updating and refining these was ap-
plied. Distributions of the residuals from previous frames 
were also used and the number of clusters adapted. 

3.3. Re-estimation of motion 
A challenge in DVC, incl. the scheme presented so far is 
the prediction of the motion at the decoder side for the 
WZ frame, which is not available as opposed to conven-
tional video coding, especially for sequences with high 
or complex motion. As the WZ frame is being decoded, 
also the motion may be reestimated. Two instances of 
this were introduced in the MORE codec [7]. The par-
tially reconstructed frames were used to reestimate mo-
tion for both the optical-flow (after each band) and the 
block-based (OBMC after each bit-plane) techniques. 
This can improve the prediction of the values. To also 
improve the estimate of the distribution, the residue may 
also be motion compensated using an updated estimate 
of the residue of the previous WZ frame and the current 
motion estimation to calculate a motion compensated 
residue. These techniques were integrated in the SING 
[6] codec (Figure 2). 
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Figure 2. TDWZ decoder with the motion and recon-
struction reestimation (MORE).  

The combination of initial side information and re-
estimated side information based on reestimated motion 
in MORE is based on an adaptive selection process, try-
ing to estimate influence on rate and distortion. The rate 
is estimated by the ideal code length (ICL), which after 
decoding a bit-plane may be calculated by summing mi-
nus log of the conditional probability assigned by the 
soft-input to each bit. A Lagrangian based rate-distortion 
cost function is used to adaptively selecting one block-
based and one OF based estimate, SI and residual, NR, 
for the further processing to form the multiple inputs to 
the LDPCA decoder (Figure 2).  

3.4. Decoder side driven adaptive mode decision 
In video coding, skip coding and intra coding are used as 
additional modes. When advantageous in an operational 
rate-distortion sense [11] applying these modes improves 
performance. Introducing this adaptive mode decision 
(AMD) in DVC does require a change of the encoder to 
switch between modes. The decision can be encoder 
based introducing extra encoder processing steps and/or 
fed back from the decoder. Initial experimental results of 
integrating AMD in the MORE codec were reported in 
[8]. 
 

4. NUMERICAL RESULTS 
The methods presented in Secs. 2 and 3 were tested on 
the four standard test sequences: Foreman, Hall, Soccer 
and Coast for a number of different bit-rates. Operation-
al  rate-distortion performance were calculated, express-
ing the quality by PSNR values [7,8]. The weighted av-
erage improvements (measured by Bjöntegaard differ-
ences [12]) over DISCOVER [4] are given in Tables 1 
and 2. The resulting MORE [7] codec achieved an aver-
age improvement in PSNR is 2.5 dB on the WZ frames 
(for GOP2) and gained 1.2 dB measured over all frames. 
The performance of Crossband, SING, and 
MORE(AMD) are also given for comparison. 
 

Table 1. Bjøntegaard PSNR improvement (dB) over 
DISCOVER for WZ frames 

Codec Crossband SING MORE MORE(AMD) 
Foreman 0.65 1.52 3.00 2.93 
Hall 0.39 0.99 1.42 1.95 
Soccer 1.33 2.70 4.19 4.182 
Coast 0.36 0.41 0.65 0.85 
Average 0.64 1.49 2.47 2.58 

Table 2. Bjøntegaard PSNR improvement (dB) over 
DISCOVER for all frames 

Codec Crossband SING MORE MORE(AMD) 
Foreman 0.33 0.75 1.43 1.41 
Hall 0.19 0.40 0.58 0.61 
Soccer 0.73 1.51 2.26 2.23 
Coast 0.19 0.22 0.27 0.34 
Average 0.33 0.76 1.22 1.22 
 
 

 
Figure 3. PSNR vs. rate for selected codecs for WZ 
frames (QCIF, 15Hz) for Coast. 

 
The RD performance of the MORE, SING, and 

Crossband as well as H.264/AVC coding is also depicted 
in Figure 3 for the Coast sequence for WZ frames. In 
addition, the MORE ICL, which is obtained by replacing 
LDPCA coding with a calculation of the ideal code 
length (ICL) over all the decoded bitplanes, is also giv-
en. We  calculate the ideal code length, ICL [6][7], at the 
decoder side based on the soft-input values used when 
decoding the information bits. 

5. SW CODING REVISITED 
Comparing the ideal code lengths (ICL) and the actu-

al code lengths in DVC provides an evaluation of the 
loss in distributing the coding applying error-correcting 
coding, instead of e.g. arithmetic coding based on the 
conditional probabilities, see Figure 2. Investigations of 
the results obtained using the LDPCA code, widely used 
in DVC, show that especially for low conditional proba-
bilities, there is a relatively high loss, which may be an 
issue in DSC in general. As an alternative rate-adaptive 
BCH [9] for coding with feed-back was studied. The 
feedback provides the capability to adapt to unknown 
statistics and also to reduce the coding loss FEC codes 
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endures when small code blocks are used. Linear block 
codes with extensible parity matrix, H, may readily be 
used for rate-adaptive coding, extending the matrix and 
sending new syndromes when more information is re-
quested.  

In [9], a rate-adaptive BCH (RA-BCH) code was in-
troduced and analyzed for the case of bounded distance 
decoding and assuming iid error probability with known 
error probability between the side information, Y, and the 
information data, X. The scheme also involved using 
syndromes for checking and making the number of syn-
dromes used to confirm a decoding adaptive to the num-
ber of syndromes received thus far. For error probability, 
p = 0.01, H(X|Y) ~ 0.08 (which also gives the average 
ICL). Based on simulations with this set-up at a bit-
error-rate of 10-5, the average code lengths where ~ 0.10 
for RA-BCH for length 1023 and ~ 0.144 for LDPCA of 
length 1584. For fixed rate coding, a bound of ~ 0.146 
was calculated and for both fixed rate LDPCA and BCH 
of the lengths considered the rate would be above 0.2, 
thus showing the clear benefit of using feed-back for 
these short code block lengths. In these comparisons 
BCH was clearly better that LDPCA. The challenge to-
wards using RA-BCH in DVC is to generalize to soft-
input decoding. 

6. CONCLUDING REMARKS 
We have given a brief overview of elements of a state-
of-the-art DVC scheme with focus on aspects which may 
be of general interest when applying DSC to real data, 
especially video data. This included ways to make a 
DSC scheme with feed-back adaptive on the decoder 
side. Also it was pointed out that as DVC and DSC 
schemes improve performance, the loss in current error-
correcting techniques applied become an issue towards 
achieving distributed coding without out performance 
loss as suggested by the classic Slepian-Wolf and 
Wyner-Ziv papers.  
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ABSTRACT

Logarithmic score and information divergence appear in
both information theory, statistics, statistical mechanics,
and portfolio theory. We demonstrate that all these top-
ics involve some kind of optimization that leads directly
to the use of Bregman divergences. If a sufficiency con-
dition is also fulfilled the Bregman divergence must be
proportional to information divergence. The sufficiency
condition has quite different consequences in the different
areas of application, and often it is not fulfilled. Therefore
the sufficiency condition can be used to explain when re-
sults from one area can be transferred directly from one
area to another and when one will experience differences.

1. INTRODUCTION

The use of scoring rules has a long history in statistics. An
early contribution was the idea of minimizing the sum of
square deviations that dates back to Gauss and works per-
fectly for Gaussian distributions. In the 1920’s Ramsay
and de Finetti proved versions of the Dutch book theo-
rem where determination of probability distributions were
considered as dual problems to maximizing a payoff func-
tion. Later it was proved that any consistent inference cor-
responds to optimizing with respect to some payoff func-
tion. A more systematic study of scoring rules was given
by McCarthy [1] and has recently been studied by Dawid,
Lauritzen and Parry [2] where the notion of a local scoring
rule has been extended. The basic result is that the only
strictly local proper scoring rule is logarithmic score.

Thermodynamics is the study of concepts like heat,
temperature and energy. A major objective is to extract as
much energy from a system as possible. Concepts like en-
tropy and free energy play a significant role. The idea in
statistical mechanics is to view the macroscopic behavior
of a thermodynamic system as a statistical consequence
of the interaction between a lot of microscopic compo-
nents where the interacting between the components are
governed by very simple laws. Here the central limit the-
orem and large deviation theory play a major role. One
of the main achievements is the formula for entropy as a
logarithm of a probability.

One of the main purposes of information theory is to
compress data so that data can be recovered exactly or ap-
proximately. One of the most important quantities was
called entropy because it is calculated according to a for-
mula that mimics the calculation of entropy in statistical

mechanics. Another key concept in information theory
is information divergence (KL-divergence) that was intro-
duced by Kullback and Leibler in 1951 in a paper entitled
information and sufficiency. The link from information
theory back to statistical physics was developed by E.T.
Jaynes via the maximum entropy principle. The link back
to statistics is now well established [3, 4, 5].

The relation between information theory and gambling
was established by Kelly[6]. Logarithmic terms appear
because we are interested in the exponent in an exponen-
tial growth rate of of our wealth. Later Kelly’s approach
has been generalized to training of stocks although the re-
lation to information theory is weaker [7].

Related quantities appear in statistics, statistical me-
chanics, information theory and finance, annd we are in-
terested in a theory that describes when these relations are
exact and when they just work by analogy. First we intro-
duce some general results about optimization on convex
sets. This part applies exactly to all the topics under con-
sideration and lead to Bregman divergences. Secondly, we
introduce a notion of sufficiency and show that this leads
to information divergence and logarithmic score. This
second step is not always applicable which explains when
the different topics are really different.

Proofs of the theorems in this short paper can be found
in an appendix that is part of the arXiv version of the pa-
per.

2. STATE SPACE

The present notion of a state space is based on [8], and is
mainly relevant for quantum systems.

Before we do anything we prepare our system. Let P
denote the set of preparations. Let p0 and p1 denote two
preparations. For t ∈ [0, 1] we define (1− t) ·p0 +t ·p1 as
the preparation obtained by preparing p0 with probability
1−t and twith probability t. A measurementm is defined
as an affine mapping of the set of preparations into a set
of probability measures on some measurable space. Let
M denote a set of feasible measurements. The state space
S is defined as the set of preparations modulo measure-
ments. Thus, if p1 and p2 are preparations then they rep-
resent the same state if m (p1) = m (p2) for any m ∈M.

In statistics the state space equals the set of prepara-
tions and has the shape of a simplex. The symmetry group
of a simplex is simply the group of permutations of the
extreme points. In quantum theory the state space has the
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shape of the density matrices on a complex Hilbert space
and the state space has a lot of symmetries that a simplex
does not have. For simplicity we will assume that the state
space is a finite dimensional convex compact space.

3. OPTIMIZATION

Let A denote a subset of the feasible measurements M
such that a ∈ A maps S into a distribution on the real
numbers i.e. a random variable. The elements of A may
represent actions like the score of a statistical decision,
the energy extracted by a certain interaction with the sys-
tem, (minus) the length of a codeword of the next encoded
input letter using a specific code book, or the revenue
of using a certain portfolio. For each s ∈ S we define
F (s) = supa∈AE [a (s)]. We note that F is convex but
F need not be strictly convex. We say that a sequence of
actions (an)n is asymptotically optimal for the state s if
E [an (s)]→ F (s) for n→∞.

If the state is s1 but one acts as if the state were s2 one
suffers a regret that equals the difference between what
one achieves and what could have been achieved.

Definition 1. If F (s1) is finite the regret is defined by

DF (s1, s2) = F (s1)− sup
(an)n

lim sup
n→∞

E [an (s1)] (1)

where the supremum is taken over all sequences (an)n
that are asymptotically optimal over s2.

Proposition 2. The regret DF has the following proper-
ties:

• DF (s1, s2) ≥ 0 with equality if s1 = s2.

• ∑ ti · DF (si, s̃) ≥
∑
ti · DF (si, ŝ) + DF (ŝ, s̃)

where (t1, t2, . . . , t`) is a probability vector and ŝ =∑
ti · si.

• ∑ ti ·DF (si, s̃) is minimal when ŝ =
∑
ti · si.

If the state space is finite dimensional and there exists
a unique action a2 such that F (s2) = E [a (s2)] then
DF (s1, s2) = E [a1 (s1)] − E [a2 (s1)]. If unique op-
timal actions exists for any state then F is differentiable
which implies that the regret can be written as a Bregman
divergence in the following form

DF (s1, s2) = F (s1)− (F (s2) + 〈s1 − s2,∇F (s2)〉) .
(2)

In the context of forecasting and statistical scoring rules
the use of Bregman divergences dates back to [9].

We note that DF1 (s1, s2) = DF2 (s1, s2) if and only
if F1 (s)− F2 (s) is an affine function of s. If the state s2
has the unique optimal action a2 then

F (s1) = DF (s1, s2) + E [a2 (s1)] (3)

so the functionF can be reconstructed fromDF except for
an affine function of s1. The closure of the convex hull of
the set of functions s → E [a (s)] is uniquely determined
by the convex function F.

4. SUFFICIENCY

Let (sθ)θ denote a family of states and let Φ denote a com-
pletely positive transformation S → T where S and T
denote state spaces. Then Φ is said to be sufficient for
(sθ)θ if there exists a completely positive transformation
Ψ : T → S such that Ψ (Φ (sθ)) = sθ.

We say that the regret DF on the state space S sat-
isfies the sufficiency property if DF (Φ (s1) ,Φ (s2)) =
DF (s1, s2) for any completely positive transformation S →
S that is sufficient for (s1, s2) . The notion of sufficiency
as a property of divergences was introduced in [10]. The
crucial idea of restricting the attention to transformations
of the state space into itself was introduced in [11].

Theorem 3. Assume that S is a state space. If the diver-
gence DF satisfies the sufficiency property then for any
state s and any completely positive transformation Φ :
S → S one has F (Φ (s)) = F (s) .

If the alphabet size is two the above condition on F is
sufficient to conclude that

DF (Φ (s1) ,Φ (s2)) = DF (s1, s2) . (4)

Theorem 4. Assume that the state space S is a classical
or quantum state space on three or more letters. If the
regret DF satisfies the sufficiency property, then F is pro-
portional to the entropy function and DF is proportional
to information divergence (relative entropy).

This theorem can be proved via a numer of partial re-
sults as explained in the next section.

5. APPLICATIONS

5.1. Statistics

Consider an experiment with X = {1, 2, . . . , `} as sam-
ple space. A scoring rule f is defined as a function with
domain X ×M+

1 (X )→ R such that the score is f (x,Q)
when the prediction was given by Q and x ∈ X has been
observed. A scoring rule is proper if for any probability
measure P ∈ M+

1 (X ) the score
∑
x∈X P (x) · f (x,Q)

is minimal when Q = P.

Theorem 5. The scoring rule f is proper is and only if
there exists a smooth function F such that f (x,Q) =
DF (δx, Q) + f̃ (x) .

Definition 6. A strictly local scoring rule is a scoring rule
of the form f (x,Q) = g (Q (x)) .

Lemma 7. On a finite space a Bregman divergence that
satisfies the sufficiency condition gives a strictly local scor-
ing rule.

The following theorem was given in [11] with a much
longer proof.

Theorem 8. On a finite alphabet with at least three letters
a Bregman divergence that satisfies the sufficiency condi-
tion is proportional to information divergence.
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Proof. Since any strictly local proper scoring rule corre-
sponds to separable divergence a divergence that is Breg-
man and satisfies sufficiency must also be separable. If
the alphabet size is at least three the only separable diver-
gences that are Bregman divergences are the ones propor-
tional to information divergence [10].

5.2. Information theory

Let b1, b2, . . . , bn denote the letters of an alphabet and let
` (κ (bi)) denote the length of the codeword κ (bi) accord-
ing to some code book κ. If the code is uniquely decodable
then

∑
2−`(κ(bi)) ≤ 1. Note that ` (κ (bi)) is an integer.

If only integer values of ` are allowed then h is piece-
wise linear and sufficiency is not fulfilled. If arbitrary real
numbers are allowed then it obvious we get a proper local
scoring rule.

5.3. Statistical mechanics

Statistical mechanics can be stated based on classical me-
chanics or quantum mechanics. For our purpose this makes
no difference because Theorem 4 can be applied for both
classical systems and quantum systems.

Proof of Theorem 4. If we restrict to any commutative sub-
algebra the divergence is proportional to information di-
vergence as stated in Theorem 8 so that F is proportional
to the entropy function H restricted to the sub-algebra.
Any state generates a commutative sub-algebra so the func-
tion F is proportional toH on all states and the divergence
is proportional to information divergence.

Assume that a heat bath of temperature T is given and
that all the states are close to the state of the heat bath. An
action a ∈ A is some interaction with the thermodynamic
system that extracts some energy from the system. In
thermodynamics the quantity F (s) = supa∈AE [a (s)]
is normally called the free energy. If the temperature is
kept fixed under all interactions F is called Helmholtz
free energy. Any sufficient transformation Φ for s1 and
s2 is quasi-static and can be approximately realized by a
physical process Ψ that is reversible in the thermodynamic
sense of the word.

DF (Φ (s1) ,Φ (s2)) = aΦ(s1) (Φ (s1))− aΦ(s2) (Φ (s1)) .
(5)

Now

aΦ(s2) (Φ (s2)) =
(
aΦ(s2) ◦ Φ

)
(s2)

≤ a2 (s2) = a2 (Ψ (Φ (s2)))
= (a2 ◦Ψ) (Φ (s2)) ≤ aΦ(s2) (Φ (s2)) . (6)

Hence aΦ(s2) = a2 ◦Ψ so that

DF (Φ (s1) ,Φ (s2))
= (a1 ◦Ψ) (Φ (s1))− (a2 ◦Ψ) (Φ (s1))

= a1 (s1)− a2 (s1) = DF (s1, s2) . (7)

The amount of extractable energy Ex is proportional to
information divergence. The quotient between extractable
energy and information divergence depends on the tem-
perature and one may even define the absolute tempera-
ture via the formula

Ex = kT ·D (s1 ‖s2 ) (8)

where k = 1.381 · 10−23J/K is Boltzmann’s constant.
Equation (8) was derived already in [12] by a similar ar-
gument.

According to Equation (8) any bit of information can
be converted into an amount of energy! One may ask how
this is related to the mixing paradox (a special case of
Gibbs’ paradox). Consider a container divided by a wall
with a blue and a yellow gas on each side of the wall. The
question is how much energy can be extracted by mixing
the gasses?

We loose one bit of information about each molecule
by mixing the gasses, but if the color is the only difference
no energy can be extracted. This seems to be in conflict
with Equation (8), but in this case different states cannot
be converted into each other by reversible processes. For
instance one cannot convert the blue gas into the yellow
gas. To get around this problem one can restrict the set of
preparations and one can restrict the set of measurements.
For instance one may simply ignore measurements of the
color of the gas. What should be taken into account and
what should be ignored, can only be answered by an ex-
perienced physicist. Formally this solves the mixing para-
dox but from a practical point of view nothing has been
solved. If for instance the molecules in one of the gasses
are much larger than the molecules in the other gas then
a semi-permeable membrane can be used to create an os-
motic pressure that can be used to extract some energy. It
is still an open question which differences in properties of
the two gasses that can be used to extract energy.

5.4. Portfolio theory

Let X1, X2, . . . , Xk denote price relatives for a list of
stocks. For instance X5 = 1.04 means that stock no. 5 in-
creases its value by 4 %. A portfolio is a probability vector
~b = (b1, b2, . . . , bk) where for instance b5 = 0.3 means
that 30 % of your money is invested in stock no. 5. The
total price relative isX1 ·b1+X2 ·b2+· · ·+Xk ·bk = ~X ·~b.
We now consider a situation where the stocks are traded
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once every day. For a sequence of price relative vectors
~X1, ~X2, . . . ~Xn and a constant re-balancing portfolio ~b
the wealth after n days is

Sn =
n∏

i=1

〈
~Xi,~b

〉
(9)

According to law of large numbers

1
n

log (Sn)→ E
[
log
〈
~X,~b
〉]

(10)

Here E
[
log
〈
~X,~b
〉]

is proportional to the doubling rate

and is denoted W
(
~b, P

)
where P indicates the probabil-

ity distribution of ~X . Our goal to maximize W
(
~b, P

)
by

choosing an appropriate portfolio~b.
Let ~bP denote the portfolio that is optimal for P . As

proved in [7]

W
(
~bP , P

)
−W

(
~bQ, P

)
≤ D (P‖Q) . (11)

Theorem 9. The Bregman divergence

W
(
~bP , P

)
−W

(
~bQ, P

)
(12)

satisfies the equation

W
(
~bP , P

)
−W

(
~bQ, P

)
= D (P‖Q) . (13)

if and only if the measure P on k distinct vectors of the
form (a1, 0, 0, . . . 0), (0, a2, 0, . . . 0) , until (0, 0, . . . ak) .

6. CONCLUSION

On the level of optimization the theory works out in ex-
actly the same way in statistics, information theory, sta-
tistical mechanics, and portfolio theory. The sufficiency
condition is more complicated to apply. It requires that
we restrict to a certain class of mappings of the state space
into itself. In the case where the state space can be iden-
tified with a set of density matrices one should restrict to
completely positive maps. In case the state space has a
different structure it is not obvious which mappings one
should restrict to. The basic problem is that we have to in-
troduce a notion of tensor product for convex sets and it is
not obvious how to do this, but this will be the topic of fur-
ther investigations and results on this topic may have some
impact on our general understanding of quantum theory.

The original paper of Kullback and Leibler [13] was
called “On Information and Sufficiency”. In the present
paper we have made the relation between information di-
vergence and the notion of sufficiency more explicit. The
idea of sufficiency has different consequences in different
applications but in all cases information divergence prove
to be the quantity that convert the general notion of suffi-
ciency into a number. For specific applications one cannot
identify the sufficient variables without studying the spe-
cific application in detail. For problems like the the mix-
ing paradox there is still no simple answer to the question

about what the sufficient variables are, but if the sufficient
variables have been specified we have the mathematical
framework to develop the rest of the theory in a consistent
manner.
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ABSTRACT 

Product codes provide excellent performance in high rate 

optical communication when decoded by iterating the 

decoding of the component codes.  We analyze the de-

coding of error patterns where any subset of j rows and 

columns contains less than jd/2 errors. We prove that all 

such error patterns can be decoded when the component 

decoding algorithm is applied to rows and columns in 

the right sequence, and we discuss how this performance 

can be achieved by passing messages between compo-

nent decoders. 

1. INTRODUCTION 

Product codes are important 2d codes offering construc-

tions of long codes from relatively short component 

codes. These codes have a long tradition in coding theo-

ry, but most published results are rather weak. The po-

tential of iterated decoding has certainly been noticed by 

many researchers, but it is only recently than an analysis 

of this approach has been presented [1]. Decoders based 

on iterative decoding are used in optical transmission 

systems even at very high data rates [2]. It is known that 

for component         codes,      , the decoding is 

possible with high probability when the number of errors 

is less than            . However, several questions 

about the performance remain unclear, including the er-

ror probability and the effects of component decoding er-

rors.   

2. DECODABLE ERROR PATTERNS 

We consider only standard product codes here, although 

many of the conclusions extend to related structures 

where each code symbols is part of two different com-

ponent codes (braided codes, graph codes, etc.). For 

simplicity we assume that the two component codes are 

the same         code (usually a binary BCH code or a 

RS code). The decoding is based on a hard decision de-

coding algorithm for the component code decoding 

            errors. It is well known that the mini-

mum distance is     , but to get a useful decoder we 

must correct error patterns of weight much greater than 

   .  

     It follows from a result about random graphs that iter-

ative decoding using a t error decoding algorithm for the 

component code succeeds with high probability as long 

as the average number of errors in each row or column is 

less than          [1]. For this result to apply, we 

must keep t fixed and let n be large, but the conclusion is 

a good approximation for the parameters typically used 

in optical communication, n=1023, t=3. It is also as-

sumed that there are no decoding errors in the compo-

nent codes, and this condition is at best a rough approx-

imation to the real situation. 

     We noted in [3] that a product code can always cor-

rect an errors pattern is any subset of m rows and col-

umns contains less than      errors. Proof: If the differ-

ence between two errors patterns with the same syn-

drome is nonzero on j rows or columns, it is a codeword 

and as such has weight at least jd. Thus there is a unique 

error pattern satisfying the weight condition. In particu-

lar this restriction gives that the total number of errors is 

less than nd/2, less than required for iterative decoding. 

However, even though this limit is below the threshold 

for iterative decoding, it is close to what can usually be 

decoded, since the number of iterations in most real de-

coders is quite low. 

     If the rows and columns are decoded in the right or-

der, any error pattern satisfying the weight restriction 

can be decoded by iterative decoding. Proof: It follows 

from the condition that at least one row and column con-

tains at most t errors, and the result follows by induction. 

3. TESTING FOR THE WEIGHT CONDITION 

It is not obvious that it can be decided effectively wheth-

er a given error pattern satisfies the weight condition. 

Such problems are usually treated in graph theory termi-

nology. In this case the symbols of the product code are 

associated with the branches of a complete bipartite 

graph, the nodes representing row and column compo-

nent constraints. Thus the error pattern is a subset of this 

graph where only error branches are preserved. The 

question we want to answer is if there is a subset, S’, of 

the error graph with 2j nodes and  E’=e(S’) edges, such 

that the density of the subgraph satisfies E’/j ≥ d/2. We 

can express the number of edges in S‘ as 

 

                      

 

subtracting the edges connecting S’ to the complement 

S” from the total number of edges connecting to nodes in 

S’.  Since the sum of the degrees of all nodes is 2E, we 

can write the condition as 
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    We associate a capacity of 1 (undirected) with each 

error branch. Furthermore we add a source node and a 

sink node such that each node, v, in the error graph is 

connected to the source with a branch of capacity deg(v), 

and each node is connected to the sink with a branch of 

capacity d/4. The sum in {} above is exactly the cost of a 

cut separating S”+source from S’+sink. Thus there is a 

set satisfying the condition if the cost of the min cut sat-

isfies it, and we may answer the question by applying 

one of the max flow / min cut algorithms. The computa-

tion is simplified by scaling the capacities to small inte-

gers [4]. 

4. ERROR PROBABILITY 

If random errors occur with probability p, the number of 

errors in each row and column follows a Poisson distri-

bution with mean np (for large n). Thus np is the density 

of the array as a whole. However if we take some initial 

decoding steps correcting rows and columns with at most 

np/2 errors, we get a somewhat smaller array with a 

higher density. When more than np/2 errors are corrected 

in the following stages, the density must decrease. 

     Thus on the average, there is a large array with max-

imal density, and to get a sufficiently low bound on the 

probability of decoding, we choose d large enough that 

the array has density below d/2 with sufficiently high 

probability. The average size of the critical array and the 

expected density can be calculated using the random 

graph analysis in [1]. Thus we can correctly decode the 

critical array if the algorithm decodes up to the weight 

constraint. If no error pattern satisfies the constraint, the 

algorithm fails, but a decoding error with a large support 

is highly unlikely 

     Actual decoding errors are almost always associated 

with low weight codewords. We can find a union type 

upper bound on this probability as 

 

  
 

 
 
 

          

   
 

 

This probability is very small for p<d/(2n) and the larg-

est term occurs for j=d. This term could be further re-

duced by using the actual number of weight d words in 

the component code. 

5. DECODING UP TO THE WEIGHT LIMIT 

Most practical decoders alternate between decoding all 

rows and all columns. However, for typical parameters 

(small t and large n), the performance is degraded by de-

coding errors, and the effects are difficult to analyze. We 

shall consider algorithms that decode only a subset of the 

rows/columns in each step, and we do not allow a com-

ponent decoder to change a symbol after a decision has 

been made. Thus in case of decoding errors, the algo-

rithm would need to back-track to an earlier stage and 

make a different choice.  

     We assume that the only type of component code de-

coding to be used is hard decision t error correction. 

Thus the syndrome is computed from the received values 

with the possible changes in symbols that have been de-

cided, and the component decoded determines at most t 

error locations and values, or it indicates that the word 

cannot be decoded. The error values are passed as mes-

sages to the row/column in question, but the symbols and 

the syndromes are not changed yet. 

     Thus after an initial round of component code decod-

ing, each row and column is marked as either decodable 

or not decodable. Later some rows and columns are 

marked as decided. If a component decoder finds an er-

ror in a position that is already decided, the code is con-

sidered not decodable. 

     In each step one or more decodable rows (columns) 

are selected and a decision is made. Thus the symbols 

are fixed and the status is changed to ‘decided’. In the 

positions where errors have been corrected, the column 

syndrome changes unless the message coincided with the 

decision. Thus the status of each such column is updated, 

and if it is decodable, new messages are computed. In 

positions that were not changed, there may be messages. 

In those cases the syndrome does not change, but the sta-

tus changes to ‘not decodable’ and all messages from the 

column are erased. 

     The process continues until no more rows and col-

umns can be decoded. If all rows and columns are decid-

ed, a codeword in the product code has been reached, 

and the error pattern is tested against the weight con-

straint. If it passes, a correct decision has been reached, 

otherwise a new attempt is necessary. If one or more 

rows or and columns are not decided, we go back and 

make a new attempt. 

     The algorithm makes a tree search through the possi-

ble decisions until the correct codeword is obtained (or it 

has been decided that there is no such word). 

     As mentioned in the previous section, it is usually 

possible to reduce the number of rows and column by 

decoding error patterns of low weight, and the probabil-

ity of decoding error is low in these cases. However, the 

important part of the algorithm is the decoding of the 

critical subset, where most of the rows and column have 

close to t errors, and the error graph is connected.  

     If a component decoder correctly locates the error po-

sitions in a row, the  corresponding messages from the 

columns may be missing, since a significant fractions of 

the columns have more than t errors and may be decoded 

in error. However, a similar consideration shows that 

there are few messages in positions that are not correct-

ed, since each column can only contribute t false mes-

sages. Thus the rows should be selected first to agree 

with columns already decoded, and next to have few 

messages is positions that are not corrected. The choice 

could be further refined by considering the new syn-

dromes that are generated in columns with errors, and it 

is preferable to decode rows where an error has already 

been decided (to stay within a connected part of the error 

graph). 

      In principle it is not possible to avoid more than one 

attempt. An error pattern of weight jd on j rows and col-

umns could be split into two error patterns of almost the 

same weight, each with t of t+1 errors in each row and 

column. Thus a decision cannot be reached until the 

weight of the entire pattern is known. On the other hand 
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the number of iterations is quite small for the density 

considered here. If correct decisions are made, the errors 

are corrected in two or three row/column iterations.  

6. 2-D APPLICATIONS 

When a page is protected by an error correcting code or 

the page contains an area which uses such a code (like a 

QD code), particular attention must be paid to alignment 

errors and likely forms of degradation. RS codes are of-

ten used to correct small patches of errors. There is a 

long tradition for using some form of product codes on 

2d storage media, and such codes allow the correction of 

errors that typically affect only a small number of errors 

in each row or column. Such errors could be caused by 

scratches in the surface or by scanning errors due to im-

proper alignment. 
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ABSTRACT
We consider the problem of estimating the directed in-
formation rate between two Markov chains with memory
length k ≥ 1, using the plug-in estimator. We show that
the estimator is asymptotically Gaussian and conclude that
it converges at a rate O(1/

√
n), which, we argue, is best

possible. We also draw a connection between this esti-
mation problem and that of performing a hypothesis test
for the presence of causal influence between the two pro-
cesses. Under the null hypothesis, which corresponds to
the absence of causality, we show that the plug-in estima-
tor has an asymptotic χ2 distribution. Also, we establish
that this estimator can be precisely expressed in terms of
the classical likelihood ratio. Combining these two results
facilitates the design of a Neyman-Pearson likelihood ra-
tio test for the presence of causal influence.

1. INTRODUCTION

Throughout the sciences and engineering, the χ2 test for
independence is one of the most commonly used statistical
techniques. Given a sample of independent and identically
distributed data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn),
suppose we wish to test whether theX and Y variables are
independent or not. Assuming both sets of variables take
on finitely many values, we can compare the joint empir-
ical distribution P̂XY,n(a, b) with the product of the em-
pirical marginals P̂X,n(a)P̂Y,n(b); as usual, P̂XY,n(a, b)
denotes the proportion of times the pair (a, b) appears in
the whole sample, and similarly for the marginals. Fol-
lowing classical methodology according to the χ2 test, we
compute the normalized χ2 distance between these two
distributions,

χ̄2
n = n

∑

a,b

[
P̂XY,n(a, b)− P̂X,n(a)P̂Y,n(b)

]2

P̂X,n(a)P̂Y,n(b)
. (1)

Under the null hypothesis – assuming, that is, that the
data are independent – the distribution of the statistic χ̄2

n

for large n is approximately χ2 with (m−1)(`−1) degrees
of freedom, where m, ` are the sizes of the alphabets of X
and Y , respectively. Therefore, computing the probability
of the statistic χ̄2

n under this distribution, we can decide
whether or not to reject the independence hypothesis.

A different approach, closer in spirit to information-
theoretic ideas, is offered by the the likelihood ratio test,
which is based on the statistic,

∆n = 2 log

( ∏n
i=1 P̂XY,n(Xi, Yi)∏n

i=1 P̂X,n(Xi)P̂Y,n(Yi)

)
.

Asymptotically, ∆n has the exact same distribution as χ̄2
n,

so that an analogous test can be performed. An important
observation for our purposes is that this likelihood ratio
test statistic can exactly be expressed as a mutual infor-
mation,

∆n = 2nI(X̂; Ŷ ) = 2nD
(
P̂XY,n‖P̂X,nP̂Y,n

)
, (2)

where X̂, Ŷ are distributed according to the empirical dis-
tribution P̂XY,n. One way to look at the difference be-
tween χ̄2

n and ∆n is that, instead of the χ2 distance used
in (1), the likelihood ratio test statistic (2) examines the
(normalized) relative entropy distance between P̂XY,n and
P̂X,nP̂Y,n. And yet another way to interpret ∆n is as the
“plug-in” estimate of the mutual information I(X1;Y1) of
the data, using their empirical distribution.

The asymptotic distribution of ∆n has been re-derived
several times historically. In its general form it goes back
to the classical result of Wilks [1], see also the text [2];
and more recently it has also appeared in an information-
theoretic context, see, e.g., [3, 4].

In this work we examine the problem of estimating a
different information-theoretic functional: If X = {Xn}
and Y = {Yn} are two finite-valued random process, then
the directed information I(Xn

1 → Y n1 ) between Xn
1 =

(X1, X2, . . . , Xn) and Y n1 = (Y1, Y2, . . . , Yn) is defined
as,

I(Xn
1 → Y n1 ) = H(Y n1 )−

n∑

i=1

H(Yi|Y i−1
1 , Xi

1), (3)

and the directed information rate between X and Y is,

I(X → Y ) = lim
n→∞

1

n
I(Xn

1 → Y n1 ), (4)

whenever the limit exits. Directed information was intro-
duced by Massey [5] and Kramer [6], building on earlier
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work by Marko [7], in order to provide capacity charac-
terizations for channels with causal feedback. Subsequent
work in this direction and in other applications is surveyed
in [8, 9].

The approach we take here is to consider the problem
of estimating the directed information rate, by tracing the
path described above in connection with the mutual infor-
mation in the reverse direction. Our main results are stated
in the following section; their proofs and more general re-
sults can be found in the longer manuscript [9].

Before closing this introduction, some bibliographical
remarks are in order. The problem of testing for causality
has a long history. Perhaps the most prominent example
is the Granger causality test, which frames the problem
of detecting causal influence in terms of conditional inde-
pendence, a setting we will also follow. Granger [10] uses
an autoregressive model (later extended in several direc-
tions, most notably to generalized linear models), within
which the causality hypothesis is tested. The connection
between this test and directed information has been ex-
plored in several directions; see [11] for a comprehensive
review. Also, several different approaches to the problem
of directed information estimation have appeared in the
literature in recent years, see, e.g., [12] and [13], where
applications in genetics and neuroscience are considered.

In terms of the present development, the most interest-
ing work is [14], where several new estimators for the di-
rected information rate are introduced and they are shown
to be consistent under very general conditions. For some
of these estimators, particularly those based on the cele-
brated context tree weighting algorithm, detailed conver-
gence bounds are also obtained. Compared to the esti-
mators of [14], the plug-in suffers two well-known draw-
backs. It is computationally ineffective for large alphabet
sizes and long memory processes, and its use is restricted
to Markovian data. On the other hand, using the plug-
in facilitates the connection with hypothesis testing de-
veloped here, and also makes it possible to obtain much
more accurate, exact asymptotics, instead of convergence
bounds. In fact, the converse result in [14, Proposition 3]
suggests that the O(1/

√
n) convergence rate of the plug-

in estimator established in Section 2 is optimal. Moreover,
our convergence results are obtained under conditions at
least as general as those for the bounds [14], and the re-
sulting rates are slightly sharper.

2. DIRECTED INFORMATION

2.1. Preliminaries

Suppose X is a discrete random variable with values in a
finite set A, and with a distribution described by its prob-
ability mass function, PX(x) = Pr{X = x}, for x ∈ A.
The entropy of X is defined by, H(X) = H(PX) =
−∑x∈A P (x) logP (x), where, throughout the paper, log
denotes the natural logarithm to base e. Viewed as a sin-
gle random element, the joint entropy of any finite col-
lection of random variables Xn

1 = (X1, X2, . . . , Xn) is
defined analogously, and the mutual information between
two random variables X and Y is I(X;Y ) = H(X) +

H(Y ) − H(X,Y ). As above, we generally write Xj
i =

(Xi, Xi+1, . . . , Xj), i ≤ j, for vectors of random vari-
ables and similarly aji = (ai, ai+1, . . . , aj) ∈ Aj−i+1,
i ≤ j, for strings of individual symbols from a finite set.

The joint distribution of an arbitrary number of dis-
crete random variables is described by their joint proba-
bility mass function. For example, the joint distribution
of (X,Y, Z) is denoted, PXY Z(x, y, z). We write the
induced marginal distributions in the obvious way, e.g.,
PXY (x, y) and PZ(z), and the induced conditionals are
similarly denoted, e.g., PXY |Z(x, y|z).

2.2. The directed information rate of Markov chains

Let X = {Xn ; n ≥ 0} and Y = {Yn ; n ≥ 0} be
two discrete processes with values in the finite alphabets
A and B, respectively. For each n ≥ 1, recall the def-
inition of the directed information I(Xn

1 → Y n1 ) in (3).
This is zero exactly when Yi is conditionally independent
of Xi

1, given its past Y i−1
1 , for each i = 1, 2, . . . , n. The

natural interpretation of this equivalence is to say that the
directed information is zero if and only if X has no causal
influence on Y . We are interested in the problem of esti-
mating the directed information rate, I(X → Y ), defined
in (4).

From now on we assume that the pair process,

{(Xn, Yn) ; n ≥ −k + 1},

is an ergodic (namely, irreducible and aperiodic) Markov
chain on the alphabetA×B, of memory length k ≥ 1, and
with an arbitrary initial distribution for (X0

−k+1, Y
0
−k+1).

We write {(X̄n, Ȳn)} for the stationary version of the orig-
inal chain, namely, with (X0

−k+1, Y
0
−k+1) distributed ac-

cording to the unique invariant measure of the bivariate
chain.

The following proposition shows that, under appropri-
ate conditions, the directed information rate can be ex-
pressed as a functional of only the (k + 1)-dimensional
distribution of {(Xn, Yn)}, so that it can easily be esti-
mated and a detailed analysis of the corresponding esti-
mates can be given; see Section 2.3. Although the results
of Proposition 2.1 have appeared, at least implicitly, be-
fore, we state them here for ease of reference.

Proposition 2.1 If the Markov chain {(Xn, Yn)} is er-
godic, it has memory no larger than k, and an arbitrary
initial distribution, then:

(i) The entropy rate H(Y ) of the univariate process
Y = {Yn} exists and,

H(Y ) = lim
n→∞

1

n
H(Y n1 ) = lim

n→∞
1

n
H(Ȳ n1 ).

(ii) The directed information rate I(X → Y ) exists
and it equals,

H(Y )−H(Ȳ0|X̄0
−k, Ȳ

−1
−k ),

where H(Y |X) = H(X,Y ) − H(X) denotes the
conditional entropy.
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(iii) If Y = {Yn} is also a Markov chain of order no
larger than k, then,

I(X → Y ) = I(Ȳ0; X̄0
−k|Ȳ −1

−k ),

where I(X;Y |Z) = H(X|Z) − H(X|Y,Z) de-
notes the conditional mutual information.

Remarks.
1. Suppose {(Xn, Yn}) is a Markov chain, not neces-

sarily stationary, with memory no larger than some fixed
k. For the sake of convenience we assume throughout the
remainder of this section that {(Xn, Yn)} has a strictly
positive transition matrix Q,

Q(ak, bk|ak−1
0 , bk−1

0 ) > 0,

for all ak0 ∈ Ak+1, bk0 ∈ Bk+1. As discussed below, this
assumption can be significantly relaxed.

2. The directed information rate I(X → Y ) admits
important operational interpretations. For example, in the
case of a stationary kth order Markov chain {(Xn, Yn)}
such that {Yn} is also a kth order chain, we can use the
data processing property of mutual information in the re-
sult of part (iii) of the proposition to see that I(X → Y )
equals,

I(Y0;X0
−k|Y −1

−k )=I(Y0;X0
−∞|Y −1

−∞).

This is zero if and only if each Yi, given its past Y i−1
−∞ , is

conditionally independent of Xi
−∞, confirming our orig-

inal intuition that the directed information is only zero in
the absence of causal dependence.

3. In the case of a general stationary chain {(Xn, Yn)}
without assuming anything else about the process {Yn},
we still have that,

I(Y0;X0
−k|Y −1

−k ) = I(Y0;X0
−∞|Y −1

−k )

≥ I(Y0;X0
−∞|Y −1

−∞),

by data processing; this is zero if and only if Y0, condi-
tional only on its k-past Y −1

−k , is independent of X0
−∞. In

this case the quantity I(Y0;X0
−k|Y −1

−k ) is not enough to
entirely characterize the absence of causal influence from
X to Y , but knowing its value nevertheless offers some
evidence for such an influence. In particular, knowing that
it is zero (or sufficiently close to zero), would still imply
that X has no (or little) causal influence on Y .

4. In view of the above remarks we conclude that, even
if {Yn} is not necessarily Markovian, it is always of sig-
nificant interest to estimate I(Ȳ0; X̄0

−k|Ȳ −1
−k ). Indeed, as

we explain in detail in Section 2.4, this estimation prob-
lem is intimately related to a classical Neyman-Pearson
hypothesis test for the presence or absence of causality.

2.3. The plug-in estimator of I(X → Y )

Given a sample (Xn
−k+1, Y

n
−k+1) from the joint process

{(Xn, Yn)}, we define the (k + 1)-dimensional, bivariate
empirical distribution induced on Ak+1 ×Bk+1, as,

P̂X0
−kY

0
−k,n

(ak0 , b
k
0) =

1

n

n∑

i=1

I{Xi
i−k=ak0 ,Y

i
i−k=bk0}.

Motivated by the discussion in the above remarks, we now
define the plug-in estimator for I(X → Y ) as

Î(k)
n (X → Y ) = I(Ŷ0; X̂0

−k|Ŷ −1
−k ),

where (X̂0
−k, Ŷ

0
−k) ∼ P̂X0

−kY
0
−k,n

.

Since all the transition probabilities of the bivariate
chain {(Xn, Yn)} are nonzero, it is easy to see that the
plug-in estimator Î(k)

n (X → Y ) converges almost surely
to the desired value, I(X → Y ). The following result
describes its finer asymptotic behavior.

Theorem 2.2 Let {(Xn, Yn)} be a Markov chain of mem-
ory length k ≥ 1, with an all positive transition ma-
trix Q on the finite alphabet A × B = {1, 2, . . . ,m} ×
{1, 2, . . . , `}, and with an arbitrary initial distribution.
Assume that the univariate process {Yn} is also a Markov
chain with memory length k.

(i) If the random variables {Xn} do have a causal
influence on the {Yn}, equivalently, if I(X → Y ) > 0
then, as n→∞,
√
n
[
Î(k)
n (X → Y )− I(X → Y )

] D−→ N(0, σ2),

where D−→ denotes convergence in distribution, the nor-
mal distribution with mean zero and variance σ2 is de-
noted N(0, σ2), and with the variance σ2 given by the
following limit, which exists and is finite,

lim
n→∞

1

n
Var

{
log

[
n∏

i=1


PX̄0
−kȲ0|Ȳ −1

−k
(Xi

i−k, Yi|Y i−1
i−k )

PȲ0|Ȳ −1
−k

(Yi|Y i−1
i−k )PX̄0

−k|Ȳ
−1
−k

(Xi
i−k|Y i−1

i−k )







 .

(ii) If the {Xn} do not have a causal influence on the
{Yn}, equivalently, if I(X → Y ) = 0 then, as n→∞,

nÎ(k)
n (X → Y )

D−→ χ2
(
`k(mk+1 − 1)(`− 1)

)
.

Theorem 2.2 is an immediate consequence of a more
general result established in [9]. From the proof there, it is
evident that the restriction of all-positive transition proba-
bilities Q(ak, bk|ak−1

0 , bk−1
0 ) for the chain {(Xn, Yn)} is

unnecessary: The result of part (i) remains valid with this
restriction replaced with the minimal assumption that the
pair process {(Xn, Yn)} is irreducible and aperiodic. And
for part (ii) the positivity assumption can also be signif-
icantly relaxed, in accordance with the discussion around
Theorem 5.2 of [15].

An important consequence of Theorem 2.2 is the clear
dichotomy between the presence and absence of causal
influence: If the {Xn} have no causal influence on the
{Yn}, then I(X → Y ) = 0 and the plug-in estimator
converges at a rate O(1/n). On the other hand, if such
a causal influence does exist, then the directed informa-
tion rate I(X → Y ) is strictly positive, and the plug-in
estimator converges at the slower rate O(1/

√
n).

Finally, the proof of the χ2 convergence part of the
theorem exploits an interesting connection of this problem
with a classical hypothesis test for causality; cf. [15].
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2.4. A hypothesis test for causality

Suppose we wish to test whether or not the samples {Xn}
have a causal influence on the {Yn}. In this context, as
discussed above, this translates to testing the null hypoth-
esis that each random variable Yi is conditionally indepen-
dent ofXi

i−k given Y i−1
i−k , within the larger hypothesis that

the pair process {(Xn, Yn)} is a kth order Markov chain
on A×B with all positive transitions.

As we describe in detail in [9], all relevant transition
matrices Q = Qθ can be parametrized by a vector θ tak-
ing values in an mk`k(m` − 1)-dimensional open set Θ.
Informally, the null hypothesis corresponding to each ran-
dom variable Yi being conditionally independent of Xi

i−k
given Y i−1

i−k , is described by transition matrices Qθ which
can be decomposed as,

Qθ(a0, b0|a−1
−k, b

−1
−k) = Qxθ (a0|a−1

−k, b
−1
−k)Qyθ(b0|b−1

−k).

Formally, this can be described by a lower-dimensional
parameter set Φ, which will be embedded in Θ via a map
h : Φ → Θ, such that all induced transition matrices
Qh(φ) correspond to Markov chains that satisfy the re-
quired conditional independence property.

In order to test the null hypothesis Φ within the gen-
eral model Θ, we employ a likelihood ratio test. Specifi-
cally, we define the log-likelihood Ln(Xn

−k+1, Y
n
−k+1; θ)

of the sample (Xn
−k+1, Y

n
−k+1) under the distribution cor-

responding to θ as,

log
[
Prθ(Xn

1 , Y
n
1 |X0

−k+1, Y
0
−k+1)

]
,

so that the likelihood ratio test statistic is simply,

∆n = 2

{
max
θ∈Θ

Ln(Xn
−k+1, Y

n
−k+1; θ)

−max
φ∈Φ

Ln(Xn
−k+1, Y

n
−k+1;h(φ))

}
.

The key observation here is that:

∆n = 2nÎ(k)
n (X → Y ).

The asymptotic properties of our plug-in estimator fol-
low from the corresponding results about the likelihood
ratio. And conversely, under the null hypothesis, part (ii)
of Theorem 2.2 tells us that the distribution of ∆n is ap-
proximately χ2 with `k(mk+1−1)(`−1) degrees of free-
dom. Therefore, we can decide whether or not the data
offer strong enough evidence to reject the null hypothesis
by examining the value of ∆n and computing an appro-
priate p-value based on its asymptotic distribution.
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ABSTRACT

We introduce the notion of the Ruzsa divergence between
two probability densities with respect to the Haar mea-
sure on a locally compact, Polish, abelian group, and de-
velop its properties. Among other things, this leads to very
general inequalities relating the entropies of sums and dif-
ferences of indepedent random variables taking values in
such a group.

1. INTRODUCTION

The entropy of sums of random variables is ubiquitous
in information theory, appearing routinely when studying
communication as well as compression. Therefore it is a
perfectly natural question to ask: What is the most general
setting in which studying these makes sense? In order to
talk about a “sum”, one needs at the very least a binary op-
eration on the state space of our random variables, and in
most applications of interest, one would expect the binary
operation to have additional properties such as commu-
tativity and associativity, and the existence of an identity
element and inverses (so that one can talk not just about
sums but also differences). In other words, perhaps the
most general setting that is still natural for applications to
information theory is when the state space of our signals
(random variables of interest) is an abelian group, and it is
of interest to explore what can be said about the entropies
of sums and differences of such random variables.

There are numerous more concrete reasons why we
should we care about such investigations. Indeed, within
information theory, our work has already played a key role
in recent advances in the understanding of the interference
channel [1, 2], and carries much promise for other prob-
lems. In probability, our work is related to basic ques-
tions such as the rate of convergence in the (entropic) Cen-
tral Limit Theorem (e.g., [3, 4, 5, 6, 7, 8, 9, 10]), even
when the group is plain old Rn. In additive combina-
torics, sumset inequalities (inequalities for cardinalities of
sums of sets) play a key role in this fast-developing area
of mathematics, and entropy allows one to adopt a more
general probabilistic approach to additive combinatorics
(e.g., [11, 12, 13, 14, 15, 16, 17, 18]). And finally, in con-
vex geometry, our study is related to the “geometrization
of probability” program popularized by V. Milman (and

pioneered by C. Borell and K. Ball); see, e.g., [19, 20, 21,
22, 23, 24].

The differential entropy of a random vector X with
density f(x) on Rn is

h(X) = h(f) := −
∫

Rn

f(x) log f(x)dx

where dx represents Lebesgue measure on Rn. Key prop-
erties of differential entropy include translation-invariance,
namely the fact that h(X + b) = h(X) for any constant
b ∈ Rn, and GL(n,R)-contravariance, i.e., the fact that
h(AX) = h(X) + log det(A) for any n× n matrix A of
real entries. Key properties that hold for discrete entropy
but fail for differential entropy are non-negativity (h(X)
can lie anywhere in [−∞,∞]), and invariance with re-
spect to bijections (as already observed, even simply scal-
ing alters the differential entropy by an additive term).

In order to retain the translation-invariance of differen-
tial entropy, which is one reason it is such a useful func-
tional on the space of probability measures on Rn, we
need a measure on our ambient abelian group. This is
where the seemingly technical topological assumptions come
in– by assuming that the group is a locally compact topo-
logical group, we are guaranteed by well known results in
analysis that there exists a translation-invariant measure
(namely the “Haar measure”) with respect to which we
can define entropy, and by assuming the group is Polish,
we are guaranteed by well known results in probability
that conditional distributions exist when looking at suf-
ficiently nice random variables jointly distributed on the
group. This is why the most general setting we treat is
that of locally compact, Polish, abelian groups.

In this setting, we discuss a variety of inequalities that
hold between entropies of various sums and differences of
group-valued random variables. After developing some
required terminology in the next section, we describe our
main results. More details on all the results in this note
can be found in [25].

2. DEVELOPING THE LANGUAGE

To make our discussion more precise, recall that an abelian
group is a set G together with a binary operation + such
that x + y = y + x (commutativity), (x + y) + z =
x + (y + z) (associativity), G has an “identity element”
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0 such that x + 0 = x for all x in G, and every element
x has an inverse −x, i.e., ∀x ∈ G,∃y ∈ G such that
x + y = 0. Under the appropriate topological assump-
tions of being Polish and locally compact (which we will
not expand on here), an abelian groupG admits a measure
λ that is translation-invariant, i.e., such that

λ(A+ x) = λ(A) ∀A ⊂ G, ∀x ∈ G

whereA+x = {a+x : a ∈ A}. Such a measure is called
a Haar measure, and is unique up to scaling by a positive
constant.

We may now define entropy in the general setting. Let
G be a Polish, locally compact, abelian group, and λ be
a Haar measure on G. If µ is a probability measure on G
that is absolutely continuous with respect to λ, then there
exists a nonnegative function f : G → R with total inte-
gral of 1 such that

P (X ∈ A) =

∫

A

f(x)λ(dx), A ∈ G,

which we call the density (or probability density function)
of X or µ. The entropy of X ∼ µ is defined by

h(X) = −
∫

G

f(x) log f(x)λ(dx).

As is usual, we abuse notation to write h(X) though h
depends only on f . In general, h(X) may or may not
exist; if it does, it takes values in the extended real line
[−∞,+∞]. In the special case of compact G, the Haar
measure λ is finite, and so we can normalize it to get the
“uniform” probability measure on G. Then, for every G-
valued random variable X ,

h(X) = −D(µ‖λ) ≤ 0.

The classical examples of entropy on groups are:

• G is a discrete group, λ is the counting measure,
and h is the discrete entropy;

• G = Rn, λ is Lebesgue measure, and h is differen-
tial entropy.

Just for illustration, here are 2 non-classical examples:

• Let G = Tn, the torus with Lebesgue measure.
Then h is the differential entropy on the torus.

• Let G = (0,∞) with the Haar measure λ(dx) =
x−1dx. if f is the density (with respect to Lebesgue
measure) of a positive random variable X , then

P (X ∈ A) =

∫

A

f(x)dx =

∫

A

xf(x)
dx

x
,

so

h(X) = −
∫ ∞

0

[xf(x)] log[xf(x)]λ(dx)

= −
∫ ∞

0

f(x)[log x+ log f(x)]dx

= hR(X)− E[logX],

where hR is the entropy if we were to think of X as
an R-valued as opposed to G-valued random vari-
able (i.e., the usual differential entropy).

We cannot even talk about things like linear transfor-
mations on general groups because they do not have a lin-
ear structure. Yet one has two key properties of entropy
on groups that carry over from Rn.

Lemma 1. (Translation-invariance) Let X be a random
variable taking values in G. If b ∈ G, then

h(X + b) = h(X).

Lemma 2. (SL(n,Z)-invariance) [26] Let X be a ran-
dom variable taking values in Gn, and denote by SLn(Z)
the set of n×n matrices A with integer entries and deter-
minant 1. If A ∈ SLn(Z), then

h(AX) = h(X).

Note that integer linear combinations of group ele-
ments always makes sense in an abelian group, e.g., 2x−
3y represents x+ x+ (−y) + (−y) + (−y).

Having defined entropy, we can define related quanti-
ties such as conditional entropy and mutual information in
the natural way. The conditional entropy of X given Y is

h(X|Y ) =

∫
h(X|Y = y)PY (dy)

where h(X|Y = y) is the entropy of the (regular) condi-
tional distribution PX(·|Y = y). Then one has two useful
facts: Shannon’s Chain Rule says that

h(X,Y ) = h(Y ) + h(X|Y ),

and Jensen’s inequality implies that conditioning reduces
entropy (or equivalently, the mutual information I(X;Y )
is non-negative):

h(X)− h(X|Y ) = D(pX,Y ‖pX × pY ) := I(X;Y ) ≥ 0.

We may now define the central object of study in this
note. Suppose X and Y are G-valued random variables
with finite entropy. The quantity

dR(X‖Y ) := h(X − Y ′)− h(X),

where X and Y ′ are taken to be independent random vec-
tors with Y ′ having the same distribution as Y , will be
called the Ruzsa divergence between X and Y . By using
translation-invariance of entropy, it is easy to check that if
X and Y are independent random variables, then

dR(X‖Y ) = I(X − Y ;Y ). (1)

In particular, dR(X,Y ) ≥ 0 (although for some groups
like Rn, it is never 0 in non-degenerate situations).
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3. MAIN RESULTS

Let us state some key properties of the Ruzsa divergence,
all of which can be proved by combining the basic tools
mentioned in the previous section in various ways (some
rather straightforward and others a bit tricky) with the data
processing inequality for mutual information.

Theorem 1. If Xi are independent, then

dR(X1‖X3) ≤ dR(X1‖X2) + dR(X2‖X3).

Theorem 2. If X and Yi are all mutually independent,
then

dR

(
X

∥∥∥∥
k∑

i=1

Yi

)
≤

k∑

i=1

dR(X‖Yi).

Theorem 1 is the analog of what is called Ruzsa’s
triangle inequality for sumsets in additive combinatorics,
and was developed for discrete groups independently by
Ruzsa [12] and Tao [14]. On the other hand, Theorem 2 is
the analog of what is called the Plünnecke-Ruzsa inequal-
ity for sumsets, and is equivalent to the following Sub-
modularity Property for independentG-valued random vari-
ables:

h(X1 +X2 +X3) + h(X2) ≤ h(X1 +X2) + h(X3 +X2).

For discrete groups, this Submodularity Lemma is implicit
in [27] but was rediscovered and significantly generalized
by [13] en route to proving some conjectures of Ruzsa
[12]. Note that discrete entropy is, trivially, subadditive:

H(X1 +X2) ≤ H(X1, X2) ≤ H(X1) +H(X2).

This corresponds to putting X2 = 0 in the discrete form
of the Submodularity Lemma. On the other hand, entropy
is not subadditive in continuous settings; it is easy to con-
struct examples (using scaling, for instance) on R with

h(X1 +X2) > h(X1) + h(X2).

Note that putting X2 = 0 in the Lemma is no help since
h(const.) = −∞. We extend both theorems to the general
setting.

We also define a conditional Ruzsa divergence: We
say that X ↔ Z ↔ Y form a Markov chain if X,Z, Y
are defined on a common probability space and the condi-
tional distribution of X given (Z, Y ) is the same as that
of X given Z alone; equivalently I(X;Y |Z) = 0. If
X1 ←→ Y ←→ X2 forms a Markov chain,

dR(X1‖X2|Y ) := h(X1 −X2|Y )− h(X1|Y ),

is the conditional Ruzsa divergence from X1 to X2 given
Y .

If X1 ←→ Y ←→ X2 form a Markov chain, then

dR(X1‖X2|Y ) = I(X1 −X2;X2|Y ).

Observe that dR(X1‖X2|Y ) 6= dR(X2‖X1|Y ) in gen-
eral, but both are non-negative under the Markov condi-
tion Conditioning turns out to reduce Ruzsa divergence:
If X1 is independent of (Y,X2),

dR(X1‖X2|Y ) ≤ dR(X1‖X2).

Our proof of Ruzsa triangle inequality in fact proceeds
by proving a refined triangle inequality: IfXi are indepen-
dent, then

dR(X1‖X3) ≤ dR(X1‖X2|X2 −X3) + dR(X2‖X3).

We recover the Ruzsa triangle inequality by using the fact
that conditioning reduces Ruzsa divergence.

We now ask a basic question.

Question: If Y and Y ′ are i.i.d. random variables taking
values in G, how different can h(Y + Y ′) and h(Y − Y ′)
be?

One answer that follows from our two theorems above
is that the entropies of the sum and difference of two i.i.d.
random variables are not too different. More precisely, for
any two i.i.d. random variables Y, Y ′ with finite entropy,

1

2
≤ h(Y + Y ′)− h(Y )

h(Y − Y ′)− h(Y )
≤ 2.

To prove this, observe that if Y, Y ′, Z are independent
random variables, then the Submodularity Lemma says

h(Y + Y ′ + Z) + h(Z) ≤ h(Y + Z) + h(Y ′ + Z).

Since h(Y + Y ′) ≤ h(Y + Y ′ + Z),

h(Y + Y ′) + h(Z) ≤ h(Y + Z) + h(Y ′ + Z). (2)

Also the Ruzsa triangle inequality can be rewritten:

h(Y − Y ′) + h(Z) ≤ h(Y − Z) + h(Y ′ − Z). (3)

Taking now Y, Y ′ to be i.i.d. and Z to be an independent
copy of −Y in the inequalities (2) and (3), we get

h(Y + Y ′) + h(Y ) ≤ 2h(Y − Y ′),
h(Y − Y ′) + h(Y ) ≤ 2h(Y + Y ′),

which are the desired bounds.
Interestingly, for G = Z or G = R, the entropies of

the sum and difference of two i.i.d. random variables can
differ by an arbitrarily large amount. More precisely, if
G = Z or G = R, given any M > 0, it was shown in
[28] that there exist i.i.d. random variables Y, Y ′ of finite
entropy such that

h(Y − Y ′)− h(Y + Y ′) > M,

and in [18] that there exist i.i.d. random variables U,U ′ of
finite entropy such that

h(Y + Y ′)− h(Y − Y ′) > M.
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These two answers together suggest that the natural
quantities to consider are the differences

∆+ = h(Y + Y ′)− h(Y ),

∆− = h(Y − Y ′)− h(Y ).

Then our results assert that the ratio ∆+/∆− must always
lie between 1

2 and 2, while those of [28, 18] state that the
differences ∆+ − ∆− and ∆− − ∆+ can be arbitrarily
large. Note that the only way that the differences can be
large is if h(Y ) itself is large.

There are a number of additional results of interest
that can be obtained by developing the properties of the
Ruzsa divergence and its conditional cousin. Such a de-
velopment leads to relatively transparent proofs of general
inequalities such as the following:

1. The general sum-difference inequality states that

dR(X‖ − Y ) ≤ 2dR(X‖Y ) + dR(Y ‖X).

In the case where X and Y are i.i.d., we get

dR(X‖ −X) ≤ 3dR(X‖X),

while taking X and −Y to have the same distribu-
tion gives

dR(X‖X) ≤ 3dR(X‖ −X).

2. Analogs of the Balog-Szemeredi-Gowers inequality
in additive combinatorics can be developed, gener-
alizing that developed for discrete groups by Tao
[14] and for R by the authors [17]. SupposeX1 ←→
Y ←→ X2 form a Markov chain. Then

dR(X1‖X2|Y ) ≤ 2I(X1;Y ) + I(X2;Y )

+ d̃R(X1‖Y ) + d̃R(Y ‖X2),

where d̃R(X‖Y ) := h(X − Y )− h(X) = I(X −
Y ;Y )− I(X;Y ).

4. REMARKS

While we do not have space to describe the applications of
the inequalities developed, several such applications have
already been developed. For example, in [25], we develop
an entropic analog of the Rogers-Shephard inequality for
the difference body of a convex body (cf., [29]), as well
as connections to the central limit theorem and stability
phenomena for the entropy power inequality.

Some steps have been taken towards an entropy the-
ory of sums of random variables that take values in gen-
eral abelian groups. For discrete groups, the theory has
close connections to and implications for additive combi-
natorics, while for Rn, the theory has close connections to
and implications for probability, convex geometry, and ge-
ometric functional analysis. We believe that these results
should also have further useful consequences in informa-
tion and communication theory are waiting to be explored.
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bound on the Rényi entropy of convolutions in the
integers,” in Proc. IEEE Intl. Symp. Inform. Theory,
pp. 2829–2833. Honolulu, Hawaii, July 2014.

[17] I. Kontoyiannis and M. Madiman, “Sumset and in-
verse sumset inequalities for differential entropy and
mutual information,” IEEE Trans. Inform. Theory,
vol. 60, no. 8, pp. 4503–4514, August 2014.

[18] E. Abbe, J. Li, and M. Madiman, “Entropies of
weighted sums in cyclic groups and applications to
polar codes,” Preprint, 2015.

[19] C. Borell, “Convex measures on locally convex
spaces,” Ark. Mat., vol. 12, pp. 239–252, 1974.

[20] K. Ball, “Logarithmically concave functions and
sections of convex sets in Rn,” Studia Math., vol.
88, no. 1, pp. 69–84, 1988.

[21] E. Lutwak, D. Yang, and G. Zhang, “Moment-
entropy inequalities,” Ann. Probab., vol. 32, no. 1B,
pp. 757–774, 2004.

[22] B. Klartag and V. D. Milman, “Geometry of log-
concave functions and measures,” Geom. Dedicata,
vol. 112, pp. 169–182, 2005.

[23] S. Bobkov and M. Madiman, “Dimensional be-
haviour of entropy and information,” C. R. Acad.
Sci. Paris Sér. I Math., vol. 349, pp. 201–204, Février
2011.

[24] M. Fradelizi, M. Madiman, and L. Wang,
“Optimal concentration of information con-
tent for log-concave densities,” Preprint,
arXiv:1508.04093, 2015.

[25] M. Madiman and I. Kontoyiannis, “Entropy
bounds on abelian groups and the Ruzsa diver-
gence,” Preprint, arXiv:1508.04089, 2015.

[26] M. Madiman and P. Singla, “A note on GLn(Z)-
actions on locally compact abelian groups,”
Preprint, 2015.

[27] V. A. Kaı̆manovich and A. M. Vershik, “Random
walks on discrete groups: boundary and entropy,”
Ann. Probab., vol. 11, no. 3, pp. 457–490, 1983.

[28] A. Lapidoth and G. Pete, “On the entropy of the
sum and of the difference of two independent ran-
dom variables,” Proc. IEEEI 2008, Eilat, Israel,
2008.

[29] S. G. Bobkov and M. M. Madiman, “On the
problem of reversibility of the entropy power in-
equality,” in Limit Theorems in Probability, Statis-
tics, and Number Theory (in honor of Friedrich
Götze), P. Eichelsbacher et al., Ed., vol. 42 of
Springer Proceedings in Mathematics and Statis-
tics. Springer-Verlag, 2013, Available online at
http://arxiv.org/abs/1111.6807.

30



SCOT MODELING, TRAINING AND STATISTICAL INFERENCE

Mikhail Malyutov1, Paul Grosu2 and Tong Zhang3

Math. Dept., Northeastern University, 360 Huntington Ave., Boston, MA 02115
1 m.malioutov@neu.edu, 2 pgrosu@gmail.com, 3 zhang.tong@husky.neu.edu

ABSTRACT

Stochastic COntext Tree (abbreviated as SCOT) is m-Markov
Chain (m-MC) with every state of a string independent of the
symbols in its more remote past than the context of length
determined by the preceding symbols of this state. We model
and apply SCOT for statistical inference about financial, lit-
erary and seismological stationary strings in ‘Information pro-
cesses, vol 13, No 4, Vol 14, No. 3 and volume 15, No.1,
available online. SCOT construction has been earlier used
for compression under various names VLMC, VOMC, PST,
CTW. We analyze several models viewed as simplified ap-
proaches to financial modeling: evaluate their stationary dis-
tribution, entropy rate and convergence to the Brownian mo-
tion.

1. Introduction

Modeling random processes as full m-Markov Chains (m-
MC) can be inadequate for small m, and over-parametrized
for large m. For example, if the cardinality of the base state
space is four, m= 10, then the number of parameters is around
3,15 millions. The popular Box–Jenkins ARIMA and En-
gel’s GARCH in quality control and finance are not adequate
in applications to linguistics, genomics and proteomics, se-
curity, etc, where comparatively long non-isotropic contexts
are relevant that would require huge memory size of the full
m-MC. In [10], compressor VLMC was constructed based on
consistent statistical estimate of the Stochastic Context Tree
(SCOT) of the training string which is then used for com-
pression. SCOT is an m-Markov Chain (MC), where every
state is independent of the states which are more remote than
the contexts of a certain length depending on the preceding
m-gram. In most applications, an estimated SCOT turns out
to be sparse in agreement with the Occam principle. Instead
of compression, we use SCOT for generating the likelihood
function of strings, and apply the latter for statistical infer-
ence. A substantial part of this paper is devoted to the inno-
vative modeling of SCOT - governed time series. We present
theoretical results on SCOT models and its online training
algorithm. These results are applied for statistical SCOT -
based inference on discrimination between quiet and volatile
regions of financial time series, seismological time series, as
well as in similar type sequences used in literary research in
[5]. Apparently, the first SCOT Statistical Likelihood com-
parison application [1] to non-stationary Bioinformatics data
is inadequate.

Fig. 1. The simplest stochastic context tree (Model 1).

For the simplest SCOT of Fig. 1 contexts are {0},{01},{11}
written from bottom to top, transition probabilities P(x0 = 1)
given preceding contexts are respectively 1/2,1/4,3/4, as
displayed there.

Binary Context Tree Kn repeats n times byfication of the
right hand side of Tree K2 on Fig.1. It has contexts (0,(01)), ...,
(01n−1),(1n) and admits reduction to 1-MC for every n. Let
us assign all transition probabilities between consequent con-
texts as 1/2. This SCOT is ergodic, the stationary distribu-
tion for this 1-MC is

(1/2,1/4, . . . ,(1/2)n−1,(1/2)n,(1/2)n),
and entropy rate (ER) for SCOT reduced to 1-MC be-

tween contexts is by the well-known formula for 1-MC: ER=-
∑i∈A ∑ j∈A qi pi j log pi j which is log2 for all n.

• We find: SCOT stationary distribution and ER in sev-
eral more advanced models,

• show that SCOT ER is much lower than the maximum
|A|nlog(|A|) for n-MC.

• prove invariance, asymptotic normality and exponen-
tial tails of additive functions of SCOT trajectories.

2. Reduction to 1-MC

An m-MC {xn} with a finite state space (alphabet) A can be
regarded as 1-MC

{Yn = (xn,xn+1, . . . ,xn+m−1)}

with alphabet as the space of m-grams Am. Namely:
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P(Yn+1|Yn) = P(xn+m|Yn), if xn+1, . . . ,xn+m−1 coincide in
both sides, and 0 otherwise.

Sparse SCOT over some alphabet A = {a1, . . . ,ad} is a
very special case of m-MC, where m is the maximal length
of contexts. Given stochastic string x−m, . . . ,x−1,x0, the con-
text to a current state x0 given preceding m-gram is

C(x0) = x−1, . . . ,x−k,k ≤ m := x−k
−1 : (1)

the top part of the preceding m-gram of minimal length such
that the conditional probability

P(x0|x−r
−1)≡ P(x0|x−k

−1),∀r > k;k = |C(x0)| (2)

is called the length of context C(x0), a context tree T is as-
sumed complete, see [6], T ∗ denotes the set of contexts in T ,
Ti denotes the subtree Ti of T whose root is ai, thus T ∗i :=
{u| uai ∈ T ∗}; For all pairs ai ∈ A,a j ∈ A, Tj,i := Ti(Tj), thus
we have T ∗j,i := {u|uaia j ∈ T ∗}.

A complete context tree T is called ”tailclosed” if ∀ c ∈
T ∗, i∈ {1, ...,d}, ∃ u∈ T ∗, s.t. cai =wu , where w is a string.

Theorem (T. Zhang) : Let T be a complete context tree,
then the following statements are equivalent.

(a) T is tailclosed.
(b)∀ 1≤ i, j ≤ d, Tj,i ⊆ Ti
(c)∀ 1≤ i, j ≤ d, c ∈ T ∗j,i, ∃ c′ ∈ T ∗i , s.t. c′ = uc, where

u is a string.
(d)∀ 1≤ i, j ≤ d, c′ ∈ T ∗i , ∃ c ∈ T ∗j,i, s.t. c′ = uc, where

u is a string.
For tailclosed context tree, then we accept the following:

Definition. The transition probability from C(xi) to C(xi+1)
is the transition probability from C(xi) to xi+1.

Thus, all |A| realizations of x0 determine the next con-
text ending up with x0 for predicting x1 and induce the tran-
sition probability between consecutive contexts defining a
|C (n)|×|C (n)|matrix P of 1-MC transition probabilities be-
tween contexts,

In our first example, this definition gives the following
transition probability matrix P between contexts:

Table 1: Transition probability matrix P between contexts
(0), (01), (11) in the previous slide

0.5 0.5 0
0.75 0 0.25
0.25 0 0.75

Distribution (6.1)−1(3,1.5,1.6) rapidly converges to the sta-
tionary one: (1/2, 1/4, 1/4) after iterative multiplications by
P.

SCOT reduction to 1-MC is useful in approximating the
stationary SCOT distribution: Multiplying empirical estimate
of the stationary distribution from the right by powers of ma-
trix P, we approximate the theoretical stationary distribution
better.

Fig. 2. Counterexample

Namely, the Euclidean norm of the approximation error
shrinks exponentially with the power of P. If a context prob-
ability shrinks, we remove it.

We define the steady state (stationary) distribution Q(C,C∈
C ) over all L contexts as the solution to the equation:

Q∗P = Q∗. (3)

If the induced 1-MC is ergodic, then Ergodic theorem
holds: The solution to (1) exists, is unique, and iterations
Qm = Q0Pm converge to Q∗ exponentially fast.

3. Spike model

• Let us: assign randomly the increments of the Ran-
dom walk to regular ones with Probability 1− 2/N,
and (with 2/N probability) to spikes;

• specify a standard increment distribution for regular
increments ±1 and SCOT model with increments of
magnitude 0, or ±

√
N to spikes;

• convergence of the Spike model to a martingale - mix-
ture of the Brownian motion and a symmetric pair of
± Poisson processes.

The family XN
n = ∑n

i=1 ri of Spike models is a reflected
Random Walk on large interval [−l, l], l > N3/2. Regular
part of XN

n has increments ±1 and reflects one step from
the boundary next time after hitting it. Very rare (proba-
bility 2/N) random interruptions by spikes at random Spike
time moments n have magnitudes 0 or ±

√
N depending on

whether XN
n =XN

n−1, or XN
n >XN

n−1, or the opposite inequality
holds.

XN
n = ∑n

i=1 ri,ri in a regular part is an equally likely se-
quence of independent identically distributed (IID) ±1, i =
1, . . . , inside (−l, l), while irregular part is a SCOT model
specified above.

4. Continuous time limit

Let the increments of time/space be respectively 1/N,1/
√

N
instead of 1. Introduce wN(t) = N−1/2XN

bNtc (summation is
until the integer part bNtc of Nt). We study the weak conver-
gence of wN(t) as N→ ∞.

Inside (−l, l) conditionally on no spike at time k+1

E(Xk+1−Xk) = 0,
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Var(XN
k+1−XN

k )) = (1−2/N)/N.

Let τk be the k-th spike time. Obviously, τk − τk−1 are
IID, independent of σ -algebra spanned by (x j, j < k− 2)
converging to the exponential distribution with mean 2.

Theorem. In the limit we get a weak convergence of
wN(t) to the Wiener process w(t) in between independent of
w(t) compound Poisson spikes process of equally likely mag-
nitudes ±1:

P(τ > t) = exp(−t/2),

τ and {xt}, t < τ, are independent.

5. ‘Thorny’ T Ha,b SCOT model

Our next model is similar to the Spike model, only rare ran-
dom time moments of spikes ±aNb with similar dependence
of spikes magnitude on the past take place with probability
N−2b,0 < b < 1/8. In the same limiting situation of time in-
tervals 1/N and steps 1/

√
N, the KUM criterion is valid with

similar parameters, thus trajectories of the limiting T Ha,b
model are continuous.

Let the martingale sequence wN(t) be as above. Then
Eri = 0,Var[wN(t)] = Nt[(a2N2b−1)N−2b + (1−N−2b)]→
a2 + 1. The equality of summands preceding a spike can
be neglected. The covariance of wN(t) converges to that of√

(a2 +1)w(t) in a similar way. Thus this model gives larger
volatility without noticeable drift in the limit to continuous
t. The weak FDD convergence to that of

√
a2 +1w(t) is

valid since the Martingale version of the Lindeberg condi-
tion holds. Thus we proved the following statement.

Proposition. wN(t) converges weakly to
√
(a2 +1)w(t).

6. AN for additive functions of m-MC trajectories

• Given an m-MC {xi} with alphabet A, denote induced
1-MC on m-grams (see our Introduction) as {Yi} . If n-
MC XN is ergodic with finite alphabet and the sequence
{YN} is an ergodic 1-MC, then.

• this 1-MC {YN} is a Harris invariant ([9], chapter 17),
with respect to a probability distribution. Let g be a
Borel function on R.

• Define f (Yi) := f (xi,xi−1, . . . ,xi−m+1)=∑m−1
k=0 g(xi−k).

• Define f̄N :=(1/N)∑N
i=1 f (Yi), ḡN :=(1/N)∑N

i=1 g(xi).

• If π is the stationary distribution and Eπ | f 2|< ∞, then
the ergodic theorem ([9], 17.3) guarantees that f̄N →
Eπ f with probability 1 as N→ ∞ and the central limit
theorem holds for f̄N ( [9], 17.4):

√
N( f̄N −Eπ f )⇒ N(0, f 2

π ) weakly, where σ f 2
π < ∞ is

the variance of f with respect to π .

•
√

N(1/NσN
i=1 f ({Yi})−Eπ f )⇒ N(0,σπ f 2) weakly,

•
√

N(1/NσN
i=1σm−1

k=0 g(xi−k)−Eπ f )⇒ N(0,σπ f 2)
weakly,

•
√

N(mḡN(x)−Eπ f )⇒ N(0,σπ f 2) weakly.

• Results on the MC AN convergence rate suggest its
increase with lowering the MC alphabet size.

• Thus SCOT AN convergence rate is generally much
higher than for the full n-MC.

• Above results justify t-distribution of our homogeneity
test statistic based on studentized averages of SCOT
log-likelihoods introduced further.

7. Asymptotic expansion for additive functions

[4] proves for finite ergodic MC :
P(N−1/2(∑ f (xi)≤ x))=Φσ (x)+Φσ (x)q(x)N−1/2+O(N−1)

and finds explicit expression for the Hermite polynomial q(x).
Here φ and Φ are pdf and CDF of the central Normal RV with
StD σ .

This result can be generalized for n-MC by the method
displayed above.

We believe that the coefficient q(x) for sparse SCOT is
substantially less that for general n-MC.

8. Exponential tails for additive functions

Introduce diversion (cross entropy) D(P1||P0)=E1 log(P1/P0)
and consider goodness of fit tests of P0 vs. P1 for IID sample
of size N.

9. ‘Stein’ lemma for LRT between two known SCOT dis-
tributions [11]

If D(P1||P0)≥ λ and any 0 < ε < 1, then the error probabil-
ities of Likelihood Ratio Test (LRT) satisfy simultaneously

P0(L0−L1 > Nλ )≤ 2−Nλ

and

limP1(L0−L1 > nλ ))≥ 1− ε > 0.

No other test has both error probabilities less in order of
magnitude.

10. Nonparametric version of the ‘Stein’ lemma

Generate an artificial (n)-sequence zN independent of yN , zN

distributed as P0 and denote by L0 its log-likelihood given the
SCOT model of the training string.

L is the query log-likelihood given the SCOT model of
the training string.

Also assume that the joint distribution of S slices of size
n converge to their product distribution in Probability.

Theorem. Suppose P1,P0 are SCOT, D(P1||P0) > λ and
we reject homogeneity, if the ‘conditional version of the Like-
lihood Ratio’ test T = L−L0 > Nλ . Then the same error
probability asymptotics as for LRT in the ‘Stein’ lemma is
valid for this test.

11. SCOT training

We develop an parallel SCOT training which removes severe
restriction the SCOT alphabet size not to exceed 27 in [3]
for applying it in statistical inference such as prediction and
testing homogeneity.
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11.1. Determining ESI for possible context

The Empirical Shannon Information (ESI) is an approxima-
tion to the log-likelihood ratio statistic for testing the consis-
tency of the context of a given source.

Given a context s and let N(s) be the count of s in the
source. Define a function ESI(s) as follows:

ESI(s) = ∑
i∈A

∑
j∈A

N(i.s. j) · log2

(
N(i.s. j) ·N(s)
N(i.s) ·N(s. j)

)

In our implementation, these values are collected in the
following matrix:

Fig. 3. SCOT training

11.2. Deciding about contexts

Using a fixed maximum context length h and a threshold
ε > 0, we define a context over source as follows:

For any message ′x1x2 . . .xt
′, where t ≤ h. It is decided to

be a context, if and only if:

(a) For any i, i = 2, . . . , t such that ESI(′x1x2 . . .xt
′)> ε

(b) 0 < ESI(′x1x2 . . .xt
′)≤ ε

11.3. Building SCOT

Using our criterion on contexts, we check all the messages
coming from a source and build a SCOT such that each con-
text is a path starting from a leaf and ending at a son of the
root. A SCOT is built in a step-wise manner starting with
depth 1 and ending at the desired context length. Below is an
example of the SCOT for the message shannon:

The stochastic component of SCOT - prediction distribu-
tion of symbols in the root - is to be specified at every leaf.
This is performed by the following equation, where s is a
leaf:

P(i|s) = N(s.i)/N(s),where i ∈ A.

As an example, below are the leaf probabilities generated
for the context sha: P(a|sha) = 0,P(h|sha) = 0,

P(n|sha) = 1,P(o|sha) = 0,P(s|sha) = 0.

Fig. 3. SCOT training

12. CONCLUSION

Our theoretical study of stationary distributions, limit theo-
rems and asymptotic normality of additive functions for SCOT
models prepares a solid base for statistical applications of
SCOT models such as described in [5] .
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ABSTRACT

In this paper we suggest an instance of the Information
Bottleneck Method (IBM) as an information theoretic al-
ternative of the Theory of Visual Attention (TVA). The pro-
posed method is called Relevance Sampling (RS) since it
can be interpreted in the spirit of Importance Sampling
(IS). The aim of RS is optimally to sample a distribution
of a stochastic variable X in order to learn as fast as pos-
sible about a related variable Y .

1. INTRODUCTION

Our motivation for writing this paper is to understand bi-
ological information processing theories like TVA [1] in
terms of information theory. TVA describes the human
visual system via two steps, namely filtering and pigeon-
holing. The purpose of filtering is to throw away visual
input that is considered irrelevant for the current task that
the visual system attends to.

We study filtering by combining IS [2, 3] and IBM
[4, 5]. IS creates optimal strategies of how to sample a
distribution to minimize the variance on an integral esti-
mator (such as e.g. the mean or any other moment). The
IBM provides a strategy of how to quantize a stochastic
variable X into X̃ so as to preserve as much information
about a task variable Y as possible. This paper provides a
combination of the two creating a sampling strategy of X
revealing as much information on Y as possible.

2. NOTATION AND PROBLEM STATEMENT

Let S,X, Y be random variables defined on a probability
space (ΩS ×ΩX ×ΩY , FS ⊗FX ⊗FY , P ). The random
variable S represents the state of the world, and X is a
random variable from which we obtain evidence about the
state of the world S. Our task is to determine the state of
Y , denoted the task variable, based on the observation of
X . We assume to have the following Markov property:

X → S → Y.

Now let s ∈ ΩS be fixed. We may sample as many inde-
pendent measurements Xi from the conditional distribu-
tion of X given S = s as we wish, and the aim is to use

filtering to obtain information on Y as quickly as possi-
ble. Here filtering is interpreted in the following way; if
an observation xi is considered less relevant for deciding
the state of the task variable, then we may choose not to
use this observation.

3. RELEVANCE SAMPLING

We introduce an additional state ∇ 6∈ ΩX to model the
situation that an observation is thrown away. The proba-
bility of retaining the observation x ∈ ΩX is denoted by
M(x) ∈ [0, 1]. If X̃ denotes the outcome of this proce-
dure, then we have the Markov diagram

X̃ → X → Y

with ΩX̃ = ΩX ∪ {∇} and transition probabilities from
X to X̃ given by

p(x̃|x) =





M(x) for x̃ = x,
1−M(x) for x̃ = ∇,
0 otherwise.

The probability of not seeing anything is given by p(∇) =
1 −

∫
ΩX

M(x)p(x) dx, and the sampling density on the
original sample space is given by

p̃(x) = P (X̃ = x|X̃ 6= ∇) =
M(x)p(x)

1− p(∇)
.

This may be interpreted as importance sampling [2, 3]
with sampling measure

L(x) =
M(x)

1− p(∇)
.

The conditional density of Y given X̃ = x equals p(y|x),
i.e. the same as the conditional density of Y givenX = x,
and the conditional density of Y given X̃ = ∇ is given by

p(y|∇) =

∫

ΩX

p(y|x)p(x|∇) dx

=
p(y)

p(∇)
−
∫

ΩX
p(y|x)M(x)p(x) dx

p(∇)
.
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If observations are sampled from the density p̃(x) and
the transition probabilities to the task variable is given by
p(y|x), then the sampling density of tasks equals

∫

ΩX

p(y|x)
M(x)p(x)

1− p(∇)
dx =

1− p(∇)p(y|∇)
p(y)

1− p(∇)
p(y).

This density equals p(y), i.e. provides unbiased inference
for the task variable, if and only if p(y) = p(y|∇) for
every y ∈ ΩY .

In order to choose the importance measure M(x) we
use the IBM [4, 5]. Thus, given a parameter β > 0 quanti-
fying the trade-off between throwing away the most irrel-
evant samples (filtering) while retaining information (pi-
geonholing) the optimal importance measure is given by

M∗(x) = arg min
M(x)∈[0,1]

I(X̃,X)− βI(X̃, Y ). (1)

The solution of the optimization problem Eq. (1) is de-
scribed in the following theorem, where the information
gain RY |X(x) is defined by

RY |X(x) = H(Y )−H(Y |X = x)

=

∫

ΩY

p(y|x) log
p(y|x)

p(y)
dy.

We think of the information gain RY |X(x) as a measure
of the relevance of the observation X = x for deciding
the task Y .

Theorem 1. The optimal importance measure M(x) and
the associated probability p(∇) satisfy

M(x) = 1−min

{
1,
p(∇)

p(x)
e−βRY |X(x)

}
,

p(∇) =

∫

ΩX

min
{
p(x), p(∇)e−βRY |X(x)

}
dx.

The self consistency equation for the probability p(∇) can
be found by the iteration p(∇) = limn→∞ pn(∇) with

pn+1(∇) =

∫

ΩX

min
{
p(x), pn(∇)e−βRY |X(x)

}
dx

and p0(∇) = 1. Especially, for β ≤ infx∈ΩX

− log p(x)
RY |X(x)

we have p(∇) = 1 and every observation is ignored.

Proof. Let the energy functional L be defined by

L = I(X̃,X)− βI(X̃, Y ).

Some simple algebraic manipulations give that L equals

H(X)− βI(X,Y )− p(∇) log p(∇)

+

∫

ΩX

p(∇, x)
(

log p(∇, x) + βRY |X(x)
)

dx

with p(∇, x) = p(x)−M(x)p(x). Using δp(∇)
δp(∇,x) = 1 we

find

δL
δp(∇, x)

= log p(∇, x)− log p(∇) + βRY |X(x).

The functionalL is convex in distributions of (X̃,X) with
fixed marginal distribution ofX , and hence also convex in
p(∇, x). By itself the stationarity condition δL

δp(∇,x) = 0

implies p(∇, x) to be given by p(∇)e−βRY |X(x). But the
constraints 0 ≤ p(∇, x) ≤ p(x) should also be incorpo-
rated. For p(∇, x) → 0 we have δL

δp(∇,x) → −∞, i.e. the
lower bound on p(∇, x) poses no constraint. The upper
bound on p(∇, x) is enforced by the minimum operation
in the formula for M(x). The equation for p(∇) follows
by

p(∇) =

∫

ΩX

p(∇, x) dx =

∫

ΩX

(
p(x)−M(x)p(x)

)
dy

= 1−
∫

ΩX

p(x)

(
1−min

{
1,
p(∇)

p(x)
e−βRY |X(x)

})
dx

=

∫

ΩX

min
{
p(x), p(∇)e−βRY |X(x)

}
dx def

= F
(
p(∇)

)
.

If the function F (q) is defined by the latter display, then
p(∇) ≤ F (q) < q for p(∇) < q. It follows that p(∇) can
be found by the stated iteration.

3.1. Relevance sampling and features

In many situations it may be intractable to estimate the
relevance of the entire observation X . Thus, assume that
the relevance only may be based on some feature of the
observation, i.e. that there exists another random variable
Q defined on (ΩQ, FQ, P ) such that the following Markov
property holds:

Q→ X → Y.

If the bivariate variable (Q,X) is considered as the ob-
servation, then we are back to the situation studied above.
But now we assume that the probability of retaining the
observation (Q,X) = (q, x) only may depend on the fea-
ture q, i.e. we assume

M(q, x) = MQ(q), p
(
∇, (q, x)

)
= p(∇, q) p(x|q).

The proof of the following theorem is similar to that of
Theorem 1.

Theorem 2. The optimal importance measure MQ(q) is
given by

1−min

{
1,
pQ(∇)

p(q)
e−βRY |Q(q)−βI(X,Y |Q=q)+H(X|Q=q)

}
.

(2)
Here the probability pQ(∇) can be found by the itera-
tion pQ(∇) = limn→∞ pn(∇), where p0(∇) = 1 and
pn+1(∇) is given by
∫

ΩQ

min
{
p(q), pn(∇)e−βRY |Q(q)−βI(X,Y |Q=q)+H(X|Q=q)

}
dq.

The interpretation of Eq. (2) is that an observation is
more likely to be retained if the mutual information be-
tween X and Y given the feature Q = q is large, and less
likely to be retained if the conditional entropy H(X|Q =
q) of the full observation given the feature is large.
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4. APPLICATION TO DECISION THEORY

RS can be applied to the problem of deciding a task Y
given i.id. measurements X1, . . . , Xn. The log likelihood
ratio test statistic for Y = y0 against Y 6= y0 is given by

T (y0) = inf
y∈ΩY \{y0}

n∑

i=1

log
p(y0|Xi)

p(y|Xi)
.

To apply RS the observation X = x is counted with mul-
tiplicity given by the sampling measure

L(x) =
p̃(x)

p(x)
=

M(x)

1− p(∇)

and otherwise the inference proceed as usual. The rele-
vance weighted log likelihood ratio test statistic TRS and
the associated number NRS of counted measurements are
given by

TRS(y0) = inf
y 6=y0

n∑

i=1

L(Xi) log
p(y0|Xi)

p(y|Xi)
,

NRS =
n∑

i=1

L(Xi).

The slope of the weighted log likelihood ratio as a
function of the number of counted measurements equals
the slope of the ordinary log likelihood ratio, i.e.

L(Xi) log p(y0|Xi)
p(y|Xi)

L(Xi)
= log

p(y0|Xi)

p(y|Xi)
.

Furthermore, the mean number of counted measurements
equals the actual number of measurements, i.e.

∫

ΩX

L(x)p(x) dx =

∫

ΩX

M(x)p(x)

1− p(∇)
dx = 1.

Thus, by taking steps of length L(Xi) the relevance sam-
pling gives a non uniform weighting of the measurements
according to their relevance for the task variable. Espe-
cially, the log likelihood ratio is sampled with the density
L(x)p(x|y0) under the null-hypothesis that y0 is the true
task.

This methodology can be extended to the case where
the observationX1, . . . , Xn are weighted according to as-
sociated features Q1, . . . , Qn. The feature weighted log
likelihood ratio test statistic with sampling measureLQ(q) =
MQ(q)

1−pQ(∇) is given by

TQ(y0) = inf
y 6=y0

n∑

i=1

LQ(Qi) log
p(y0|Xi)

p(y|Xi)
,

NQ =
n∑

i=1

LQ(Qi).

4.1. Example: Mean shift in a Gaussian distribution

Let ΩQ = {0, 1}, ΩX = R, ΩY = {−1, 1} and

p(x, y) =
e−

1
2 (x−y)2

2
√

2π
, Qi = 1{|Xi|>1}.

Thus, Y is uniformly distributed on the two point set ΩY
and the conditional distribution of Xi given Y = y is
N (y, 1). The feature Qi states whether the numerical
value of Xi is large. Intuition says that larger numeri-
cal values of Xi are more relevant for deciding whether
Y = −1 or Y = 1. Before seeing what the developed
theory says about this we remark that p(y|∇) = p(y) by
symmetry, i.e. relevance sampled inference is unbiased.

The conditional probabilities are given by p(y|q) = 1
2

and

p(y|x) =
e−

1
2 (x−y)2

e−
1
2 (x+1)2 + e−

1
2 (x−1)2

.

The relevanceRY |X(x) = log(2)+
∑
y∈ΩY

p(y|x) log p(y|x)
is depicted in Fig. 1 and we have RY |Q(q) = 0. Further-
more, the conditional entropies are given by

H(X|Q = 0) = 0.6929, I(X,Y |Q = 0) = 0.1268,

H(X|Q = 1) = 1.4020, I(X,Y |Q = 1) = 0.5284.

Using β = 5 and the quantities stated above we find

p(∇) = 0.6318, pQ(∇) = 0.6714

and the densities p(x), p̃(x), p̃Q(x) and sampling mea-
sures L(x), LQ(x) depicted in Fig. 2 and Fig. 3.

To test relevance sampling against ordinary likelihood
ratio we chose y0 = 1 and let X1, X2, . . . be i.id. sam-
ples from p(x|y0). The likelihood ratio test statistic for y0

given the measurements X1, . . . , Xn is given by

T =

n∑

i=1

log
p(Y = 1|Xi)

p(Y = −1|Xi)
.

The corresponding relevance sampled and feature based
relevance sampled likelihood ratio test statistic are given
by

TRS =
n∑

i=1

L(Xi) log
p(Y = 1|Xi)

p(Y = −1|Xi)
, NRS =

n∑

i=1

L(Xi),

TQ =
n∑

i=1

LQ(Qi) log
p(Y = 1|Xi)

p(Y = −1|Xi)
, NQ =

n∑

i=1

LQ(Qi).

The statistics T , TRS and TQ are depicted in Fig. 4. We see
that the relevance weighted likelihood ratio test statistics
increase more rapidly than the ordinary likelihood ratio
test statistic. This property can be quantified. Under the
null-hypothesis Y = 1 the central limit theorem and the
Delta method gives the asymptotic distributions

1

n
T ∼ asN

(
2,

4

n

)
,

1

n

(
TRS
NRS

)
∼ asN

((2.9921
1

)
,

1

n

(
12.1234 2.4244
2.4244 0.7464

))
,

1

n

(
TQ
NQ

)
∼ asN

((
3.3197

1

)
,

1

n

(
15.9619 3.0308
3.0308 0.9121

))

and
TRS

NRS
∼ asN

(
2.9921,

4.2979

n

)
,

TQ
NQ
∼ asN

(
3.3197,

4.0124

n

)
.

37



Figure 1. The relevance function RY |X(x).

Figure 2. Sampling densities: p(x) (blue,
dashed), p̃(x) = L(x)p(x) (red) and p̃Q(x) =
LQ(x)p(x) (green).

Figure 3. Sampling measures: L(x) = M(x)
1−p(∇)

(red) and LQ(q) =
MQ(q)

1−pQ(∇) taken at q =

1{|x|>1} (green).

Figure 4. Likelihood ratio statistics: Ordinary
(blue,dashed), relevance sampling (red) and fea-
ture based relevance sampling (green).

Apparently the relevance weighted likelihood ratio test
statistic give stronger evidence for the true null-hypotheses
Y = 1 than the ordinary likelihood ratio test statistic,
even more so for the feature based method. This para-
doxically contradicts the fact that the ordinary likelihood
ratio statistic uses the most information. However, the rel-
evance sampling methods indeed only use part of the ob-
servations. This is helpful if the number of available ob-
servations is so huge that the whole is difficult to analyse
and comprehend.
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ABSTRACT

The one-time pad(or Vernam cipher) has played an impor-
tant role in cryptography because it is a perfect secrecy
system. For example, if an English text (presented in bi-
nary system) X1X2... is enciphered according to the for-
mula Zi = (Xi + Yi) mod 2, where Y1Y2... is a key
sequence generated by the Bernoulli source with equal
probabilities of 0 and 1, anyone who knows Z1Z2... has
no information about X1X2... without the knowledge of
the key Y1Y2.... (The best strategy is to guessX1X2... not
paying attention to Z1Z2....)

But what should one say about secrecy of an analo-
gous method where the key sequence Y1Y2... is generated
by the Bernoulli source with a small bias, say, P (0) =
0.49, P (1) = 0.51? To the best of our knowledge, there
are no theoretical estimates for the secrecy of such a sys-
tem, as well as for the general case whereX1X2X3... (the
plaintext) and key sequence are described by stationary
ergodic processes. We consider the running-key ciphers
where the plaintext and the key are generated by station-
ary ergodic sources and show how to estimate the secrecy
of such systems. In particular, it is shown that the Vernam
cipher is robust to small deviations from randomness.

1. INTRODUCTION

We consider the classical problem of transmitting secret
messages from Alice (a sender) to Bob (a receiver) via
an open channel which can be accessed by Eve (an ad-
versary). It is supposed that Alice and Bob (and nobody
else) know a so-called key K which is a word in a certain
alphabet. Before transmitting a message Alice encrypts
it. In his turn, Bob, after having received the encrypted
message (ciphertext), decrypts it to recover the initial text
(plaintext); see, for ex., [3].

We consider so-called running-key ciphers where the
plaintext X1...Xt, the key sequence Y1...Yt and cipher-
text Z1...Zt belong to one alphabet A (without loss of
generality we suppose that A = {0, 1, ..., n − 1}, where
n ≥ 2). The i − th letter of the ciphertext is defined by
Zi = c(Xi, Yi), i = 1, ..., t, whereas the deciphering rule
is by Xi = d(Zi, Yi), i = 1, ..., t, i.e. d(e(Xi, Yi), Yi) =
Xi. Here c and d are functions called coder and decoder,
correspondingly. Quite often the following particular for-

mula are used

Zi = (Xi + Yi) mod n , Xi = (Zi − Yi) mod n ,
(1)

i.e. c(Xi, Yi) = (Xi + Yi) mod n, d(Zi, Yi) = (Zi −
Yi) mod n. In a case of two-letter alphabet (1) can be
presented as follows:

Zi = (Xi ⊕ Yi) , Xi = (Zi ⊕ Yi) (2)

where a⊕ b = (a+ b) mod 2.
The running-key cipher (1) is called the one-time pad

(or Vernam cipher) if any word k1...kt, ki ∈ A, is used
as the key word with probability n−t, i.e. P (Y1...Yt =
k1...kt) = n−t for any k1...kt ∈ At. In other words, we
can say that the key letters are independent and identically
distributed (i.i.d.) and probabilities of all letters are equal.

The one-time pad has played an important role in cryp-
tography, especially since C.Shannon proved that this ci-
pher is perfectly secure [5]. If the plaintext is generated
by a stationary ergodic source, this property can be inter-
preted as follows. According to the Shannon-McMillan-
Breiman theorem, the set of all sequences X1...Xt for
large t can be represented as two following subsets. The
first subset contains 2h(X1...Xt) sequences whose proba-
bilities are close and their sum is almost 1. The second
one contains all other sequences whose total probability is
almost 0. So, Eva knows that, with overwhelming proba-
bility, the ciphered text belongs to the first subset, whose
sequences have close probabilities. Moreover, the number
of such sequences grows exponentially (as 2ht, where h
is the entropy of the plaintext source). That is why Eva
cannot find the ciphered text.

In this paper we consider the running-key ciphers (1)
in the case where the plaintext X1...Xt and the key se-
quence Y1...Yt are independently generated by stationary
ergodic sources, and the entropy of the key can be smaller
than the maximum of log n per letter (here and below
log ≡ log2). (In particular, if the entropy is close to log n,
we can say that the cipher is close to the one-time pad.) It
will be shown that, in a certain sense, if a cipher is close
to the one-time pad, their cryptographic security is also
close.

It is worth noting that Shannon in his famous paper [5]
mentioned that the problem of deciphering of a ciphertext
and the problem of signal denoising are very close from
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mathematical point of view. In this paper we use some
results obtained in [4] considering the problem of denois-
ing.

2. PRELIMINARIES

We consider the case where the plaintextX = X1, X2, . . .
and the key sequence Y1, Y2, . . . are independently gener-
ated by stationary ergodic processes with the finite alpha-
bets A = {0, 1, ..., n− 1}, n ≥ 2.

The m−order Shannon entropy and the limit Shannon
entropy are defined as follows:

hm(X) = − 1

m+ 1

∑

u∈Am+1

PX(u) logPX(u),

h(X) = lim
m→∞

hm(X) (3)

where m ≥ 0 , PX(u) is the probability that X1X2...X|u|
= u (this limit always exists, see, for ex., [1, 2]). Intro-
duce also the conditional Shannon entropy

hm(X|Z) = hm(X,Z)−hm(Z), h(X|Z) = lim
m→∞

hm(X|Z)

(4)
The Shannon-McMillan-Breiman theorem for condi-

tional entropies can be stated as follows.

Theorem 1 (Shannon-McMillan-Breiman). ∀ε > 0,∀δ >
0, for almost all
Z1, Z2, . . . there exists n′ such that if n > n′ then

P

{∣∣∣∣−
1

n
logP (X1..Xn|Z1..Zn)− h(X|Z)

∣∣∣∣ < ε

}
≥ 1−δ,

(5)
where P (X1..Xn|Z1..Zn) is a conditional probability.

The proof can be found in [1, 2].

3. ESTIMATIONS OF SECRECY

Theorem 2. Let a plaintext X = X1X2, . . . and the key
sequence Y = Y1Y2, . . . be independent with a finite al-
phabetA = {0, 1, ..., n−1}, n ≥ 2, and (X,Y ) be a two-
dimensional stationary ergodic process. Let a running-key
cipher be applied to X and Y and Z = Z1, Z2, . . . be the
ciphertext. Then, for any ε > 0 and δ > 0 there is such
an integer n′ that, with probability 1, for any t > n′ and
Z = Z1, Z2, . . . Zt there exists the set Ψ(Z) for which the
following properties are valid:

i) P (Ψ(Z)) > 1− δ
ii) for any X1 = X1

1 , . . . , X
1
t , X2 = X2

1 , . . . , X
2
t

from Ψ(Z)

1

t

∣∣logP (X1|Z)− logP (X2|Z)
∣∣ < ε

iii) lim inft→∞ 1
t log |Ψ(Z)| ≥ h(X|Z) .

Proof. According to Shannon-McMillan-Breiman theorem
for any ε > 0, δ > 0 and almost all Z1, Z2, . . . there ex-
ists such n′ that for t > n′

P

{∣∣∣∣−
1

t
logP (X1X2...Xt|Z1Z2...Zt)− h(X|Z)

∣∣∣∣ < ε/2

}

≥ 1− δ. (6)

Let us define

Ψ(Z) = {X = X1X2...Xt :

|P (X1...Xt|Z1...Zt)− h(X|Z)| < ε/2} . (7)

The first property i) immediately follows from (6). In
order to prove ii), note that for any X1 = X1

1 , . . . , X
1
t ,

X2 = X2
1 , . . . , X

2
t from Ψ(Z) we obtain from (6), (7)

1

t

∣∣logP (X1|Z)− logP (X2|Z)
∣∣ ≤

1

t

∣∣logP (X1|Z)− h(X|Z)
∣∣ +

1

t

∣∣logP (X2|Z)− h(X|Z)
∣∣ < ε/2 + ε/2 = ε .

From (7) and the property i) we obtain the following: |Ψ(Z)| >
(1 − δ)2t (h(X|Z)−ε) . Taking into account that it is valid
for any ε > 0, δ > 0 and t > n′, we obtain iii).

So, we can see that the set of possible decipherings
Ψ(Z) grows exponentially, its total probability is close to
1 and probabilities of words from this set are close to each
other.

Theorem 2 gives a possibility to estimate an uncer-
tainty of a cipher based on the conditional entropy h(X|Z).
Sometimes it can be difficult to calculate this value be-
cause it requires knowledge of the conditional probabil-
ities. In this case the following simpler estimate can be
useful.

Corollary 1. For almost all Z1Z2...

lim inf
t→∞

1

t
log |Ψ(Z)| ≥ h(X) + h(Y )− log n .

Proof. From the well-known in Information Theory equa-
tion h(X,Z) = h(X)+h(Z|X) (see [1, 2]) we obtain the
following:

h(X|Z) = h(X,Z)− h(Z) = h(Z|X) + h(X)− h(Z).

Having taken into account that maxh(Z) = log n ([1, 2]),
where n is the number of alphabet letters, we can derive
from the latest equation that h(X|Z) ≥ h(Z|X)+h(X)−
log n. The definition of the running-key cipher (1) shows
that h(Z|X) = h(Y ). Taking into account two latest in-
equalities and the third statement iii) of Theorem 2 we
obtain the statement of the corollary.

Comment. In Information Theory the difference be-
tween maximal value of the entropy and real one quite
often is called the redundancy. Hence, from the corol-
lary we have new following presentations for the value
1
t log |Ψ(Z)|:

lim inf
t→∞

1

t
log |Ψ(Z)| ≥ h(X)− rY ,

lim inf
t→∞

1

t
log |Ψ(Z)| ≥ h(Y )− rX ,
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lim inf
t→∞

1

t
log |Ψ(Z)| ≥ log n− (rX + rY ) , (8)

where rY = log n − h(Y ) and rX = log n − h(X) are
the corresponding redundancies.

Those inequalities give a quantitative assessment of
the well-known in cryptography and Information Theory
observation that reduction of the redundancy improves the
safety of ciphers.

Let us return to the first question of this note about
the one-time pad with a biased key sequence. More pre-
cisely, let there be a plaintext X1X2..., Xi ∈ {0, 1} and
the key sequence Y1Y2..., Yi ∈ {0, 1}, generated by a
source whose entropy h(Y ) is less then 1. (h(Y ) = 1 if
and only if Y1Y2... generated by the Bernoulli source with
letter probabilities P (0) = P (1) = 0.5, [1, 2]). From (8)
we can see that the size of the set Ψ(Z) of high-probable
possible decipherings grows exponentially with exponent
grater than h(X)− rY , where rY = 1− h(Y ). So, if rY
goes to 0, the size of the set of possible probable decipher-
ings trends to the size of this set for the case of the one-
time pad. Indeed, if h(Y ) = 1 and, hence, rY = 0, the set
Ψ(Z) of high-probable possible decipherings grows expo-
nentially with exponent h(X), as it should be for the one-
time pad. For example, it is true for the case where the key
sequence Y1Y2... is generated by the Bernulli source with
biased probabilities, say P (0) = 0.5−τ, P (1) = 0.5+τ ,
where τ is a small number. If τ goes to 0, the redundancy
rY goes to 0, too, and we obtain the one-time pad. So, we
can say that the one-time pad is robust to small deviations
from randomness.
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ABSTRACT

Kernel methods have been used for turning linear learn-
ing algorithms into nonlinear ones. These nonlinear al-
gorithms measures distances between data points by the
distance in the kernel-induced feature space. However,
the rate-distortion tradeoffs associated with such distor-
tion measures have not been evaluated theoretically. We
provide bounds to the rate-distortion functions for two re-
construction schemes, reconstruction in input space and
reconstruction in feature space. Comparison of the de-
rived bounds to the quantizer performance obtained by the
kernel K-means method suggests that the rate-distortion
bounds for input space and feature space reconstructions
are informative at low and high distortion levels, respec-
tively.

1. INTRODUCTION

Kernel methods have been widely used for nonlinear learn-
ing problems combined with linear learning algorithms
such as the support vector machine and the principal com-
ponent analysis [1]. By the so-called kernel trick, kernel-
based methods can use linear learning methods in the kernel-
induced feature space without explicitly computing the
high-dimensional feature mapping. Kernel-based meth-
ods measure the dissimilarity between data points by the
distance in the feature space, which in input space, corre-
sponds to a distance measure involving the feature map-
ping [2]. If a kernel-based learning method is used as
a lossy source coding scheme, its optimal rate-distortion
tradeoff is indicated by the rate-distortion function asso-
ciated with the distortion measure defined by the kernel
feature map [3]. However, the rate-distortion function of
such a distortion measure has yet to be evaluated analyti-
cally. Although there are several kernel-based approaches
to vector quantization [4, 5], their rate-distortion tradeoffs
have been unknown.

In this paper, we derive bounds to the rate-distortion
functions for kernel-based distortion measures. We con-
sider two schemes to reconstruct inputs in lossy coding
methods. One is to obtain a reconstruction in the origi-
nal input space. Since kernel methods usually yield re-
sults of learning by the linear combination of vectors in
feature space, we need an additional step to obtain the re-
construction in input space, such as preimaging [6]. We
derive lower and upper bounds to the rate-distortion func-
tion of this scheme (Section 4.1 and Section 4.2). The

other is to consider the linear combination of feature vec-
tors as the reconstruction and measure the distortion in the
feature space directly. We provide an upper bound to the
rate-distortion function for this distortion measure (Sec-
tion 4.3).

We train the vector quantizer using the kernelK-means
method and compare its performance with the derived rate-
distortion bounds (Section 5). It is demonstrated that the
rate-distortion bounds of reconstruction in input space are
accurate at low distortion levels while the upper bound for
reconstruction in feature space is informative at high dis-
tortion levels.

2. RATE-DISTORTION FUNCTION

Let X and Y be random variables of input and reconstruc-
tion whose domains are X and Y , respectively. For the
non-negative distortion measure between x and y, d(x, y),
the rate-distortion function R(D) of the source X ∼ p(x)
is defined by

R(D) = inf
q(y|x):E[d(X,Y )]≤D

I(q), (1)

where

I(q) =

∫ ∫
q(y|x)p(x) log q(y|x)∫

q(y|x)p(x)dxdxdy

is the mutual information and E denotes the expectation
with respect to q(y|x)p(x). R(D) shows the minimum
achievable rate for the i.i.d. source with the density p(x)
under the given distortion measure d [3, 7]. The distortion-
rate function is the inverse function of the rate-distortion
function and denoted by D(R).

If the conditional distribution qs achieves the mini-
mum of the following Lagrange function parameterized
by s ≥ 0,

L(q) = I(q) + s (E[d(X,Y )]−D) ,

then, the rate-distortion function is parametrically given
by

R(Ds) = I(qs),

Ds =

∫
qs(y|x)p(x)d(x, y)dxdy.

The parameter s corresponds to the (negated) slope of the
tangent of R(D) at (Ds, R(Ds)) and hence is referred to
as the slope parameter [3].
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From the properties of the rate-distortion functionR(D),
we know that R(D) > 0 for 0 < D < Dmax, where

Dmax = inf
y

∫
p(x)d(x, y)dx, (2)

and R(D) = 0 for D ≥ Dmax [3, p. 90]. Hence, Dmax =
limR→0 D(R).

3. KERNEL-BASED DISTORTION MEASURES

In kernel-based learning methods, data points in input space
X are mapped into some high-dimensional feature space
F by a feature mappingφ. Then the similarity between the
two points x and y in X is measured by the inner product
〈φ(x), φ(y)〉 in F .

The inner product is directly evaluated by a nonlinear
function in input space

K(x, y) = 〈φ(x), φ(y)〉 , (3)

which is called the kernel function. Mercer’s theorem en-
sures that there exists some φ such that Eq. (3) holds if
K is a positive definite kernel [1]. This enables us to
avoid explicitly computing the feature map φ in the po-
tentially high-dimensional space F , which is called the
kernel trick. A lot of learning methods which can be ex-
pressed by only the inner products between data points
have been kernelized [1].

3.1. Reconstruction in Input Space

If we restrict ourselves to the reconstruction in input space,
that is, the reconstruction y ∈ X ⊂ Rd is computed for
each input x ∈ X , the distortion measure is naturally de-
fined by

dinp(x, y) = ||φ(x) − φ(y)||2
= K(x, x) +K(y, y)− 2K(x, y). (4)

To obtain a reconstruction in input space, we need a tech-
nique such as preimaging [6].

This is a difference distortion measure if and only if
the kernel function is translation invariant, K(x + a, y +
a) = K(x, y) for any a ∈ X . That is,

dinp(x, y) = ρ(x − y), (5)

where ρ(z) = 2(C−K(z, 0)) andC = K(0, 0). The rate-
distortion function (distortion-rate function, resp.) for this
distortion measure is denoted byRinp(D) (Dinp(R), resp.)
and the maximum distortionDmax in Eq. (2) is denoted by
Dmax,inp.

3.2. Reconstruction in Feature Space

Suppose we have a sample of length n in input space,
{x1, ..., xn}. If we compute the reconstruction by the lin-
ear combination

∑n
i=1 αiφ(xi) for αi ∈ R, i = 1, ..., n,

and consider it as the reconstruction in feature space, the
distortion can be measured by

dfea(x,α) =

∥∥∥∥∥φ(x) −
n∑

i=1

αiφ(xi)

∥∥∥∥∥

2

= K(x, x)− 2αTk(x) +αTKα, (6)

where α = (α1, ..., αn)
T ∈ Rn,

k(x) = (K(x1, x), ...,K(xn, x))
T ,

and K = (K(xi, xj))ij is the Gram matrix. Note that the
reconstruction is identified with the coefficients α whose
domain is not identical to the input space X ⊂ Rd.

The rate-distortion function (distortion-rate function,
resp.) for this distortion measure is denoted by Rfea(D)
(Dfea(R), resp.) and the maximum distortion Dmax in
Eq. (2) is given by

Dmax,fea = E[K(x, x)]− E[k(x)]K−1E[k(x)]T .

4. RATE-DISTORTION BOUNDS

4.1. Lower Bound to Rinp(D)

Although the Shannon lower bound to R(D) is defined
for difference distortion measures in general [3, p. 92],
it diverges to −∞ for the distortion measure (5) since∫
e−sρ(z)dz diverges to ∞. Hence, we consider an im-

proved lower bound, which is discussed in [3, p. 140]. Let
QB be the probability that ‖X‖ ≤ B. Then, R(D) is
lower-bounded as

R(D) ≥ QB

{
h(pB)− max

g∈GB,D

h(g)

}
, (7)

where h denotes the differential entropy,

pB(x) =
1

QB
p(x)u(B − ‖x‖),

and u is the step function. GB,D is the set of all proba-
bility densities g(·) for which g(x) = 0 for ‖x‖ > B and∫
ρ(z)g(z)dz ≤ D/QB.

The maximum in Eq. (7) is explicitly given by

gs(z) =
1

CB,s
exp (2sK(z, 0))u(B − ‖z‖), (8)

where CB,s =
∫
‖z‖≤B

e2sK(z,0)dz for s related to D by∫
ρ(z)gs(z)dz = D/QB . Since its differential entropy is

h(gs) = −s
∂ logCB,s

∂s
+ logCB,s, (9)

Rinp(D) is parametrically lower-bounded by

Rinp,L(Ds) = QB

{
h(pB) + s

∂ logCB,s

∂s
− logCB,s

}
,

Ds = QB

{
2C − ∂ logCB,s

∂s

}
.

4.2. Upper Bound to Rinp(D)

If dinp in Eq. (4) is a difference distortion measure, that is,
K is translation invariant, by choosing q(y|x) = gs(y−x)
for the density gs in Eq. (8), the following upper bound is
obtained,

Rinp(Ds) ≤ Rinp,U (Ds) = h(gs ∗ p)− h(gs) (10)

Ds = 2C − ∂ logCB,s

∂s
.(11)
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where h(gs) is given by Eq. (9) and (gs∗p)(y) =
∫
gs(y−

x)p(x)dx is the convolution between gs and p.
By the maximum entropy principle of the Gaussian

distribution, Rinp,U (D) is further upper-bounded by

Rinp,G(Ds) =
d

2
log(2πe(vp + vs))− h(gs),

where

vp =
1

d

∫
‖x−m‖2p(x)dx, (12)

m =

∫
xp(x)dx (13)

vs =
1

d

∫
‖x‖2gs(x)dx, (14)

=
A(d)

dCB,s

∫ B

0

rd+1e2sk(r)dr. (15)

where A(d) = d
√
πd

Γ(d/2)+1 is the area of the d-dimensional
unit sphere. Here, we have further assumed that the ker-
nel function is radial, that is, K(x, y) = K(x − y, 0) =
k(‖x− y‖) for some function k.

4.3. Upper Bound to Rfea(D)

We construct an upper bound to the rate-distortion func-
tion Rfea(D). We choose the conditional distribution of
the reconstruction by

q(α|x) = N(α;mK(x), K̃−1/2s),

where K̃ = K + cI,

mK(x) = K̃−1k(x),

and N(·;m,Σ) denotes the n-dimensional normal den-
sity with mean m and covariance matrix Σ. Here, we
have introduced the regularization constant c ≥ 0 with the
n × n identity matrix I. This reconstruction distribution
yields the following upper bound,

Rfea(Ds) ≤ Rfea,U (Ds)

= h(Mp)− h(N(α;mK(x), K̃−1/2s)),

Ds =

∫
p(x)q(α|x)dfea(x,α)dxdα

=
n

2s
+Dmin(c),

where Mp(α) =
∫
N(α;mK(x), K̃−1/2s)p(x)dx,

h(N(α;mK(x), K̃−1/2s)) =
n

2
log

(π
s
|K̃|1/n

)
,

which is independent of the input x, and

Dmin(c) = E[K(x, x)]− tr{K̃−1E[k(x)k(x)T ]}
+ctr{K̃−1E[k(x)k(x)T ]K̃−1}.

If c = 0, Dmin is the mean of the variance of the predic-
tion by the associated Gaussian process [8].

Further upper-bounding the differential entropy h(Mp)
by the Gaussian entropy, we have

Rfea(D) ≤ Rfea,G(D) =
1

2
log

∣∣∣∣∣I +
nK̃−1C

D −Dmin(c)

∣∣∣∣∣ ,

(16)
where C = E[k(x)k(x)T ]− E[k(x)]E[k(x)]T .

5. EXPERIMENTAL EVALUATION

We numerically evaluate the rate-distortion bounds ob-
tained in the previous section. Designing a quantizer by
the kernelK-means algorithm, we compare its performance
with the bounds.

We focus on the case of the Gaussian kernel,

K(x, y) = e−γ‖x−y‖2

with the kernel parameter γ > 0. As a source, we assumed
the uniform distribution on the union of the two regions,
C1 = {x ∈ Rd;A(d)‖x‖d ≤ d/2} and C1 = {x ∈
Rd; d2 ≤ A(d)‖x‖d ≤ d(d + 1/2)}, where C1 and C2

have equal volumes and C1 ∪C2 has volume 1.
We used the trapezoidal rule to compute the integra-

tions in the lower boundRinp,L and the upper boundRinp,G.
We generated i.i.d sample of the size n = 4000 from the
source to compute k(x) and K for Rfea,G in Eq. (16).
Generating another 4000 data points, we approximated the
required expectations.

Using the same data set of the size 4000 as a training
data set, we run the kernel K-means algorithm 10 times
with random initializations to obtain the minimum distor-
tion for each rate. Varying the number K of quantized
points from 21 to 210 , for eachK, we counted the effective
number Keff of quantized points which have at least one
assigned data point and computed rates by log2 Keff . The
kernel parameter γ was chosen so that the clear separation
of C1 and C2 is obtained when K = 2. We optimized the
regularization coefficient c to minimize the upper bound
Rfea,G for each K.

After the training, we computed the distortion and rate
for the test data set, by assigning each of 20000 test data
generated from the same source to the nearest quantized
points in the feature space.

The obtained bounds and the quantizer performance
are displayed in Figure 1 and Figure 2 for d = 2 and d =
10, respectively, in the forms of distortion-rate functions.

In both dimensions, the upper bound Dfea,G is smaller
than Dinp,G at low rates while the bound is above the
quantizer performance. However, the value of Dmax,fea

suggests that the bound is informative at low rates. As the
rate becomes higher, the lower and upper bounds of the
input-space-reconstruction, DL,inp and DG,inp, approach
each other. In fact, they sandwich the quantizer perfor-
mance tightly in the 2-dimensional case, which suggests
that the rate-distortion function for the feature space re-
construction, Rfea(D) is close to the rate-distortion func-
tion of the input space reconstruction Rinp(D) at high
rates.
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Figure 1. Rate-distortion bounds and quantizer perfor-
mance for d = 2.
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Figure 2. Rate-distortion bounds and quantizer perfor-
mance for d = 10.

At low distortion levels, each source output should be
reconstructed within a small neighborhood in the feature
space where we can find another point y in the input space
whose feature map φ(y) is sufficiently close to the recon-
struction. This suggests that the rate-distortion function
of feature space reconstruction is well approximated by
the rate-distortion function of input space reconstruction.
In other words, combining multiple input points to make
a reconstruction in feature space does not do any good
for reducing distortion and only a single input point is
enough when it is mapped into feature space. Hence, the
rate-distortion bounds of input space reconstruction may
be informative at low distortion levels.

In the 10-dimensional case, the distortion in the test
data set is close to Dinp,G(R) or above it at high rates.
This may be due to overfitting of the kernel K-means to
the training data set of the size, 4000. That is, as the the
rate grows, the distortion in the training data set decreases
and the discrepancy between the distortions in the training
and test sets increases. If the quantizer is designed with
more training data, its performance would lie between the
bounds of reconstruction in the input space, Dinp,L and

Dinp,G, as in the 2-dimensional case.

6. CONCLUSION

In this extended abstract, we have shown upper and lower
bounds for the rate-distortion functions associated with
kernel-feature mapping. As suggested in Section 5, the
upper bound for the reconstruction in feature space is in-
formative at high distortion levels while the bounds for the
reconstruction in input space are informative at low distor-
tion levels. Our future directions include deriving tighter
bounds and exact evaluation of the rate-distortion func-
tion in some special cases. In particular, it is an important
undertaking to derive a lower bound to the rate-distortion
function of the reconstruction in feature space.
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ABSTRACT

In this paper lower bound on the capacity of multi-dimensional
linear interference channels is derived, when the input is
taken from a finite size alphabet. The bounds are based on
the QR decomposition of the channel matrix, and hold for
any input distribution that is independent across dimen-
sions. Calculation of the bounds can be performed on a
per-dimensions basis via look-up tables of the information
rates of 1D channels.

1. INTRODUCTION

The capacity of a set of linearly interfering channels when
the input is taken from a finite size alphabet has been
a long standing problem in information theory. In the
case of the Multiple Input Multiple Output (MIMO) chan-
nel with Gaussian input the capacity has been found [1].
When the transmitter has perfect knowledge of the chan-
nel, it can align the input to the channel eigen modes and
allocate the power based on the water-filling strategy. When
the channel is known at the receiver only, i.i.d. Gaus-
sian input is optimal. It has been shown in [2] that when
the input is discrete, both orthogonalization and water-
filling power allocation are sub-optimal. Low and high
SNR asymptotic expressions for the capacity in the dis-
crete case are derived based on the Mutual Information
(MI) - Minimum Mean Squared Error (MMSE) relation
[3][4][5]. Due to the requirement for high spectral effi-
ciency on current communication systems, the mid-SNR
is usually where they operate. The MIMO Constellation
Constrained Capacity (CCC) in this region remains un-
known. The capacity of a standard impulse response chan-
nel with discrete input is another open problem in the area
of linear interference channels. The general method for
computing it relies on trellis processing [6], which quickly
becomes intractable when the channel memory increases.
Some extensions and simplifications exist, e.g. [7], which
usually attempt to shorten the memory length, however,
they still suffer from the inherent complexity of the trellis
description.

In [8] we derived a lower bound on the CCC of the
ergodic MIMO channel with i.i.d. matrix elements using
the QR Decomposition (QRD) of the channel. Here we
generalize this result to the single channel realization case,

and we use it to also bound the Achievable Information
rate (AIR) on a general impulse response channel.

2. CHANNEL MODEL AND COMPLEXITY
PROBLEM

Consider a standard MIMO channel model:

Y = HX +W, (1)

where X is M -dimensional complex random variable vec-
tor X = [X1, X2, . . . XM ]T , which is discrete and takes
values from the complex-valued set XM , obtained as the
Cartesian product of the basic 1D set X . This can be a
QAM, APSK, etc. complex-valued set. The matrix H
represents the [NxM ] complex-valued channel, W is N
dimensional complex AWGN, assumed here to have unit
variance and Y is the N dimensional channel observa-
tion. We assume the channel realization is known at the
receiver, but not at the transmitter. The realization of a
random variable, e.g. X , at time k will be denoted as xk

(xk in the case of 1D variable), and the sequence from
time t to k as xk

t = [xt,x2, . . .xk]
T .

The AIR on the channel when signaling with XM ,
having Probability Mass Function (PMF) p(X), and av-
eraging among the possible channel realizations is given
by the MI:

I(X;Y ) = EH [I(X;Y |H)] =

H(X)− EH [H(X|Y,H)] . (2)

The standard method for calculating the MI is to generate
a long enough pair of input-output sequences, and use the
fact, that the entropy converges [6]:

H(X|Y,H) = − lim
K→∞

1

K

K∑

k=1

log2 p(xk|yk,H). (3)

The probability above is calculated from Bayes theorem:

p(xk|yk,H) =
p(yk|xk,H)p(xk)∑

xk∈XM p(yk|xk,H)p(xk)
(4)

Since the normalization term in (4) must be calculated, the
complexity grows exponentially with M . Furthermore,
in order to see the convergence in (3), K must also be
increased with M . Going beyond e.g. 64QAM on a 3x2
channel on a standard computer becomes challenging.
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3. LOWER BOUNDS

Let H = QR be the QR decomposition of H, where Q is
unitary and R is upper-triangular. A well known MIMO
receiver utilizes the form of R to successively cancel the
interference from previously detected layers, hence Suc-
cessive Interference Cancellation (SIC), in the following
manner: the received samples are pre-processed as Ŷ =
QHY , and the channel model becomes Ŷi =

∑M
j=i Ri,jXj .

Assuming the layers i + 1 to M are correctly decoded
by the following channel code, the symbols can be re-
modulated and subtracted from the current layer i. Here
we use a similar technique to derive a lower bound on the
channel capacity.

Since Q is unitary and doesn’t change the entropy of
Y , and thus the MI, we can write:

I(X;Y |H) = H(X)−H(X|Ŷ |H) =

H(X)−
∑

i=1:M

H(Xi|Ŷ , XM
i+1,H) ≥

H(X)−
∑

i=1:M

H(Xi|Ŷi, X
M
i+1,H) = I(X;Y |H), (5)

where we have used the fact, that conditioning does not
increase the entropy. In order to calculate the terms in the
sum, we express the posterior probabilities similar to (4):

p(Xi|Ŷi, X
M
i+1,H) =

p(Xi)p(Ŷi|Xi, X
M
i+1,H)

∑
Xi

p(Xi)p(Ŷi|Xi, XM
i+1,H)

(6)

Since we condition on the following layers, the likelihood
above can be expressed as:

p(Ŷi|Xi, X
M
i+1,H) = N (Ŷi|

∑

j=i:M

Ri,jXj , 1) =

N (Ŷi −
∑

j=i+1:M

Ri,jXj |Xi, 1), (7)

where Ri,j is the element on the i−th row and j−th col-
umn of R, and N (x|μ, σ2) is a 1D Gaussian function at
x, with mean and variance μ and σ2, respectively. Us-
ing (7), lower bound on the MI on each layer can be cal-
culated independently from an SNR-MI Look-Up Table
(LUT), where the SNR is given by |Ri,i|2E

[
X2

i

]
. When

M <= N , the achievable rate on the M−th layer co-
incides with the actual capacity for that layer. However,
when M > N , there is residual interference on the N+1-
st to the M−th layers from layers, which are not yet de-
coded, and the resulting lower bound becomes poorer. In
order to improve it, we model the residual interference as
noise, which is a standard practice in communications en-
gineering. The likelihood we use on layers i > N is then:

N (ŶN −
∑

j=i+1:M

RN,jXj |RN,iXi, σ̂i), (8)

where σ̂i = 1+
∑

j=N :i−1 |RN,j |2E
[
X2

i

]
. In this case it

is clear, that in the asymptotically high SNR we have:

lim
E[X2

i ]→∞
I(X;Y |H) = H(X), (9)

whereas:

lim
E[X2

i ]→∞
I(X;Y |H) =

H(X)−
∑

i=N+1:M

H(Xi|Y,H, SNRi), (10)

where the conditional entropy is larger than zero, because
limE[X2

i ]→∞ SNRi =
RN,i∑

j=N:i−1 RN,j
, which is a finite

number.

3.1. Relation to auxiliary channel lower bounds

A simple upper bound on the entropy of a variable X with
PDF p(X) can be obtained by using an auxiliary proba-
bility function p̄(X) �= p(X). If X is generated by its
original PDF, then the upper bound is found by calculat-
ing the entropy function from X , but using p̄(X) [6]:

H̄(X) = − 1

K

∑

k

log2 p̄(xk) ≥ H(X)

A lower bound on the MI is derived in a similar man-
ner. Say there is a channel with input-output sequence pair
x → y, governed by the laws pY |X(Y |X), and pX|Y (X|Y ) =

pY |X(Y |X)pX(X)∑
X pY |X(Y |X)pX(X) . Then if y is generated by the law

pY |X(Y |X), the lower bound is calculated as:

I(X;Y ) = H(X)− H̄(X|Y ) ≤
H(X)−H(X|Y ) = I(X;Y ), (11)

where H̄(X|Y ) is calculated using some valid PMF p̄X|Y (X|Y ) �=
pX|Y (X|Y ).

Turning back to the R channel, we use the auxiliary
probability distribution p̄(X|Y,H):

p̄(X|Ŷ ,H) =

M∏

i=1

p̄(Xi|Ŷ , XM
i+1,H)

=
M∏

i=1

p̄(Ŷ |Xi, X
M
i+1,H)p(Xi)∑

Xi
p̄(Ŷ |Xi, XM

i+1,H)p(Xi)
,

where:

p̄(Ŷ |Xi, X
M
i+1,H) =

N (Ŷi −
∑

j=i+1:M

Ri,jXj |Ri,iXi, 1), (12)

which leads to the same lower bound.

3.2. Impulse response channels

Consider a standard impulse response channel:

yk =
∑

i=0:l

hixk−i + wk, (13)
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where h = [h0, h1, . . . hl]
T is the impulse response. Equiv-

alently, the channel may be expressed in its matrix form:

yk1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · 0

h1 h0 · · ·
...

...
...

. . .
...

hl hl−1
. . .

...

0 hl
. . .

...

0
. . . . . .

...
...

. . . h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× xk
1 + wk

1 . (14)

The MI with channel knowledge at the receiver is now
calculated as:

I(X;Y |h) = H(Y |h)−H(Y |X,h) =

= − 1

K
log2 p(y

K
1 |h)−H(W ) (15)

The standard approach to calculating (15) is to use a trellis
to calculate p(yK1 ) =

∏
1:K p(yk|y1:K−1). One section of

such trellis is given in Fig. 1. The interfering symbols are
cast into the state: Sk = {Xk−l, ...Xk−1}, and the current
symbol governs the transition. Marginalizing the state, the
desired probability at time k is p(yk1 ) =

∑
sk

p(sk, y
k
1 ),

where each term is calculated recursively [6]:

p(sk, y
k
1 ) =

∑

xk

∑

sk−1

p(sk−1, y
k−1
1 )p(yk|xk, sk)p(xk|sk)

Since the number of states is given by |S| = |X |l, the di-
mensionality problem is the same as for the MIMO chan-
nel. The equivalent of the above mentioned 3x2 64QAM
here is 64QAM with maximum 2 taps, or similarly - 16QAM
with maximum 3 taps, for a standard PC. Trellis pruning
techniques may be utilized both in case of MIMO and im-
pulse response channels, leading to the so-called sphere
detection [9]. Sphere detection is popular, but is still lim-
ited in the number of nodes which can be pruned before
the performance degrades significantly. Another approach
for the impulse response channel is to use an auxiliary
channel of shorter length [7]. The same problem exist here
- the more the channel is shortened, the worse auxiliary
channel we can find, and thus worse lower bounds.

Instead we can use the QRD based lower bounds. If
the channel is expressed as in (14), the QR decomposi-
tion may be performed, and a bound may be obtained by
the above mentioned LUT. In this case M = N , and so
Eq. (7) is used. This method is independent of the mem-
ory length. The only bottleneck is the QRD computation,
which for very long sequences may become problematic.
In this paper we used K = 104, which we found was
enough to see convergence for 16QAM constellations. The
QRD on the

[
104x104

]
matrix was computed in a few sec-

onds on the PC we used. We note that the channel matrix
in this case is highly structured and periodic, and the R
matrix therefore may be expected to also hold some struc-
ture. For example, in all our simulations the diagonal ele-
ments of the R matrix either converged to some value, or

�
�

�
���

�
�

�
�

Figure 1. Trellis representation of the impulse response
channel (13)

to some periodic pattern. However, exploiting this period-
icity is left for future research.

4. RESULTS

4.1. MIMO channel

In Fig. 2(a) the lower bounds from Eq. (5) are shown
for a 2x2 MIMO with 64QAM input, together with the
true MI, as calculated from Eq. (2). The input PMF is
uniform. For comparison, we also plot the AIRs with the
popular linear MMSE receiver processing [9]. We see that
the true information rate is closely approached by the pro-
posed method. The MMSE processing also calculates a
lower bound, however, poorer than the QRD based one.
As mentioned in Section 3, in the case of M > N , the
bounds will not be as tight. In Fig. 2(b) the AIRs are
shown for a 3x2 MIMO with 64QAM input. We see a
significant underestimation, especially in the high SNR
region. However, we note that the transmit diversity sys-
tem is generally not used for maximizing throughput, and
therefore a practical system would not operate at this high
SNR region with an input of rank, which is larger than
rank(H) ≤ min(M,N). In the low-to-mid SNR, the
QRD based bound may still be used. In Fig. 2(c) the AIRs
on a 8x8 system are shown, where the full-complexity al-
gorithm can no longer be used. The QRD based lower
bound follows the slope of the Gaussian capacity, and
converges to H(X). When we further increase M , more
terms are added in the conditional entropy in Eq. (10),
and the lower bound becomes worse. However, the slope
at low-to-mid SNR is still the same as the Gaussian capac-
ity. Finally in this section we note, that the uniform PMF
is not a requirement. The bounds hold for any PMF, which
is independent across dimensions. The consequence is
that optimization can also be performed using the auxil-
iary function (7). The PMF, which is optimized for the
auxiliary channel can then be used on the true channel, and
the AIR in that case is still bounded by what is achieved
in (5). Some results obtained by the well known Blahut-
Arimoto algorithm for optimization of the input PMF on
an ergodic MIMO channel may be found in [8].

4.2. Impulse response channel

We also analyze the QRD based lower bound on a fixed
impulse response channel, where h is obtained from stan-
dard Gaussian distribution. In Figures 3(a) and 3(b) we
see the AIRs on an impulse response channel with l = 3
and l = 6, respectively (channel as given in the caption).
Without loss of generality, we sort the channel elements

48



SNR, dB
0 3 6 9 12 15 18 21 24 27 30

M
I, 

bi
ts

/c
ha

nn
el

 u
se

0

5

10

15

20 Shannon
true CCC
MMSE
QRD based lower bound

(a) 2x2
SNR, dB

0 3 6 9 12 15 18 21 24 27 30 33 36 39

M
I, 

bi
ts

/c
ha

nn
el

 u
se

0

5

10

15

20

25

(b) 3x2

SNR, dB
0 3 6 9 12 15 18 21 24 27 30

M
I, 

bi
ts

/c
ha

nn
el

 u
se

0
10
20
30
40
50
60
70
80

����

(c) 8x8
SNR, dB

0 10 20 30 40

M
I, 

bi
ts

/c
ha

nn
el

 u
se

0

20

40

60

80

100

����

(d) 16x8

Figure 2. AIRs on MIMO channels of different size

SNR, dB
0 5 10 15 20

M
I, 

bi
t /

 c
ha

nn
el

 u
se

0

1

2

3

4

5

6 trellis based, Ntaps = 1
trellis based, Ntaps = 2
trellis based, Ntaps = 3
QRD based lower bound
OFDM, 16QAM input uniform power allocation
OFDM, Gaussian input with waterfilling

(a) l = 3

SNR, dB
0 5 10 15 20

M
I, 

bi
t /

 c
ha

nn
el

 u
se

0

1

2

3

4

5

(b) l = 6

Figure 3. Achievable information rates for the chan-
nels: a) h = [0.37 − 0.18i,−0.35 + 0.05i,−0.20 −
0.26i,−0.23− 0.17i]T ; b) h = [−0.18− 0.47i,−0.35−
0.26i, 0.37−0.06i,−0.26+0.25i,−0.17+0.27i,−0.23+
0.18i,−0.20 + 0.05i]T

in descending order of their amplitude. The input sym-
bols are i.i.d., and so this does not change the AIRs, but
makes the implementation of the trellis simpler, since the
state actually represents previous symbols. In the general
case, we would like our state to represent the symbols, re-
sponsible for largest interference. We compare the QRD
based bounds with the trellis based method, which casts
Ntaps previous symbols into the state, and the rest l −
Ntaps symbols are modeled as noise, similar to Eq. (8).
When Ntaps = l the AIR is the true CCC. For compari-
son we also include the AIRs using OFDM. We note that
OFDM with Gaussian input and water-filling power allo-
cation is the power constrained channel capacity. On the
short channels, the QRD based lower bound closely ap-
proaches the constrained capacity, achieved with the trel-
lis algorithm. It is slightly outperformed in the low SNR
by OFDM, and slightly outperforms OFDM in the mid-to-
high SNR. When we increase the channel length, the trel-
lis based algorithm can be used with up to 3 taps on the PC
we used for simulations. The QRD bound in this case is
able to provide larger improvement over the OFDM. Both
figures show that orthogonalization of the channel when
the input is discrete can be sub-optimal, confirming the
results from [2][8].

5. CONCLUSION

In this paper some of the more popular linear interference
channels are studied. Lower bounds on the AIRs are de-
rived using the QR decomposition of the channel. In case
of linear 1D channels with memory, the QRD is performed
on the matrix form of the channel. Based on the diagonal
elements of the R matrix, an SNR-AIR look-up table can
be efficiently used to find lower bounds on capacity. These
bounds were shown to closely approach the true constel-
lation constrained capacity, where the latter can be com-
puted by standard PC, and were also shown to have good
performance in terms of slope and distance to Gaussian
capacity in most cases of interest.
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