
Sweepline the Music!�

Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 Helsinki, Finland

{ukkonen,klemstro,vmakinen}@cs.helsinki.fi

Abstract. The problem of matching sets of points or sets of horizontal line seg-
ments in plane under translations is considered. For finding the exact occurrences
of a point set of sizem within another point set of sizen we give an algorithm
with running timeO(mn), and for finding partial occurrences an algorithm with
running timeO(mn logm). To find the largest overlap between two line segment
patterns we develop an algorithm with running timeO(mn log(mn)). All algo-
rithms are based on a simple sweepline traversal of one of the patterns in the
lexicographic order. The motivation for the problems studied comes from music
retrieval and analysis.

1 Introduction

Computer-aided retrieval and analysis of music offers fascinating challenges for pattern
matching algorithms. The standard writing of music as exemplified in Fig. 1 and Fig. 2
represents the music as notes. Each note symbol gives the pitch and duration of a tone.
As the pitch levels and durations are normally limited to a relatively small set of discrete
values, the representation is in fact a sequence of discrete symbols. Such sequences are
a natural application domain for combinatorial pattern matching.

The so-called query-by-humming systems[10; 18; 14] are a good example of mu-
sic information retrieval (MIR) systems that use pattern matching methods. A query-
by-humming system has a content-based query unit and a database of symbolically
encoded music such as popular melodies. A user of the database remembers somewhat
fuzzily a melody and wants to know if something similar is in the database. Then the
user makes a query to the database by humming (or whistling or playing by an instru-
ment) the melody, and the query system should then find from the database the melodies
that match best with the given one. The search over the database can be done very fast
using advanced algorithms for approximate string matching, based on the edit distance
and discrete time-warping (e.g.[13]).

Problems get more complicated if instead of simple melodies, we have polyphonic
music like symphony orchestra scores. Such a music may have very complex structure
with several notes simultaneously on and several musical themes developing in paral-
lel. One might want to find similarities or other interesting patterns in it, for example,
in order to make musicological comparative analysis of the style of different composers
or even for copyright management purposes. Formulating various music-psychological

� A work supported by the Academy of Finland.

R. Klein et al. (Eds.): Comp. Sci. in Perspective (Ottmann Festschrift), LNCS 2598, pp. 330–342, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Sweepline the Music! 331

�� �
� ��

Figure 1. A melody represented in common music notation.

��
�

�

�
�

�
�

�
�

��
��� �

����
��

��
����

��
��

�����
��

�
��

		�

�
����
�	
��

��

����

�
�

�
��
�
����

� �

�� � ��� ����

�
�
�

��
�
���

�	 ��

��� ��� � �����

�

����

�
����

�
���

� �

��
��
����
�	
���

�

���� �����

� ��

����

�

Figure 2. An excerpt of Einojuhani Rautavaara’s operaThomas (1985). Printed with
the permission of the publisher Warner/Chappell Music Finland Oy.

phenomena and models such that one can work with them using combinatorial algo-
rithms becomes a major challenge.

Returning back to our examples, the melody of Fig. 1 is given in Fig. 3 using so-
called piano-roll representation. The content is now already quite explicit: each hori-
zontal bar represents a note, its location in they-axis gives its pitch level and the start
and end points in thex-axis give the time interval when the note is on. Fig. 4 gives the
piano-roll representation of the music of Fig. 2.

1 2 3 4 5 6 7 8

60

62

64

66

68

70

72

pitch

time

Figure 3. The example of Fig. 1 in piano-roll representation.

332 Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

2 3 4

pitch

time

Figure 4. The example of Fig. 2 in piano-roll representation. The notes belonging to the
soloist’s melody are represented distinctly. Moreover, the first twelve notes of Fig. 3 are
shown by shading in a translated position such that the starting points of 6 notes match
and the total length of the overlap time is 6 quarter notes.

In western music, when comparing different pieces of music and melodies in par-
ticular, the absolute pitch levels of the notes are not of the primary interest. Rather,
the pitch level differences between successive notes, theintervals, really matter. If a
melody is obtained from another one by a transposition, which means adding a con-
stant to the pitch levels of the notes, the transposed melody is still considered the same.
Hence in music comparison it is customary to require invariance with respect to pitch
level transpositions.

Similarly, for the durations of the notes, it is the duration ratio between succes-
sive notes that is important. Rewriting using shorter or longer notes does not basically
change the melody as far as the duration ratios stay invariant. However, the number of
possible rescalings is very small in practice. More common is, that the same musical
theme occurs in otherwise varied forms, perhaps with some notes added or deleted, or
the intervals or the duration ratios slightly changed.

This suggests that comparing musical sequences would need an appropriate form of
approximate pattern matching that is invariant with respect to pitch transpositions. This
could be combined with invariance with respect to rescaling of the tempo of the music
but here also repeated searches withdifferent scales can be feasible.

Sweepline the Music! 333

In this paper we will use a simple two-dimensional geometric representation of mu-
sic, abstracted from the piano-roll representation. In this representation, a piece of mu-
sic is a collection of horizontal line segments in the Euclidean two-dimensional space
R

2. The horizontal axis refers to the time, the vertical to the pitch values. As we do
not discretize the available pitch levels nor the onset times or durations of the notes,
the representation is more powerful than the standard notation of music as notes. In
some cases, however, we consider the effect of the discretization on the efficiency of
the algorithms.

Given two such representations,P and T , we want to find the common patterns
shared byP andT whenP is translated with respect toT . Obviously, the vertical com-
ponent of the translation yields transposition invariance of the pattern matching while
the horizontal component means shifting in time. When designing the algorithms we
typically assume thatT represents a large database of music whileP is a shorter query
piece, but it is also possible that bothP andT refer to the same pattern.

Three problems will be considered.

(P1) Find translations ofP such that all starting points of the line segments ofP match
with some starting points of the line segments inT . Hence the on-set times of all
notes ofP must match. We also consider a variant in which the note durations
must match, too, or in which the time segment ofT covered by the translatedP is
not allowed to contain any extra notes.

(P2) Find all translations ofP that give a partial match of the on-set times of the notes
of P with the notes ofT .

(P3) Find translations ofP that give longest common shared time withT . By the shared
time we mean the total length of the line segments that are obtained as intersection
of the line segments ofT and the translatedP.

Fig. 4 illustrates all three problems. There is no solution of (P1), but the shading
shows a solution to (P2) and (P3).

For the problem (P1) we give in Sect. 3 an algorithm that needs timeO(mn) and
working spaceO(m). In practice the average running time isO(n). Herem is the size
(number of the line segments) ofP andn is the size ofT . For the problem (P2) we
give in Sect. 4 an algorithm with running timeO(mn logm) and spaceO(m), and for
the problem (P3) we describe in Sect. 5 a method that needs timeO(mn log(mn)) and
spaceO(mn). When the number of possible pitch levels is a finite constant (as is the
case with music), the running time and working space of the algorithm for (P3) become
O(mn logm) andO(m). All algorithms are based on a simplesweepline-type[4] scan-
ning of T . We assume thatT andP are given in the lexicographic order of the starting
points of the line segments. Otherwise timeO(n logn + m logm) and spaceO(n + m)
for sorting should be added to the above bounds.

Our problems are basic pattern matching questions in music when transpositions
are allowed and note additions and deletions are modeled as partial matches. Problem
(P3) also allows local changes in note durations. Tolerance to interval changes could be
incorporated by representing the notesas narrow rectangles instead of lines.

Related Work. Our results on problems (P1) and (P2) slightly improve the recent
results of Meredith et al.[19; 21] who, using similar algorithms, gave for (P1) a time

334 Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

boundO(mn) and a space boundO(n), and for (P2) a time boundO(mn log(mn)) and a
space boundO(mn).

A popular approach to MIR problems has been to use different variants of the edit
distance evaluated with the well–known dynamic programming algorithm. This line of
research was initiated by Mongeau and Sankoff[20] who presented a method for the
comparison of monophonic music. Edit distances with transposition invariance have
been studied in[16; 13; 17]. In [8], dynamic programming is used for finding poly-
phonic patterns with restricted gaps. Bit–parallelism is used in the algorithm of[15] for
finding transposed monophonic patterns within polyphonic music, and in the algorithm
of [11] for finding approximate occurrences of patterns with group symbols.

Most of the MIR studies so far consider only monophonic music, and from the
rhythmic information only the order of the notes is taken into account. An example of
a more general approach is the MIR system PROMS[6] which works with polyphonic
music and some durational information.

Our work has connections also to computational geometry, where point pattern
matching under translations (and under more general transformations) is a well-studied
field; see e.g. the survey by Alt and Guibas[1]. A problem very close to (P1) is to decide
whetherA = T (B), whereT is an arbitrary rigid transformation, andA andB are point
patterns (such as the sets of the starting points of the line segments inP andT), both
of sizen. This can be solved inO(n logn) time [3] by using a reduction to exact string
matching. Our problem is more difficult since we are trying to match one point set with
a subset of the other. A general technique, called alignment method in[12], can be used
to solve problems(P1) and(P2) in time O(mn logn); we will sketch this solution in
the beginning of Sect. 3. Allowing approximate point matching in problems(P1) and
(P2) will make them much harder; anO(n6) algorithm was given in[2] for the case
|A|= |B|= n, and only an improvement toO(n5 logn) [9] has been found since. How-
ever, a relaxed problem in which a point is allowed to match several points in the other
pattern, leading to Hausdorff distance minimization under translations, can be solved
in O(n2 log2 n) time [5], when distances are measured byL∞ norm (see citations in[1]
for other work related to Hausdorffdistance). Recently, a special case of (P1) in which
points are required to be in integer coordinates was solved inO(n logn logN) time [7]
with a Las Vegas algorithm, whereN is the maximum coordinate value.

2 Line Segment Patterns

A line segment pattern in the Euclidean spaceR2 is any finite collection of horizontal
line segments. Such a segment is given as[s,s′] where thestarting point s = (sx,sy)∈R

2

and theend point s′ = (s′x,s′y) ∈R
2 of the segment are such thatsy = s′y andsx ≤ s′x. The

segment consists of the points between its end points. Two segments of the same pattern
may overlap.

We will consider different ways to match line segment patterns. To this end we
are given two line segment patterns,P andT . Let P consist ofm segments[p1, p′1], . . . ,
[pm, p′m] andT of n segments[t1, t ′1], . . . , [tn, t

′
n]. PatternT may represent a large database

while P is a relatively short query to the database in which casem� n. It is also possible
thatP andT are about of the same size, or even that they are the same pattern.

Sweepline the Music! 335

We assume thatP andT are given in the lexicographic order of the starting points
of their segments. The lexicographic order of pointsa = (ax,ay) andb = (bx,by) in R

2

is defined by settinga < b iff ax < bx, or ax = bx anday < by. When representing music,
the lexicographic order corresponds the standard reading of the notes from left to right
and from the lowest pitch to the highest.

So we assume that the lexicographic order of the starting points isp1 ≤ p2 ≤ ·· · ≤
pm andt1≤ t2≤ ·· · ≤ tn. If this is not true, a preprocessing phase is needed, to sort the
points which would take additional timeO(m logm+ n logn).

A translation in the real plane is given by anyf ∈R
2. The translatedP, denoted by

P + f , is obtained by replacing any line segment[pi, p′i] of P by [pi + f , p′i + f]. Hence
P+ f is also a line segment pattern, and any pointv ∈R

2 that belongs to some segment
of P is mapped in the translation asv �→ v + f .

3 Exact Matching

Let us denote the lexicographically sorted sets of the starting points of the segments in
our patternsP andT asP = (p1, p2, . . . , pm) andT = (t1, t2, . . . ,tn). We now want to find
all translationsf such thatP + f ⊆ T . Such aP + f is called anoccurrence of P in T .
As all points ofP+ f must match some point ofT , p1+ f in particular must equal some
t j. Hence there are onlyn potential translationsf that could give an occurrence, namely
the translationst j− p1 where 1≤ j≤ n. Checking for some such translationf = t j− p1,
that also the other pointsp2 + f , . . . , pm + f of P + f match, can be performed in time
O(m logn) using some geometric data structure to queryT in logarithmic time. This
leads to total running time ofO(mn logn).

We can do better by utilizing the lexicographic order. The method will be based on
the following simple lemma.

Denote the potential translations asf j = t j − p1 for 1≤ j ≤ n. Let p ∈ P, and let
f j and f j′ be two potential translations such thatp + f j = t and p + f j′ = t ′ for some
t,t ′ ∈ T . That is, whenp1 matchest j thenp matchest, and whenp1 matchest j′ thenp
matchest ′.

Lemma 1 If j < j′ then t < t ′.

Proof. If j < j′, thent j < t j′ by our construction. Hence alsof j < f j′ , and the lemma
follows. 	

Our algorithm makes a traversal overT , matchingp1 against the elements ofT . At
elementt j we in effect are considering the translationf j. Simultaneously we maintain
for each other pointpi of P a pointerqi that also traverses throughT . Whenqi is att j,
it in effect represents translationt j− pi. This translation is compared to the currentf j,
and the pointerqi will be updated to the next element ofT afterqi if the translation is
smaller (the stepqi ← next(qi) in the algorithm below). If it is equal, we have found
a match forpi, and we continue with updatingqi+1. It follows from Lemma 1, that no
backtracking of the pointers is needed.

The resulting procedure is given below in Fig. 5.

336 Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

(1) for i← 1, . . . ,m do qi←−∞
(2) qm+1← ∞
(3) for j← 1, . . . ,n−m do
(4) f ← t j− p1
(5) i← 1
(6) do
(7) i← i+1
(8) qi←max(qi,t j)
(9) while qi < pi + f do qi← next(qi)
(10) until qi > pi + f
(11) if i = m+1 then out put(f)
(12) end for.

Figure 5. Algorithm 1.

Note that the main loop (line 3) of the algorithm can be stopped whenj = n−m,
i.e., whenp1 is matched againsttn−m. Matchingp1 beyondtn−m would not lead to a full
occurrence ofP because then all points ofP should match beyondtn−m, but there are
not enough points left.

That Algorithm 1 correctly finds allf such thatP + f ⊆ T is easily proved by
induction. The running time isO(mn), which immediately follows from that eachqi

traverses throughT (possibly with jumps!). Also note that this bound is achieved only
in the rare case thatP hasΘ(n) full occurrences inT . More plausible is that for random
P andT , most of the potential occurrences checked by the algorithm are almost empty.
This means that the loop 6–10 is executed only a small number of times at each check
point, independently ofm. Then the expected running time under reasonable proba-
bilistic models would beO(n). In this respect Algorithm 1 behaves analogously to the
brute-force string matching algorithm.

It is also easy to use additional constraints in Algorithm 1. For example, one might
want that the lengths of the line segments must also match. This can be tested separately
once a full match of the starting points has been found. Another natural requirement can
be, in particular ifP andT represent music, that there should be no extra points in the
time window covered by an occurrence ofP in T . If P + f is an occurrence, then this
time window contains all members ofT whosex-coordinate belongs to the interval
[(p1 + f)x,(pm + f)x]. When an occurrenceP + f has been found in Algorithm 1, the
corresponding time window is easy to check for extra points. Let namelyt j = p1 + f
andt j′ = pm + f . Then the window contains just the points ofT that matchP+ f if and
only if j′ − j = m−1 andt j−1 andt j′+1 do not belong to the window.

4 Largest Common Subset

Our next problem is to find translationsf such that
(
P+ f

)∩T is nonempty. Such a
P+ f is called apartial occurrence of P in T . In particular, we want to findf such that(
P+ f

)∩T is largest possible.

Sweepline the Music! 337

There areO(mn) translationsf such that
(
P + f

)∩T is nonempty, namely the trans-
lationst j− pi for 1≤ j≤ n, 1≤ i≤ n. Checking the size of

(
P + f

)∩T for each of them
solves the problem. A brute-force algorithm would typically need timeO(m2n logn) for
this. We will give a simple algorithm that will do this duringm simultaneous scans over
T in timeO(mn logm).

Lemma 2 The size of
(
P + f

)∩T equals the number of disjoint pairs (j, i) (i.e., pairs
sharing no elements) such that f = t j− pi.

Proof. Immediate. 	

By Lemma 2, to find the size of any non-empty
(
P+ f

)∩ T it suffices to count
the multiplicities of the translation vectorsf ji = t j− pi. This can be done fast by first
sorting them and then counting. However, we can avoid full sorting by observing that
translationsf1i, f2i, . . . , fni are in the lexicographic order for any fixedi. This sorted
sequence of translations can be generated in a traversal overT . By m simultaneous
traversals we get these sorted sequences for all 1≤ i≤m. Merging them on-the-fly into
the sorted order, and counting the multiplicities solves our problem.

The detailed implementation is very standard. As in Algorithm 1, we letq1,q2, . . . ,
qm refer to the entries ofT . Initially each ofqi refers tot1, and it is also convenient to set
tn+1←∞. The translationsfi = qi− pi are kept in a priority queueF . Operationmin(F)
gives the lexicographically smallest of translationsfi, 1≤ i≤ m. Operationupdate(F)
deletes the minimum element fromF , let it be fh = qh− ph, updatesqh← next(qh), and
finally inserts the newfh = qh− ph into F .

Then the body of the pattern matching algorithm is as given below.

(1) f ←−∞; c← 0;
do

(2) f ′ ← min(F); update(F)
(3) if f ′ = f then c← c +1
(4) else { out put(f ,c); f ← f ′; c← 1}
(5) until f = ∞

The algorithm reports all(f ,c) such that
∣∣(P+ f

)∩T
∣∣ = c wherec > 0.

The running time of the algorithm isO(mn logm). Them-fold traversal ofT takes
mn steps, and the operations on them element priority queueF take timeO(logm) at
each step of the traversal.

The above method finds all partial occurrences ofP independently of their size.
Concentrating on large partial occurrences gives possibilities for faster practical algo-
rithms based onfiltration. We now sketch such a method. Let

∣
∣(P+ f

)∩T
∣
∣ = c and

k = m− c. ThenP+ f is called an occurrence withk mismatches.
We want to find allP + f that have at mostk mismatches for some fixed valuek.

Then we partitionP into k + 1 disjoint subsetsP1, . . . ,Pk+1 of (about) equal size. The
following simple fact which has been observed earlier in different variants in string
matching literature will give our filter.

338 Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

Lemma 3 If P + f is an occurrence of P with at most k mismatches then Ph + f must
be an occurrence of Ph with no mismatches at least for one h, 1≤ h≤ k +1,

Proof. By contradiction: If everyPh + f has at least 1 mismatch thenP+ f must have at
leastk +1 mismatches asP+ f is a union of disjoint line segment patternsPh + f . 	

This gives the following filtration procedure: First (the filtration phase) find by Al-
gorithm 1 of Section 3 all (exact) occurrencesPh + f of eachPh. Then (the checking
phase) find for eachf produced by the first phase, in the ascending order of the transla-
tions f , how many mismatches eachP+ f has.

The filtration phase takes timeO(mn), sorting the translations takesO(r logk) where
r ≤ (k + 1)n is the number of translations the filter finds, and checking using an algo-
rithm similar to the algorithm given previously in this section (but now priority queue
is not needed) takes timeO(m(n + r)). It should again be obvious, that the expected
performance can be much better wheneverk is relatively small as compared tom. Then
the filtration would take expected timeO(kn). This would dominate the total running
time for smallr if the checking is implemented carefully.

5 Longest Common Time

Let us denote the line segments ofP asπi = [pi, p′i] for 1≤ i≤m, and the line segments
of T asτ j = [t j,t ′j] for 1≤ i≤ n.

Our problem in this section is to find a translationf such that the line segments of
P + f intersectsT as much as possible. For any horizontal line segmentsL andM, let
c(L,M) denote the length of their intersection line segmentL∩M. Then let

C(f) = ∑
i, j

c(πi + f ,τ j).

Our problem is to maximize this function. The value ofC(f) is nonzero only if the
vertical componentfy of f = (fx, fy) brings someπi to the same vertical position as
someτ j, that is, only if fy = (t j)y− (pi)y for somei, j.

Let H be the set of different values(t j)y− (pi)y for 1≤ i≤ m, 1≤ j ≤ n. Note that
H here is a standard set, not a multiset; the size ofH is O(mn).

As C(f) gets maximum whenfy ∈H we obtain that

max
f

C(f) = max
fy∈H

max
fx

C((fx, fy)). (1)

We will now explicitly construct the functionC((fx, fy)) = Cfy(fx) for all fixed
fy ∈ H. To this end, assume thatfy = (t j)y− (pi)y and consider the value ofci j(fx) =
c(πi + (fx, fy),τ j). This is the contribution of the intersection ofπi + (fx, fy) and τ j

to the value ofCfy(fx). The following elementaryanalysis characterizesci j(fx). When
fx is small enough,ci j(fx) equals 0. Whenfx grows, at some point the end point of
πi +(fx, fy) meets the starting point ofτi and thenci j(fx) starts to grow linearly with
slope 1 until the starting points and the end points ofπi +(fx, fy) andτ j meet, whichever
comes first. After that,ci j(fx) has a constant value (minimum of the lengths of the two

Sweepline the Music! 339

line segments) until the starting points or the end points (i.e., the remaining pair of the
two alternatives) meet, from which point on,ci j(fx) decreases linearly with slope−1
until it becomes zero at the point where the starting point ofπi hits the end point of
τ j. An easy exercise shows that the only turning points ofci j(fx) are the four points
described above and their values are

fx = (t j)x− (p′i)x slope 1 starts

fx = min
(
(t j)x− (pi)x,(t ′j)x− (p′i)x

)
slope 0 starts

fx = max
(
(t j)x− (pi)x,(t ′j)x− (p′i)x

)
slope−1 starts

fx = (t ′j)x− (pi)x slope 0 starts.

Hence the slope changes by+1 at the first and the last turning point, while it changes
by−1 at the second and the third turning point.

Now,Cfy(fx) = ∑i, j ci j(fx), henceCfy is a sum of piecewise linear continuous func-
tions and therefore it gets its maximum value at some turning point of theci j ’s. Let
g1≤ g2≤ ·· · ≤ gK be the turning points in increasing order, each point listed according
to its multiplicity; note that different functionsci j may have the same turning point. So,
for eachi, j, the four values

(t j)x− (p′i)x (type 1)
(t j)x− (pi)x (type 2)
(t ′j)x− (p′i)x (type 3)
(t ′j)x− (pi)x (type 4)

are in the lists of theg:s, and each knows its “type” shown above.
To evaluateCfy(fx) at its all turning points we scan the turning pointsgk and keep

track of the changes of the slope of the functionCfy . Then it is easy to evaluateCfy(fx)
at the next turning point from its value at the previous one. Letv be the previous value
and lets represent the slope. The evaluation is given below.

(1) v← 0; s← 0
(2) for k← 1, . . . ,K do
(3) if gk
= gk−1 then v← v + s(gk−gk−1)
(4) if gk is of type 1 or type 4then s← s+1
(5) else s← s−1.

This should be repeated for all differentfy ∈ H. We next describe a method that
generates the turning points in increasing order simultaneously for all differentfy. The
method will traverseT using four pointers (the four “types”) per an element ofP. A
priority queue is again used for sorting the translations given by the 4m pointers; the
x-coordinates of the translations then givethe turning points in ascending order. At each
turning point we update the countersvh andsh whereh is given by they-coordinate of
the translation.

We need two traversal orders ofT . The first is the one we have used so far, the
lexicographic order of the starting pointst j. This order is given asT . The second order

340 Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

is the lexicographic order of the end pointst ′j. Let T
′ be the end points in the sorted

order.
Let q1

i ,q
2
i ,q

3
i , andq4

i be the pointers of the four types, associated with elementπi

of P. Pointersq1
i andq2

i traverseT , and pointersq3
i andq4

i traverseT
′
. The translation

associated with the current value of each pointer is given as

tr(q1
i) = q1

i − p′i
tr(q2

i) = q2
i − pi

tr(q3
i) = q3

i − p′i
tr(q4

i) = q4
i − pi.

So, when the pointers refer tot j or t ′j, the x-coordinate of these translations give the
turning points, of types 1, 2, 3, and 4, associated with the intersection ofπi andπj.
They-coordinate gives the vertical translation(t j)y− (pi)y that is needed to classify the
turning points correctly.

During the traversal, all 4m translationstr given by the 4m pointers are kept in a
priority queue. By repeatedly extracting the minimum from the queue (and updating the
pointer that gives this minimumtr) we get the translations in ascending lexicographic
order, and hence thex-coordinate of the translations gives all turning points in ascending
order.

Let f = (fx, fy) be the next translation obtained in this way. Then we retrieve the
slope counters fy and the value counterv fy . Assuming that we have also stored the last
turning pointz fy at whichv fy was updated, we can now perform the following updates.
If fx
= z fy , then letv fy ← v fy + s fy(fx− z fy) andz fy ← fx. Moreover, if f is of types 1
or 4, then lets fy ← s fy +1 otherwises fy ← s fy −1.

In this way we obtain the valuesvh for each functionCh and eachh ∈ H, at each
turning point. By (1), the maximum value ofC must be among them.

The described procedure needsO(n logn) time for sorting T into T and T
′
,

O(mn logm) time for generating theO(mn) turning points in increasing order. At each
turning point we have to retrieve the corresponding slope and value counters using the
vertical translationh∈H as the search key. Hence we need in general timeO(log|H|) =
O(log(mn)). This gives a total time requirementO(mn log(mn)) and space requirement
O(mn).

WhenP andT represent music, the size ofH is limited independently ofm andn.
Certainly|H| is less than 300 and often much smaller. We can use bucketing to manage
the slope and value counters. The resource bounds becomeO(n logn + mn logm) for
time and, more importantly,O(m+ n) for space.

6 Conclusion

We presented efficient algorithms for three pattern matching problems. Their motiva-
tion comes from music but as computational problems they have a clear geometric
nature. Also our algorithms are geometric, based on simple sweepline techniques. The
algorithms adapt themselves easily to different variations of the problems such as to
weighted matching or to patterns that consist of rectangles instead of line segments.

Sweepline the Music! 341

Experimentation with the algorithms on real music data would be interesting, to
see whether these techniques can compete in accuracy, flexibility and speed with the
dynamic programming based methods.

References

1. H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and approxima-
tion. In J.-R. Sack and J. Urrutia, editors,Handbook of Computational Geometry, pages 121
– 153. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.

2. H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity and symmetries of
geometric objects.Discrete Comput. Geom., 3:237–256, 1988.

3. M.D. Atkinson. An optimal algorithm for geometric congruence.J. Algorithms, 8:159– 172,
1997.

4. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersec-
tions. IEEE Transactions on Computers, C-28:643–647, September 1979.

5. L.P. Chew and K. Kedem. Improvements on geometric pattern matching problems. InPro-
ceedings of the Scandinavian Workshop Algomthm Theory (SWAT), pages 318–325, 1992.

6. M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz. Proms: A web-based tool for search-
ing in polyphonic music. InProceedings of the International Symposium on Music Informa-
tion Retrieval (ISMIR’2000), 2000.

7. R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard matching. In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages 592–601. ACM
Press, 2002.

8. M.J. Dovey. A technique for “regular expression” style searching in polyphonic music. Inthe
2nd Annual International Symposium on Music Information Retrieval (ISMIR’2001), pages
179–185, 2001.

9. A. Efrat and A. Itai. Improvements on bottleneck matching and related problems using
geometry. InProceedings of the twelfth annual symposium on Computational geometry,
pages 301–310. ACM Press, 1996.

10. A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith. Query by humming - musical infor-
mation retrieval in an audio database. InACM Multimedia 95 Proceedings, pages 231–
236, 1995. Electronic Proceedings: http://www.cs.cornell.edu/Info/Faculty/bsmith/query-
by-humming.

11. J. Holub, C.S. Iliopoulos, and L. Mouchard. Distributed string matching using finite au-
tomata.Journal of Automata, Languages and Combinatorics, 6(2):191–204, 2001.

12. D. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an image.
Intern. J. Computer Vision, 5:195–212, 1990.

13. K. Lemström.String Matching Techniques for Music Retrieval. PhD thesis, University of
Helsinki, Department of Computer Science, 2000. Report A-2000-4.

14. K. Lemström and S. Perttu. SEMEX - an efficient music retrieval prototype. InProceedings
of the International Symposium on Music Information Retrieval (ISMIR’2000), 2000.

15. K. Lemström and J. Tarhio. Detecting monophonic patterns within polyphonic sources. In
Content-Based Multimedia Information Access Conference Proceedings (RIAO’2000), pages
1261–1279, 2000.

16. K. Lemström and E. Ukkonen. Including interval encoding into edit distance based mu-
sic comparison and retrieval. InProceedings of the AISB’2000 Symposium on Creative &
Cultural Aspects and Applications of AI & Cognitive Science, pages 53–60, 2000.

17. V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant string
matching. Technical Report TR/DCC-2002-5, Department of Computer Science, University
of Chile, 2002.

342 Esko Ukkonen, Kjell Lemström, and Veli Mäkinen

18. R.J. McNab, L.A. Smith, D. Bainbridge, and I.H. Witten. The New Zealand digital library
MELody inDEX. D-Lib Magazine, 1997. http://www.nzdl.org/musiclib.

19. D. Meredith, G.A. Wiggins, and K. Lemström. Pattern induction and matching in polyphonic
music and other multi-dimensional data. Inthe 5th World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI’2001), volume X, pages 61–66, 2001.

20. M. Mongeau and D. Sankoff. Comparison of musical sequences.Computers and the Hu-
manities, 24:161–175, 1990.

21. G.A. Wiggins, K. Lemström, and D. Meredith. SIA(M) — a family of efficient algorithms
for translation invariant pattern matching in multidimensional datasets. Manuscript (submit-
ted), September 2002.

	Introduction
	Line Segment Patterns
	Exact Matching
	Largest Common Subset
	Longest Common Time
	Conclusion

