Treedy: A Heuristic for Counting and Sampling Subsets

Teppo Niinimäki, Mikko Koivisto
July 12, 2013

University of Helsinki
Department of Computer Science
Outline

Problem definition

Application: Bayesian network learning

Algorithms

Experiments
Outline

Problem definition

Application: Bayesian network learning

Algorithms

Experiments
Problem overview

Subset counting problem:
Compute

\[W(Q) = \sum_{S \subseteq Q} w(S) \]
Problem setting

Given:

Ground set \(N \) of \(n \) elements

Example

\[N = \{A, B, C, D\} \quad (n = 4) \]
Problem setting

Given:
Ground set N of n elements
Collection $C \in \mathcal{P}(N)$ (downward closed)

Example

$N = \{A, B, C, D\}$ (n = 4)

$C = \{\emptyset, A, B, C, D, AB, AC, AD, BC, BD, CD\}$
Problem setting

Given:

Ground set N of n elements

Collection $C \in \mathcal{P}(N)$ (downward closed)

Weights

\[
\begin{cases}
 w(S) \geq 0 & \text{for } S \in C \\
 w(S) = 0 & \text{otherwise}
\end{cases}
\]

Example (continued)

<table>
<thead>
<tr>
<th>$S \in C$</th>
<th>$w(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>80</td>
</tr>
<tr>
<td>A</td>
<td>85</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
</tr>
<tr>
<td>AB</td>
<td>99</td>
</tr>
<tr>
<td>AC</td>
<td>60</td>
</tr>
<tr>
<td>AD</td>
<td>90</td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
</tr>
</tbody>
</table>
Problem definition

Query set $Q \subseteq N$

Example

$$Q = \{B, C, D\}$$

<table>
<thead>
<tr>
<th>Subset</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0.320</td>
</tr>
<tr>
<td>B</td>
<td>0.280</td>
</tr>
<tr>
<td>C</td>
<td>0.052</td>
</tr>
<tr>
<td>D</td>
<td>0.200</td>
</tr>
<tr>
<td>BC</td>
<td>0.044</td>
</tr>
<tr>
<td>BD</td>
<td>0.056</td>
</tr>
<tr>
<td>CD</td>
<td>0.048</td>
</tr>
<tr>
<td>BCD</td>
<td>0.000</td>
</tr>
</tbody>
</table>

$W(Q) \approx 250 \in [200, 300]$
Problem definition

Query set $Q \subseteq N$

Counting problem:
Compute

$$W(Q) = \sum_{S \subseteq Q} w(S)$$

Example

$Q = \{B, C, D\}$

<table>
<thead>
<tr>
<th>$S \subseteq Q$</th>
<th>$w(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>80</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
</tr>
<tr>
<td>BCD</td>
<td>0</td>
</tr>
</tbody>
</table>

$W(Q) = 250$
Problem definition

Query set $Q \subseteq N$

Counting problem:
Compute

$$W(Q) = \sum_{S \subseteq Q} w(S)$$

Sampling problem:
Draw $S \subseteq Q$ s.t.

$$\Pr(S) = \frac{w(S)}{W(Q)}$$

Example

$Q = \{B, C, D\}$

<table>
<thead>
<tr>
<th>$S \subseteq Q$</th>
<th>$w(S)$</th>
<th>$\Pr(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>80</td>
<td>0.320</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>0.280</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>0.052</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>0.200</td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
<td>0.044</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
<td>0.056</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
<td>0.048</td>
</tr>
<tr>
<td>BCD</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

$W(Q) = 250$
Problem definition

Too slow ⇒ Approximate with tolerance $d \in [0, 1]$

Query set $Q \subseteq N$

Counting problem:
Compute

$$W(Q) \approx \sum_{S \subseteq Q} w(S)$$

within relative error d.

Sampling problem:
Draw $S \subseteq Q$ s.t.

$$\Pr(S) \approx \frac{w(S)}{W(Q)}$$

within total variation distance d.

Example

$Q = \{B, C, D\}$ \hspace{1cm} $d = 0.2$

<table>
<thead>
<tr>
<th>$S \subseteq Q$</th>
<th>$w(S)$</th>
<th>$\Pr(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>80</td>
<td>0.320</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>0.280</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>0.052</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>0.200</td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
<td>0.044</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
<td>0.056</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
<td>0.048</td>
</tr>
<tr>
<td>BCD</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

$W(Q) \approx 250 \in [200, 300]$
Outline

Problem definition

Application: Bayesian network learning

Algorithms

Experiments
Bayesian network

- structure: directed acyclic graph

- conditional probabilities

\[p(x) = \prod_{v \in N} p(x_v | x_{S_v}) \]
Structure learning

Task: Given data, find the probability of arc $a \rightarrow b$

<table>
<thead>
<tr>
<th>sample</th>
<th>variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>2 1 0</td>
</tr>
<tr>
<td>2</td>
<td>2 0 2</td>
</tr>
<tr>
<td>3</td>
<td>2 0 1</td>
</tr>
<tr>
<td>4</td>
<td>1 0 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5000</td>
<td>2 2 1</td>
</tr>
</tbody>
</table>

Exact computation infeasible for large instances

\Rightarrow approximate with MCMC sampler
Order-MCMC (Friedman & Koller, 2003)

Sample node orderings

Draws $v_1 v_2 \cdots v_n$ from the (posterior) distribution

$$\Pr(v_1 v_2 \cdots v_n) = \prod_{i=1}^{n} W_i(\{v_1, \ldots, v_{i-1}\})$$

where

- $W_i(Q) = \sum_{S_i \subseteq Q} w_i(S_i)$
- $C_i = \{ \text{potential parent sets for } v_i \}$
- w_i depends on the data

$\Rightarrow n$ subset counting queries
Order-MCMC (Friedman & Koller, 2003)

Sample structures

For every node v_i, samples a parent set $S_i \subseteq \{v_1, \ldots, v_{i-1}\}$ such that

$$\Pr(S_i) = \frac{w_i(S_i)}{W_i(\{v_1, \ldots, v_{i-1}\})}$$

\Rightarrow n subset sampling queries
Outline

Problem definition

Application: Bayesian network learning

Algorithms

Experiments
Algorithm outline

Set S is *relevant* if both $S \in \mathcal{C}$ and $S \subseteq Q$.

$$\Rightarrow W(Q) = \text{"sum over relevant sets"}$$

"Collector algorithm" for counting

- Visit some sets $S \subseteq N$ in some order.
- Add up weights of relevant sets.
- Stop once approximation tolerance d met.
Algorithm outline

Set \(S \) is \textit{relevant} if both \(S \in \mathcal{C} \) and \(S \subseteq Q \).
\(\Rightarrow W(Q) = \text{"sum over relevant sets"} \)

"Collector algorithm” for counting

- Visit some sets \(S \subseteq N \) in some order.
- Add up weights of relevant sets.
- Stop once approximation tolerance \(d \) met.

From counting to sampling
Sample sets visited by the collector algorithm.
\(\Rightarrow \) distribution within total variation distance \(d \)
Four counting algorithms

Exact
An exact baseline algorithm. Visits all relevant sets.
Four counting algorithms

Exact
An exact baseline algorithm. Visits all relevant sets.

Ideal
Idealized approximation. Visits the minimum number of heaviest relevant sets.
Four counting algorithms

Exact
An exact baseline algorithm. Visits all relevant sets.

Ideal
Idealized approximation. Visits the minimum number of heaviest relevant sets.

Sorted
Improved version of the heuristic used by Friedman and Koller in the order-MCMC.
Four counting algorithms

Exact
An exact baseline algorithm. Visits all relevant sets.

Ideal
Idealized approximation. Visits the minimum number of heaviest relevant sets.

Sorted
Improved version of the heuristic used by Friedman and Koller in the order-MCMC.

Treedy
A novel heuristic based on tree traversal.
Preprocessing:
- Sort \mathcal{C} by weight.
- Compute partial sums $W_1, W_2, \ldots, W_{|\mathcal{C}|}$.

Example ($Q=BCD, d=0.2$)

<table>
<thead>
<tr>
<th>$S \in \mathcal{C}$</th>
<th>$w(S)$</th>
<th>W_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>99</td>
<td>584</td>
</tr>
<tr>
<td>AD</td>
<td>90</td>
<td>485</td>
</tr>
<tr>
<td>A</td>
<td>85</td>
<td>395</td>
</tr>
<tr>
<td>\emptyset</td>
<td>80</td>
<td>310</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>230</td>
</tr>
<tr>
<td>AC</td>
<td>60</td>
<td>160</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>36</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
Preprocessing:
- Sort \mathcal{C} by weight.
- Compute partial sums $W_1, W_2, \ldots, W_{|\mathcal{C}|}$.

Query:
- Traverse \mathcal{C} starting from heaviest.
- Add up relevant weights to W'.
- Stop once the weight of the remaining sets small enough.

Example ($Q = BCD$, $d = 0.2$)

<table>
<thead>
<tr>
<th>$S \in \mathcal{C}$</th>
<th>$w(S)$</th>
<th>W_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>99</td>
<td>584</td>
</tr>
<tr>
<td>AD</td>
<td>90</td>
<td>485</td>
</tr>
<tr>
<td>A</td>
<td>85</td>
<td>395</td>
</tr>
<tr>
<td>\emptyset</td>
<td>80</td>
<td>310</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>230</td>
</tr>
<tr>
<td>AC</td>
<td>60</td>
<td>160</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>36</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

$W' = 200$
Preprocessing:

- Start with a lexicographical tree for C.

Preprocessing:

Example

```
AB
w: 99
AC
w: 60
AD
w: 90
BC
w: 11
BD
w: 14
CD
w: 12

A
w: 85
B
w: 70
C
w: 13
D
w: 50
∅
w: 80
```
Preprocessing:
- Start with a lexicographical tree for C.
- Compute weight potentials $\phi(S)$.
Preprocessing:

Example

AB
\(w: 99 \)
\(\phi: 99 \)

AC
\(w: 60 \)
\(\phi: 60 \)

AD
\(w: 90 \)
\(\phi: 90 \)

BC
\(w: 11 \)
\(\phi: 11 \)

BD
\(w: 14 \)
\(\phi: 14 \)

CD
\(w: 12 \)
\(\phi: 12 \)

A
\(w: 85 \)
\(\phi: 334 \)

B
\(w: 70 \)
\(\phi: 95 \)

C
\(w: 13 \)
\(\phi: 25 \)

D
\(w: 50 \)
\(\phi: 50 \)

\(\emptyset \)
\(w: 80 \)
\(\phi: 584 \)
Preprocessing:

- Start with a lexicographical tree for C.
- Compute weight potentials $\phi(S)$.
- Sort siblings by $\phi(S)$ and reorganize links.
Preprocessing:

Example

- AB: \(w: 99\), \(\phi: 99\)
- AD: \(w: 90\), \(\phi: 90\)
- AC: \(w: 60\), \(\phi: 60\)
- BD: \(w: 14\), \(\phi: 14\)
- BC: \(w: 11\), \(\phi: 11\)
- CD: \(w: 12\), \(\phi: 12\)
- A: \(w: 85\), \(\phi: 334\)
- B: \(w: 70\), \(\phi: 95\)
- D: \(w: 50\), \(\phi: 50\)
- C: \(w: 13\), \(\phi: 25\)
- \(\emptyset\): \(w: 80\), \(\phi: 584\)
Preprocessing:

Example

AB
w: 99
φ: 99
AD
w: 90
φ: 90
AC
w: 60
φ: 60
BD
w: 14
φ: 14
BC
w: 11
φ: 11
CD
w: 12
φ: 12
A
w: 85
φ: 334
B
w: 70
φ: 95
D
w: 50
φ: 50
C
w: 13
φ: 25
∅
w: 80
φ: 584
Preprocessing:

- Start with a lexicographical tree for C.
- Compute weight potentials $\phi(S)$.
- Sort siblings by $\phi(S)$ and reorganize links.
- Compute aggregate potentials $\psi(S)$.
Preprocessing:

Example

AB: w: 99, φ: 99, ψ: 249
AD: w: 90, φ: 90, ψ: 150
AC: w: 60, φ: 60, ψ: 60
BD: w: 14, φ: 14, ψ: 25
BC: w: 11, φ: 11, ψ: 11
CD: w: 12, φ: 12, ψ: 12

A: w: 85, φ: 334, ψ: 504
B: w: 70, φ: 95, ψ: 170
C: w: 13, φ: 25, ψ: 25
∅: w: 80, φ: 584, ψ: 584
Preprocessing:
■ Start with a lexicographical tree for \mathcal{C}.
■ Compute weight potentials $\phi(S)$.
■ Sort siblings by $\phi(S)$ and reorganize links.
■ Compute aggregate potentials $\psi(S)$.

Query:
■ Traverse the tree greedily w.r.t. ψ.
Preprocessing:

- Start with a lexicographical tree for C.
- Compute weight potentials $\phi(S)$.
- Sort siblings by $\phi(S)$ and reorganize links.
- Compute aggregate potentials $\psi(S)$.

Query:

- Traverse the tree greedily w.r.t. ψ.
- Add up relevant weights to W'.
Preprocessing:
- Start with a lexicographical tree for C.
- Compute weight potentials $\phi(S)$.
- Sort siblings by $\phi(S)$ and reorganize links.
- Compute aggregate potentials $\psi(S)$.

Query:
- Traverse the tree greedily w.r.t. ψ.
- Add up relevant weights to W'.
- Ignore and skip irrelevant branches.
Preprocessing:
- Start with a lexicographical tree for C.
- Compute weight potentials $\phi(S)$.
- Sort siblings by $\phi(S)$ and reorganize links.
- Compute aggregate potentials $\psi(S)$.

Query:
- Traverse the tree greedily w.r.t. ψ.
- Add up relevant weights to W'.
- Ignore and skip irrelevant branches.
- Stop once the weight of the remaining branches small enough.
Query:

Example ($Q=BCD$, $d=0.2$)

```
<table>
<thead>
<tr>
<th>Node</th>
<th>w</th>
<th>φ</th>
<th>ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>99</td>
<td>99</td>
<td>249</td>
</tr>
<tr>
<td>AD</td>
<td>90</td>
<td>90</td>
<td>150</td>
</tr>
<tr>
<td>AC</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>85</td>
<td>334</td>
<td>504</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>95</td>
<td>170</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>∅</td>
<td>80</td>
<td>584</td>
<td>584</td>
</tr>
</tbody>
</table>
```
Query:

Example ($Q=BCD, d=0.2$)
Query:

Example \((Q=BCD, d=0.2)\)
Treedy

Query:

Example \((Q = BCD, d = 0.2)\)
Query:

Example ($Q = BCD, d = 0.2$)
Example summary

Example \((Q = BCD, d = 0.2)\)

<table>
<thead>
<tr>
<th>(S \in C)</th>
<th>(w(S))</th>
<th>Exact</th>
<th>Ideal</th>
<th>Sorted</th>
<th>Treedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>99</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>90</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>85</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>80</td>
<td>1</td>
<td>(\checkmark)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>70</td>
<td>3</td>
<td>(\checkmark)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>AC</td>
<td>60</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>8</td>
<td>(\checkmark)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>BD</td>
<td>14</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>11</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

Problem definition

Application: Bayesian network learning

Algorithms

Experiments
Experiment setting

Data

Artificial instances

- Different types of random weights: "flat", "steep", "mixture", "shuffled"

Bayesian network learning

- Data sampled from Bayesian networks: ALARM, HAILFINDER
- Datasets from UCI repository: Votes2, Chess, 10xPromoters, Splice
Experiment setting
Counting queries

Artificial instances
- Random query sets of different sizes

Bayesian network learning
- Run order-MCMC using different counting algorithms

Limit the size of sets in \mathcal{C} to be at most $k \in \{3, 4, 5\}$

\Rightarrow measure runtime as a function of tolerance $d \in [10^{-8}, 0.5]$
Artificial instances

Runtimes for different types of artificial weight functions. ($n = 60, k = 5$)
Bayesian network learning

<table>
<thead>
<tr>
<th>Name</th>
<th>n</th>
<th>#Samples</th>
<th>k</th>
<th>#Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>37</td>
<td>50–5000</td>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>Hailfinder</td>
<td>56</td>
<td>50–5000</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>Votes2</td>
<td>34</td>
<td>435</td>
<td>5</td>
<td>10000</td>
</tr>
<tr>
<td>Chess</td>
<td>37</td>
<td>3196</td>
<td>5</td>
<td>5000</td>
</tr>
<tr>
<td>10xPromoters</td>
<td>58</td>
<td>1060</td>
<td>4</td>
<td>2000</td>
</tr>
<tr>
<td>Splice</td>
<td>61</td>
<td>3190</td>
<td>4</td>
<td>2000</td>
</tr>
</tbody>
</table>
Bayesian network learning

Runtime of order-MCMC for data generated from ALARM-network. \((n = 37, k = 5)\)
Bayesian network learning

Runtime of order-MCMC for data generated from HAILFINDER-network. ($n = 56$, $k = 4$)
Bayesian network learning

Runtime of order-MCMC for UCI datasets.
Conclusion

- Problem: approximate subset counting and sampling queries
- Application: Bayesian network structure learning
- Two heuristic methods: Sorted and Treedy
- Significant speed-ups over the Exact algorithm
- However, still room for improvements (compared to the Ideal algorithm)

Implementation (C++): cs.helsinki.fi/u/tzniinim/uai2013
Runtime as a function of query set size.