Consider a collection of weighted subsets of a ground set N. We present a tree-based greedy heuristic, Treedy, that for a given query subset Q of N and a tolerance d approximates the weighted sum over all subsets of Q within relative error d. It also enables approximate sampling of subset of Q proportionally to the weights within total variation distance d. Experimental results show that approximations yield dramatic savings in running time compared to exact computation, and that Treedy typically outperforms a previously proposed sorting-based heuristic.

Introduction

Problem Definition

Input: A downward closed collection C of subsets of a ground set N. Weights $w(S) \geq 0$ for $S \in C$ and $w(S) = 0$ otherwise.

Query: Query set $Q \subseteq N$. Tolerance $d \geq 0$.

Counting problem: Approximate

$$W(Q) = \sum_{S \subseteq Q} w(S)$$

within relative error d.

Sampling problem: Draw a random subset $S \subseteq Q$ from a distribution within total variation distance d from $Pr(S) = w(S)/W(Q)$.

Algorithms

"Collector algorithm" approach: Visit the subsets of Q that are in C (called relevant sets) and add up their weights until the sum is guaranteed to be within tolerance d.

Algorithm: Exact

A baseline method that visits all relevant sets. Computes the sum exactly.

Algorithm: Ideal

An idealized method that visits the minimum number of heaviest relevant sets to reach tolerance d. (Simulated in the experiments.)

Algorithm: Sorted

An improved version of the heuristic of Friedman and Koller for order-MCMC [1].

Preprocessing: Sorts the sets in C by weight starting from the heaviest set.

Per query: Traverses the tree greedily w.r.t. ψ. Ignores irrelevant branches. Stops once the weight of remaining branches is small enough compared to accumulated weight.

Application: Bayesian Network Learning

Order-MCMC [1] is a method for learning the structure of a Bayesian network. It samples node orderings $v_1 v_2 \cdots v_n$ from the posterior distribution

$$Pr(v_1 v_2 \cdots v_n) = \prod_{i=1}^{n} W_i(\{v_1, \ldots, v_{i-1}\})$$

where $W_i(S) = \sum_{S \subseteq Q} w_i(S)$ is a sum over possible parent sets of v_i.

- optionally samples DAGs from orderings $\Rightarrow n$ subset sampling queries

Algorithm: Treedy

A novel heuristic based on tree traversal.

Preprocessing: Builds a "greedy tree" with ϕ and aggregate potentials ψ.

Per query: Traverses the tree greedily w.r.t. ψ. Ignores irrelevant branches. Stops once the weight of remaining branches is small enough compared to accumulated weight.

From Counting to Sampling

Sampling within total variation distance d to the exact distribution is possible by first visiting relevant sets up to tolerance d and then drawing samples from visited sets.

Experiments

We measured the time (s) per subset counting query as a function of approximation tolerance d. Parameter $k \in \{4, 5\}$ was used to restrict the size of the subsets in C.

Artificial Instances

Runtimes for different types of artificial weight functions ($n = 60, k = 5$):

Bayesian Network Learning

Runtime of order-MCMC for data from ALARM-network ($n = 37, k = 5$):

Runtime of order-MCMC for datasets from the UCI repository ($n \in \{34, 61\}, k \in \{4, 5\}$):