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Abstrac t .  The problem of finding all approximate occurrences P~ of a pattern string P in a 
text string T such that the edit distance between P and pr is _< k is considered. We concentrate 
on a scheme in which T is first preprocessed to make the subsequent searches with different P 
fast. Two preprocessing methods and the corresponding search algorithms are described. The 
first is based suffix automata and is applicable for edit distances with general edit operation 
costs. The second is a special design for unit cost edit distance and is based on q-gram lists. 
The preprocessing needs in both cases time and space O(IT]). The search algorithms run in the 
worst case in time O(IPtlTI) or O(ktTt), and in the best case in time O(IPI). 

I n t r o d u c t i o n  

The approximate string matching problem is to find, given a pattern string P and a 
text string T, the approximate occurrences of P in T. Typically one wants to find all 
occurrences that  are good enough in some measure of the approximation quality. 

There are several situations where it is necessary to allow for approximate matches 
instead of exact ones. Some natural variation in the occurrences of P (e.g. due to 
morphological variation of the same base word in natural languages) sometimes takes 
place. In other cases, P or T or both may have been slightly distorted through noisy 
communication channels or through different types of errors (measurement error, typing 
error). 

We concentrate on  the important special case where T stays unchanged for searches 
with numerous different P,  and we have the whole T available before the searches. Such a 
static T can first be preprocessed into a suitable form (an index for approximate searches) 
that  makes the subsequent searches faster. Hence we want to find a preprocessing of 
T and the associated algorithm to search for approximate occurrences of P using the 
preprocessed T. 

The edit distance will be used as the measure for the approximation quality. 

Def in i t ion .  Let P and P~ be strings in alphabet E. The edit distance form P to P~ is 
the minimum possible total cost of a sequence of editing steps that  convert P~ to P. Each 
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editing step is a rewriting step of the form a --* e (a deletion), ~ --, a (an insertion), or 
a ~ b (a change), where a, b in ~ are any symbols, a ~ b, and e is the empty string. 
Each editing operation x ~ y has a cost c(z ~ y) > 0. In the conversion from P to 
P'  rewriting of each symbol is allowed only at most once; this makes it possible to use 
dynamic programming algorithms for edit distances. The special case where e(x --* y) = 1 
for all edit operations x ~ y is called the unit cost model of the edit distance. 

Definit ion (approximate string matching problem). Given two strings, text T = t l t2 . . ,  t ,  
and pattern P = pip2. . ,  p,, in alphabet Y:, and a threshold value k > 0, find the end 
locations j of all substrings P'  of T such that the edit distance from P to P'  is at most 
k. If the unit cost model is used, the problem is called the k differences problem. 

The on-line version of the problem in which no preprocessing of T is allowed has 
recently received lot of attention [5, 6]. Standard solution is by dynamic programming in 
time O(mn). For the k differences problem fast special methods are possible, including 
O(kn) time algorithms [10, 7, 16, 14, 2]. 

In the case of exact string matching (k = 0) preprocessing of T leads to optimal time 
searches. If T is preprocessed into a suffix tree [17, 12] or into a suffix automaton [1, 3], 
the queries of P can be accomplished in time O(m + size of output). If the suffix array 
[11] is used, the search time becomes O(m Jr log n + size of output). 

In the case of the approximate matching (k > 0) we develop in this paper two data 
structures for representing a static T and give the corresponding search algorithms. The 
first solution combines suffix automata and dynamic programming, and is applicable for 
general edit operation costs c. Text T is represented a~ annotated suffix automaton. The 
search is performed by dynamic programming over P and the transition graph of the 
automaton. Based on certain properties of suffix automata we develop a search strategy 
that avoids entering the same state of the automaton repeatedly. This gives a time bound 
that is in the worst case the same as for the standard on-line dynamic programming but 
in the best case is essentially better. 

The second data structure is a simple special design for the k differences problem. The 
structure is based on the so-called q-grams that are simply any strings of q symbols. The 
preprocessing phase creates for each q-gram of T a chain that links together all occurrences 
of the q-gram in T. This structure can be understood as an abridged version of the suffix 
array or--when the headers of the link chains are organized as a trie--as a suffix tree 
which has been cut to the depth q. 

The search phase marks the areas of T that have a sufficient number of q-grams 
in common with P. The marked areas are then checked by dynamic programming for 
occurrences of P with at most k differences. The method has a predecessor in the work of 
Owolabi & McGregor [13], and related 'signature' methods have been used e.g. in spelling 
correction; see e.g. [9]. We show how the different parameters of the method should be 
chosen to solve the given k differences problem. 

A n n o t a t e d  suffix a u t o m a t o n  SA(T)  

The suffix automaton [3, 4] (also known as DAWG, directed acyclic word graph, [1]) for 
a string T = t l t2 . . . tn  is the smallest DFA recognizing all the suffixes T/ = t i . . .  t,," 
1 < i < n + 1, of T. We let root denote its initial state and goto its transition function; 
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there is a transition from state s to state r on input symbol a if r = goto(root, a). The 
suffix automaton can be constructed in t ime O(n) by the methods given in [3, 4, 1]. The 
suffix automaton for T has at most 3n - 4 goto transitions and at most 2n - 1 states. It 
can be viewed as the s u e z  tree for T, with the identical subtrees merged. As a graph, it 
is a dag. 

The depth of a state s of the automaton, denoted depth(s), is the length of the (unique) 
longest string z such that  there is a goto path from root to s, goto(root, z) = s; here we 
have extended the goto function for strings in the obvious way. Similarly, mindepth(s) 
denotes the length of the shortest string y such that  goto(root, y) = s. 

The following property of a suffix automaton is an immediate consequence of the fact 
that  the automaton accepts all the suffixes of a string and nothing more. 

L e m m a  1 For a state s, let x be the longest string such that goto(root, x) = s. Then the 
set of  strings y such that goto(root, y) = s consists of  all su~zes  of  x of  length at least 

. mindepth(s).  

The important fail function on the states of the automaton has the following charac- 
terization. 

L e m m a  2 ([4]) Let s = goto(root, x) for some string z, and let w be the longest s u e z  
of  x such that s # goto(root, w). Then, goto(root, w) = fai l(s)  and Iwl = depth(fail(s)) .  

C o r o l l a r y  1 mindepth(s) = depth(fail(s)) + 1. 

The suffix automaton serves an an index giving the locations of different substrings 
of T. There are different ways to attach the location information to the automaton. For 
our purposes the following is suitable. 

The states of the automaton are divided into two classes: the primary states and the 
secondary states. The primary states are the states sl = goto(root, tl .... ti) for 0 < i < n. 
These states are disjoint, and depth(si) = i. The other states are secondary. 

A string z is said to occur at location j in T if x = tj_Ixl+ltj_l~l+2.., tj. 

L e m m a  3 Let goto(root, x) = s, and let L = {depth(r) [ r is primary and s = fail i(r)  
for some i > 0}. Then L is the set of  all locations at which x occurs in T.  

Hence the occurrences of a string leading to s can be found by finding the primary 
states from which there is a fa i l  transition path to s. Therefore we also need the inverse 
of fail: with each state r we at tach a list of links, the co fa i l  links, pointing to states r '  
such that  fail(r ')  = r. 

The annotated sufftz automaton for T, denoted SA(T) ,  is the suffix automaton of T 
(i.e., the states and the goto function) with the states marked primary or secondary and 
with the fa i l  and cofail links and the depth value for each state. The annotations do not 
increase the construction time; in fact, both fa i l  and depth are needed in the construction, 
so the only extra work is to reverse fa i l  and mark states primary or secondary which 
clearly does not increase the asymptotic time requirement. 

P r o p o s i t i o n  1 The annotated s u ~  automaton S A ( T )  can be constructed in time and 
in space O(n). 
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Approx ima te  str ing ma tch ing  with  SA(T)  

The approximate string matching problem for text T = q t y . . ,  t,~ and pattern P = 
plp~""  pm can be solved on-line, without preprocessing T, with the following well-known 
dynamic programming method. 

Let D be a m-t- 1 by n + 1 table such that for 0 < i < m,  0 < j < n, D( i , j )  is the 
minimum edit distance from pl" '" pi to the substrings of T ending at tj. Clearly, there is 
an approximate occurrence of P in T, ending at tj, with edit distance < k from P, if and 
only if D ( m , j )  < k. Such indexes j can be found by evaluating D from 

D(O,j) 

D( i , j )  

= 0, 0_<j_<n;  (1) 

D ( i -  1,j) +c(pi -* ~) 
= rain D ( i - l , j - 1 ) +  i f p ~ = t j t h e n O e l s e c ( p i ~ t j )  (2) 

D ( i , j  - 1) + c(e ~ tj) 

f o r l  < i < m , O < j < n .  
As D(i , j )  depends only on entries D ( i -  1,j), D ( i -  1, j  - 1), and D( i , j  - 1) of D, the 

evaluation conveniently proceeds column-by-column: Column D(* , j )  can be evaluated 
from column D ( * , j  - 1), proceeding in the order D ( O , j ) , . . . ,  D ( m , j ) .  The total time is 
O(mn). 

The length L(i, j )  of the shortest suffix of tx. . .  tj, whose edit distance from P is D(i, j ) ,  
can be computed together with D(i , j )  itself. Clearly, for 0 < j _< n we have L(O,j) = O, 
and for 1 < i < m, 0 < j < n: 

L ( i , j )  if D(i , j )  = D(i - 1,j) + c(pi -~ e) then L(i - 1,j) 
elsif D(i , j )  = D(i - 1 , j  - 1) + (if pl = tj then 0 else c(pl -* tj)) 

then L(i - 1 , j  - 1) + 1 
else L ( i , j  - 1) + 1. 

Then D( i , j )  equals the edit distance from pl"" "p~ to tj . . . .  tj where j '  = j - L ( i , j )  + 1. 
Next we develop a method that performs a similar dynamic programming over P and 

S A ( T )  to find the approximate occurrences of P in T. The method will attach with the 
states of S A ( T )  similar columns of m + 1 entries as are the columns of matrices D and L. 
The column representing edit distances at state r is denoted as dcol(r), and the column 
representing the corresponding lengths is denoted as leol(r). 

The method will work, roughly formulated, in the following steps. 

1. Traverse the useful subtree U(P, k) of SA(T)  starting from root and using a modified 
Dijkstra's shortest path algorithm to control the traversing order; 

2. When the traversal enters state r along a transition goto(s, a) = r, evaluate dcol(r) 
and lcol(r) by dynamic programming from a, dcol(s), and lcol(s); 

3. If dcol(r)(m) < k, mark all states that can be reached from r along cofail links and 
are not already marked. Output depth(q) for each primary state q that gets a mark. 

Next we refine the above description of the algorithm, starting from step 2. 
To understand the use of dcol and leol some further notation is necessary. For any 

string x, we let d(i, x) denote the minimum edit distance between p l " "  pi and any suffix 
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of x, and l(i,x) denote the length of the shortest such a suffix. Then, for example, 
D(i, j )  = d(i, tl . . . t j )  and L(i , j )  = l(i, t l . . . t j ) .  It should be clear that d anf I can be 
evaluated in the same way as D and L from a recursion similar to (1) and (2); string x 
now takes the role of t l - - - t j .  

The traversal over SA(T) starts from root. Initially, dcol(root) = d( . ,  e) and lcol(root) = 
l(*, e), where d(i, e) = E~=a c(ph ~ e) and I(i, e) = 0, for 0 < i < m. For other states s the 
columns dcol(s) and tcol(s) will be such that dcol(s) = d(*, x) and Icol(s) = l(*, z), where 
x is the string spelled out by the path from root to s in the traversed subtree U(P, k). 
This property is preserved if, when the traversal takes transition goto(s, a) = r, the new 
columns dcol(r) = d(*, za) and/col(r) = l(*, xa) are evaluated by dynamic programming 
from dcol(s), lcol(s), and a. For example, for dcol(r) this evaluation gets the form 

dcol(r)(O) = 0 (3)  

dcol(r)(i - 1) + c(pi ---r e) 
dcol(r)(i) = min dcol(s)(i - 1) + if pi = a then 0 else c(pi --+ a) (4) 

dcol(s)(i) + c(e --+ a) 

for i = 1 ,2 , . . . ,m .  
Next consider step 1. Our goal is to develop a traversing order that guarantees that all 

approximate occurrences of P will be found but extra traversing is avoided. This should 
be done in such a way that each goto transition of SA(T) is traversed at most once. As 
there are O(n) transitions and taking a transition needs time O(m) (for evaluating dcol 
and Icol), this would give an O(mn) time bound for the whole method. It turns out that 
it suffices to traverse over subtree U(P, k) which we shall define next. 

We denote as A(x) the length of the longest suffix y of a string x such that the edit 
distance from some prefix of P to y is < k. Obviously, A(x) = l(i, x) where i < m is the 
largest index such that d(i,x) < k. We say that an entry d(i, x) is essential, if d(i, x) < k. 
Hence A(x) expresses the length of the part of x on which the essential part of d(*, x) 
depends. 

Let goto(root, ala2.. ,  ah) = s for some a i e  5]. The goto path a~--. ah is called useful, 
if A(al . . .a i )  > mindepth(goto(root, a~...al)) for all 1 < i < h. State s is useful, if all 
goto paths from root to s are useful. In particular, root is useful. 

Definit ion.  The useful subtree U(P~ k) of SA(T) is the subgraph of SA(T) that contains 
all the useful states and for each such state s, it also contains the goto transitions on the 
longest useful goto path from root to s. 

Useful subtree U(P, k) is really a tree because every initial segment of a useful path is 
useful. 

It is sufficient to restrict the traversal on U(P, k). To prove this, we need first a lemma. 

L e m m a  4 Let x be a string and y its su]fiz such that lYl > A(x). Then d(*, x) and d(*, y) 
are identical when restricted to the essential entries, and the correspondingly restricted 
l(*, x) and l(,, y) are identical. 

Let J be the set of all locations j that our algorithm will output (step 3) when 
performing dynamic programming over U(P, k), and let j t  be the correct set of locations 
we want to find, that is, g' = {j I D(m, j )  < k}. 
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Theorem 1 J = J~. 

Finally we need an efficient way to isolate and traverse the useful subtree U(P, k). 
This will be done by finding a slightly larger tree that consists of U(P, k) and of some 
additional leaves. 

A goto path al . . .ah  is called a bounding path, if path a l . . .  ah_l is useful but path 
a t . . -  ah is not useful (that is, ~ (a l . . .  ah) < mindepth(goto(root, ax. . .  ah)). A state s of 
SA(T) is a boundary state if there is to s at least one bounding path but no useful path. 

Definit ion.  The eztended useful subtree U+(P, k) of SA(T) consists of U(P, k) and of all 
boundary states of SA(T) and of longest possible bounding paths to them. 

Again, subgraph U+(P, k) is really a tree because the longest bounding path to each 
boundary state is unique, and its each initial segment is useful and longest possible and 
hence belongs to U(P, k). 

Assume for a moment that we know a priori the nodes of U + (P, k). Then its arcs can 
be found by Dijkstra's shortest path algorithm. We define the cost w(s, r) of an arc (s, r) 
(i.e., goto(s, a) = r for some a) as w(s, r) = depth(r) - depth(s) - 1, if s is a useful state. 
If s is a boundary state, then we set w(s, r) = oo; hence, in effect, such arcs are removed 
from SA(T). 

Then find with Dijkstra's algorithm the minimum cost paths with respect to cost func- 
tion w from root to all states in U+ ( P, k ). Consider the path so = root, sl,. . ., Sh-1, sh = s 
found in this way to some s. 

L e m m a  5 The length h of the path to s is largest possible. 

The useful states and the boundary states are not known a priori, but we can recognize 
them easily during the execution of the Dijkstra's algorithm. The dynamic programming 
is performed at each state in the traversal order determined by the algorithm: When 
the algorithm reaches a new state r along transition goto(s, a) = r, columns dcol(r) and 
Icol(r) are computed from dcol(s), Icol(s), and a, as already explained. 

Let x be the path from root along which r is found. Then/~(x) = lcol(r)(i) where i is 
the largest index such that dcol(r)(i) is essential. Hence $(x) can be evaluated locally at 
r, and we may write "~(r) = ,~(x). 

Now the status of r can be decided. 

L e m m a  6 I f  )t(r) < mindcpth(r), then r is a boundary state, otherwise r is a useful 
state. 

By Lemmas 5 and 6, our algorithm finds the boundary states and the useful states 
correctly along longest possible paths. Therefore U+(P, k) is found correctly which means, 
by Theorem 1, that the approximate occurrences of P are found correctly. 

Theorem 2 The described algorithm can be implemented such that it works in time 
O(mn) in the worst case and, for the unit cost model of the edit distance, in time O(m) 
in the best case. 
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Proof. As there are O(n) states in U+(P, k) and a dynamic programming step of time 
O(m) is performed once at each, the time for dynamic programming is O(ran). In Dijk- 
stra's algorithm we use bucket sort instead of heap to get time O(n), and hence total time 
O(mn). For the best case bound consider P and T such that they do not have common 
symbols. 

R e m a r k  1. The algorithm of Theorem 2 satisfies the natural requirement that the worst 
case time O(nm) is not larger than the time of the on-line solution, without preprocessing 
T. The best case time is O(m) showing that we have achieved some progress with the 
preprocessing of T. Without it also the best case has to grow proportional to n. 

When k = 0, the algoritm requires time O(m2). The time seems to grow very fast 
with k but we leave open a more complete analysis of this dependency. 

R e m a r k  2. The simplest way to find approximate P's from automaton SA(T) would be 
to follow each goto path from the root until the corresponding string has an edit distance 
> k from all prefixes of P. Such paths can have total length O(mn). It can be shown 
that this leads to O(mnk) time search. 

The  q-gram m e t h o d  

This section considers the k differences problem, that is, c(x ~ y) = 1 for all editing 
operations x ~ y. 

A q-gram in ~ is any string in zq. The usefulness of the q-grams is based on the 
following lemma. 

L e m m a  7 Let an occurrence of P with at most k differences end at tj in T. Then at 
least m + 1 - (k + 1)q of the m - q + 1 q-grams of P occur in t j-m+l.. . t j .  

Proof. Let. P '  be the approximate version of P that ends at tj. Hence P '  is a suffix of 
tj_m+l.., tj or t~_m+l ---t~ is a suffix of P'. String P '  is obtained from P with at most 
k insertions, deletions or changes. A deletion or a change at character pi of P destroys 
at most q q-grams of P, namely those that contain pi. An insertion between pi and pi+1 
destroys at most q - 1 q-grams of P, namely those that contain both pl and pi+x. Hence at 
most klq+k2(q-1) q-grams of P are missing in P' ,  where kl is the total number of deletions 
and changes and k2 is the total number of insertions. As [P'[ _< m + k2, string tj-m+l- .. tj 
contains all q-grams of P 'except  for at most ks. Hence at most klq+ k2(q - 1) + ks = kq 
q-grams of P are not present in t~_m+l -. • tj, which proves the lemma. 

Using the lemma the areas of T that may contain a good enough approximate occur- 
rence of P can be found fast. These are separately checked with dynamic programming. 

Text T is preprocessed as follows: For each q-gram G in ~q we construct a list L(G) 
consisting of all j such that T has an (exact) occurrence of G starting at tj. The lists for 
all G can be created in one scan over T either by using a natural encoding of q-grams 
into integers to the base [~[ (c.f. [8]) or by using a modified suffix automaton with fail- 
transitions representing different q-grams of T [15]. We also create a search structure for 
finding fast the list L(G), given G. A suitable stucture is an array indexed by the integer 
code of G, or a t r i e  representing the different q-grams of T. The preprocessing time is 
O(n + [El q) for the method based on integer codings; the size of the resulting structure 
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is also O(n + q) where n represents the total length of the lists and IEI q the search 
structure. 

Assume then that we have to find the occurrences of P in T with < k differences. The 
first phase of the search traverses all lists L(G) where G occurs in P.  The occurrences 
listed in L(G)'s are counted into initially zero buckets B~, 0 < i < [n / (m-  1)] +1. Bucket 
B~ is increased by 1 when the next element j of L(G) satisfies (i - 1)(m - 1) + 1 < j < 
(i + 1)(m - 1). Hence the width of each bucket is 2(m - 1) and two successive buckets 
have an overlap of length m - 1; the overlap ensures that no occurrences of P are lost. 
(For simplicity, we assume that m > 2.) The rule for updating the buckets can be stated 
simply B [ ~  j ~ • + 1; B/2=~_/..~,~_lj,, ~ * + 1. 

When Bi achieves value m + 1 - (k + 1)q we know by Lemma 7 that an approximate 
occurrence of P can end somewhere in ti(m-1)"" t(i+x)(m-a)- As an occurrence is of length 
< re+k, its leftmost possible starting character is tj where j = i ( m -  1 ) - m - k + l .  Hence 
we check by dynamic programming whether or not there is an approximate occurrence in 
t j  . . • t ( i + l ) ( m - 1 ) .  

Because the total length of the q-gram lists L(G) for G in P is < n, they can be 
traversed as described above in time O(m + n). Under the random string assumption 
(each symbol in T is chosen uniformly and independently from E) the expected length of 
each list is n / l E E  hence the expected traversal time is O(m + (m - q + 1)ntlSt~). In the 
best case each list is empty, hence time O(m) suffices. Let r be the number of the buckets 
checked by dynamic programming. Using the O(kn) version of dynamic programming 
[7, 16], the total time for the checking phase is O(rkm) which in the worst case is O(kn). 

Theorem 3 The q-gram lists for T can be constructed in time and in space O(n + IEIq). 
The search for occurrences of P with at most k differences can be done in time O(m + 
n + rkm) where r is the number of buckets checked with dynamic programming. In the 
best case time O(m) suO~ces for the search. 

The bound m + 1 - (k + 1)q for the number of q grams in Lemma 7 is non-trivial 
only if q < (m + 1)/(k + 1). Hence it is possible that the q used in preprocessing T is 
too large for the present m and k. Fortunately, we can in this case use a smaller q' that 
is < (m + 1)/(k + 1). The list L(G) for a q'-gram G is the catenation of the q-gram lists 
L(GX) where X is in ~,q-¢. 

Annotated suffix automaton SA(T) is also a complete '*-gram' index for T containing 
q-gram lists for all 0 _< q _< n. For a gram G of any length, L(G) consists of all values 
depth(s) such that s is primary and reachable from goto(root, G) along co fail-links (Lemma 
3). The q-gram method could be based on SA(T) as well. 
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