Sweepline the Music!™

Esko Ukkonen, Kjell Lemstrom, and Veli Mé@kinen

Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 Helsinki, Finland
{ukkonen, kl enst r o, vmaki nen} @s. hel sinki . fi

Abstract. The problem of matching sets of points or sets of horizontal line seg-
ments in plane under translations is considered. For finding the exact occurrences
of a point set of sizen within another point set of size we give an algorithm

with running timeO(mn), and for finding partial occurrences an algorithm with
running timeO(mnlogm). To find the largest overlap between two line segment
patterns we develop an algorithm with running ti@émnlog(mn)). All algo-

rithms are based on a simple sweepline traversal of one of the patterns in the
lexicographic order. The motivation for the problems studied comes from music
retrieval and analysis.

1 Introduction

Computer-aided retrieval and analysis of music offers fascinating challenges for pattern
matching algorithms. The standard writing of music as exemplified irlFig. 1 anfAlFig. 2
represents the music as notes. Each note symbol gives the pitch and duration of a tone.
As the pitch levels and durations are normally limited to a relatively small set of discrete
values, the representation is in fact a segpeeof discrete symbols. Such sequences are

a natural application domain for combinatorial pattern matching.

The so-called query-by-humming systef§;18;[14 are a good example of mu-
sic information retrieval (MIR) systems that use pattern matching methods. A query-
by-humming system has a content-based query unit and a database of symbolically
encoded music such as popular melodies. A user of the database remembers somewhat
fuzzily a melody and wants to know if something similar is in the database. Then the
user makes a query to the database by humming (or whistling or playing by an instru-
ment) the melody, and the query system should then find from the database the melodies
that match best with the given one. The search over the database can be done very fast
using advanced algorithms for approximate string matching, based on the edit distance
and discrete time-warping (e fL3)).

Problems get more complicated if instead of simple melodies, we have polyphonic
music like symphony orchestra scores. Such a music may have very complex structure
with several notes simultaneously on and several musical themes developing in paral-
lel. One might want to find similarities or other interesting patterns in it, for example,
in order to make musicological comparative analysis of the style of different composers
or even for copyright management purposes. Formulating various music-psychological

* A work supported by the Academy of Finland.

R. Klein et al. (Eds.): Comp. Sci. in Perspective (Ottmann Festschrift), LNCS 2598, pj_3B0-342, 2003.
(© Springer-Verlag Berlin Heidelberg 2003



Sweepline the Music! 331

Figure 1. A melody represented in common music notation.

/’\
' —— ——, T~

O
T
I

_pﬁ—l_'!—g #P/\ Rt o T |
| | | T | ]
M ] ] |
Dubist jaso schon, son-der-bar schon;
0 | | [ # i biL # i | L

g v by
mn bo
[ T, m— 1) %) (8 PO
L 3 ki
7 4 ) a) < e
= 3 e f >

Figure 2. An excerpt of Einojuhani Rautavaara’s opéitsomas (1985). Printed with
the permission of the publisher Warner/Chappell Music Finland Oy.

phenomena and models such that one can work with them using combinatorial algo-
rithms becomes a major challenge.

Returning back to our examples, the melody of Fig. 1 is given in[Hig. 3 using so-
called piano-roll representation. The cent is now already dte explicit: each hori-
zontal bar represents a note, its location inyFexis gives its pitch level and the start
and end points in the-axis give the time interval when the note is on. Eig. 4 gives the
piano-roll representation of the music of Hig. 2.

pitch A
72 T *—o
70 T+ o0
—e —e
68 T
66 T ~—e
—e —o —e
64 T ——o —o —eo o— o
62 + —e *—e —e
60 $0e0 o—o oee oo [ ]
1 1 1 1 1 1 1 1 " —
T T T T T T T T —
1 2 3 4 5 6 7 8 time

Figure 3. The example of FidJ1 in piano-roll representation.



332 Esko Ukkonen, Kjell Lemstrém, and Veli Mékinen

pitch A —_— e
—e ¢—— H
—e —e
H —e —e —te
—e s o—o -4
—e —=e o—o o— —
—e s oe—o o+—o e« —e
—e —e —e
S <=
— —-e o—o —-e o—o —eo—4
—se —e
—e ~—e
—o o—o —=e o—o
—e —=e o—o
—o —e
—e
— o
——— o
— o
f f f -
2 3 4 time

Figure 4. The example of Fig.]2 in piano-roll representation. The notes belonging to the
soloist’'s melody are represented distinctly. Moreover, the first twelve notes of Fig. 3 are
shown by shading in a translated position such that the starting points of 6 notes match
and the total length of the overlap time is 6 quarter notes.

In western music, when comparing diféert pieces of music and melodies in par-
ticular, the absolute pitch levels of the notes are not of the primary interest. Rather,
the pitch level differences between successive notesntbevals, really matter. If a
melody is obtained from another one by a transposition, which means adding a con-
stant to the pitch levels of the notes, the transposed melody is still considered the same.
Hence in music comparison it is customary to require invariance with respect to pitch
level transpositions.

Similarly, for the durations of the note# is the duration ratio between succes-
sive notes that is important. Rewriting using shorter or longer notes does not basically
change the melody as far as the duration ratios stay invariant. However, the number of
possible rescalings is very small in ptige. More common is, that the same musical
theme occurs in otherwise varied forms, lpegos with some notes added or deleted, or
the intervals or the duration ratios slightly changed.

This suggests that comparing musical sequences would need an appropriate form of
approximate pattern matching that is invariant with respect to pitch transpositions. This
could be combined with invariance with respect to rescaling of the tempo of the music
but here also repeated searches wlifferent scales can be feasible.



Sweepline the Music! 333

In this paper we will use a simple two-dimensional geometric representation of mu-
sic, abstracted from the piano-roll repretsion. In this representation, a piece of mu-
sic is a collection of horizontal line segments in the Euclidean two-dimensional space
R2. The horizontal axis refers to the time, the vertical to the pitch values. As we do
not discretize the available pitch levels nor the onset times or durations of the notes,
the representation is more powerful than the standard notation of music as notes. In
some cases, however, we consider the effect of the discretization on the efficiency of
the algorithms.

Given two such representatiori®,and T, we want to find the common patterns
shared byP andT whenP is translated with respect . Obviously, the vertical com-
ponent of the translation yields transposition invariance of the pattern matching while
the horizontal component means shifting in time. When designing the algorithms we
typically assume thak represents a large database of music WRils a shorter query
piece, but it is also possible that bd@randT refer to the same pattern.

Three problems will be considered.

(P1) Find translations o such that all starting points of the line segment® ofiatch
with some starting points of the line segmentJirtHence the on-set times of all
notes ofP must match. We also consider a variant in which the note durations
must match, too, or in which the time segmenTatovered by the translatdrlis
not allowed to contain any extra notes.

(P2) Find all translations o that give a partial match of the on-set times of the notes
of P with the notes off.

(P3) Findtranslations d? that give longest common shared time withBy the shared
time we mean the total length of the line segments that are obtained as intersection
of the line segments af and the translateB.

Fig.[ illustrates all three problems. There is no solutionRif)( but the shading
shows a solution toR2) and P3).

For the problemR1) we give in Sectd3 an algorithm that needs ti®@nn) and
working spaceD(m). In practice the average running timeQgn). Heremis the size
(number of the line segments) Bfandn is the size ofT. For the problemK2) we
give in Sect[# an algorithm with running tin@(mnlogm) and spaced(m), and for
the problem P3) we describe in Sedil 5 a method that needs @frenlog(mn)) and
spaceO(mn). When the number of possible pitch levels is a finite constant (as is the
case with music), the running time and working space of the algorithnfPBrifecome
O(mnlogm) andO(m). All algorithms are based on a simpeeepline-type[4] scan-
ning of T. We assume that andP are given in the lexicographic order of the starting
points of the line segments. Otherwise ti@énlogn+ mlogm) and spacé(n -+ m)
for sorting should be added to the above bounds.

Our problems are basic pattern matching questions in music when transpositions
are allowed and note additions and deletions are modeled as partial matches. Problem
(P3) also allows local changes in note durations. Tolerance to interval changes could be
incorporated by representing the noéssnarrow rectangles instead of lines.

Related Work. Our results on problemd() and P2) slightly improve the recent
results of Meredith et a[19;[21 who, using similar algorithms, gave foP1) a time



334 Esko Ukkonen, Kjell Lemstrém, and Veli Mékinen

boundO(mn) and a space bour@(n), and for £2) a time boun®(mnlog(mn)) and a
space boun®(mn).

A popular approach to MIR problems has been to use different variants of the edit
distance evaluated with the well-known dynamic programming algorithm. This line of
research was initiated by Mongeau and Sankd@l who presented a method for the
comparison of monophonic music. Edit distes with transposition invariance have
been studied id16;[13;,1F. In [8], dynamic programming is used for finding poly-
phonic patterns with restricted gaps. Bit—parallelism is used in the algoritfib¥jofor
finding transposed monophonic patterns within polyphonic music, and in the algorithm
of [11] for finding approximate occurrences of patterns with group symbols.

Most of the MIR studies so far consider only monophonic music, and from the
rhythmic information only the order of the notes is taken into account. An example of
a more general approach is the MIR system PRJE]Svhich works with polyphonic
music and some durational information.

Our work has connections also to computational geometry, where point pattern
matching under translations (and under more general transformations) is a well-studied
field; see e.g. the survey by Alt and Guilfdk A problem very close toX1) is to decide
whetherA=T (B), whereT is an arbitrary rigid transformation, adandB are point
patterns (such as the sets of the starting points of the line segmenndT), both
of sizen. This can be solved i®(nlogn) time [3] by using a reduction to exact string
matching. Our problem is more difficult since we are trying to match one point set with
a subset of the other. A general technique, called alignment mettidg] ircan be used
to solve problemgP1) and (P2) in time O(mnlogn); we will sketch this solution in
the beginning of Secf] 3. Allowing approximate point matching in probléfis and
(P2) will make them much harder; a@(n®) algorithm was given i2] for the case
|A| = |B| = n, and only an improvement ©0(n°logn) [9] has been found since. How-
ever, a relaxed problem in which a point is allowed to match several points in the other
pattern, leading to Hausdorff distance minimization under translations, can be solved
in O(n?log?n) time [5], when distances are measuredLhynorm (see citations iffl]
for other work related to Hausdordistance). Recently, a special caseRif)in which
points are required to be in integer coordinates was solv&{imognlogN) time [7]
with a Las Vegas algorithm, wheMis the maximum coordinate value.

2 Line Segment Patterns

A line segment pattern in the Euclidean spadk? is any finite collection of horizontal
line segments. Such a segment is givefsad where thestarting point s= (s, s,) € R?
and theend point ' = (s], ) € R? of the segment are such thgt= 5 ands, < s,. The
segment consists of the points between its end points. Two segments of the same pattern
may overlap.

We will consider different ways to match line segment patterns. To this end we
are given two line segment patterfsandT. Let P consist ofm segments$ps, p,.. .,
[Pm, P @andT of nsegmentsty, ty]... ., [tn,t}]. PatterriT may represent a large database
while P is a relatively short query to the database in which casen. It is also possible
thatP andT are about of the same size, or even that they are the same pattern.



Sweepline the Music! 335

We assume thad andT are given in the lexicographic order of the starting points
of their segments. The lexicographic order of pomts (ax,ay) andb = (by,by) in R?
is defined by setting < biff ay < by, orayx = by anday < by. When representing music,
the lexicographic order corresponds the standard reading of the notes from left to right
and from the lowest pitch to the highest.

So we assume that the lexicographic order of the starting poiptsdsp, < --- <
pmandt; <t, <--- <ty If this is not true, a preprocessing phase is needed, to sort the
points which would take additional tim@(mlogm+ nlogn).

A trandation in the real plane is given by arfye R?. The translate®, denoted by
P+ f, is obtained by replacing any line segmémt p{] of P by [p; + f, p + f]. Hence
P+ f is also a line segment pattern, and any puiatR? that belongs to some segment
of P is mapped in the translation as— v+ f.

3 Exact Matching

Let us denote the lexicographically sorted sets of the starting points of the segments in
our pattern® andT asP = (p1, Pz, . .., Pm) andT = (ty,t2,...,ty). We now want to find
all translationsf such thaP+ f C T. Such aP+ f is called anoccurrenceof Pin T.
As all points ofP+ f must match some point @f, p; + f in particular must equal some
tj. Hence there are onlypotential translation$ that could give an occurrence, namely
the translationty — p; where 1< j < n. Checking for some such translatiba=t; — py,
that also the other points, + f,..., pm+ f of P+ f match, can be performed in time
O(mlogn) using some geometric data structure to quErin logarithmic time. This
leads to total running time @(mnlogn).

We can do better by utilizing the lexicographic order. The method will be based on
the following simple lemma.

Denote the potential translations §s=t; — p; for 1 < j <n. Letp € P, and let
f; and f;; be two potential translations such that- f; =t andp+ f;; =t for some
t,t' € T. That is, wherp; matcheg; thenp matcheg, and wherp; matcheg; thenp
matcheg’.

Lemmal If j < j thent <t'.

Proof. If j < |, thentj < t; by our construction. Hence aldg < fj;, and the lemma
follows. O

Our algorithm makes a traversal oviermatchingp; against the elements @f. At
element; we in effect are considering the translatifn Simultaneously we maintain
for each other poinp; of P a pointerq; that also traverses through Whengj; is att;,
it in effect represents translatiop— p;. This translation is compared to the currdpt
and the pointeq; will be updated to the next element Bfafterq; if the translation is
smaller (the ste; < next(q;i) in the algorithm below). If it is equal, we have found
a match forp;, and we continue with updatirg. ;. It follows from Lemmd1, that no
backtracking of the pointers is needed.

The resulting procedure is given below in Higy. 5.



336 Esko Ukkonen, Kjell Lemstrém, and Veli Mékinen

1) fori<—1,....mdog « —

(2) Omyr—
(3) for j«—1,....n—mdo

@  fet-p
(5) i1

(6) do

(7) i —i+1

(8) ai < max(g;,tj)

9) whileq; < p;+ f do g < next(q;)

(10) until g > p+ f
(11) if i = m-+1 then out put(f)
(12) end for.

Figure5. Algorithm 1.

Note that the main loop (line 3) of the algorithm can be stopped whem — m,

i.e., whenp; is matched agains{_,,. Matchingp; beyond,_n would not lead to a full
occurrence oP because then all points & should match beyong_n,, but there are
not enough points left.

That Algorithm 1 correctly finds alf such thatP + f C T is easily proved by
induction. The running time i©(mn), which immediately follows from that eadl
traverses througi (possibly with jumps!). Also note that this bound is achieved only
in the rare case th&hasO(n) full occurrencesifT. More plausible is that for random
P andT, most of the potential occurrences chedlby the algorithm are almost empty.
This means that the loop 6-10 is executed only a small number of times at each check
point, independently ofn. Then the expected running time under reasonable proba-
bilistic models would beéD(n). In this respect Algorithm 1 behaves analogously to the
brute-force string matching algorithm.

Itis also easy to use additional constraints in Algorithm 1. For example, one might
want that the lengths of the line segments must also match. This can be tested separately
once a full match of the starting points has been found. Another natural requirement can
be, in particular if andT represent music, that there should be no extra points in the
time window covered by an occurrence®fin T. If P+ f is an occurrence, then this
time window contains all members a@f whosex-coordinate belongs to the interval
[(p1+ f)x, (Pm—+ f)x]. When an occurrendé+ f has been found in Algorithm 1, the
corresponding time window is easy to check for extra points. Let natpelyp; + f
andtj; = pm+ f. Then the window contains just the pointsiofhat matctP + f if and
onlyif j’—j =m—1andt;j_; andtj, do not belong to the window.

4 Largest Common Subset

Our next problem is to find translatiorfssuch that(P+ f) N T is nonempty. Such a
P+ f is called apartial occurrence of Pin T. In particular, we want to find such that
(P+ f)NT is largest possible.



Sweepline the Music! 337

There ar€d(mn) translationd such thal(l3+ f) NT is nonempty, namely the trans-
lationst; — p; for 1 < j <n, 1<i <n. Checking the size of° + f) N T for each of them
solves the problem. A brute-force algorithm would typically need @aePnlogn) for
this. We will give a simple algorithm that will do this durimysimultaneous scans over
T in time O(mnlogm).

Lemma2 Thesizeof (P+ f)NT equalsthe number of disjoint pairs (j,i) (i.e., pairs
sharing no elements) such that f =t; — p;.

Proof. Immediate. m]

By Lemmal2, to find the size of any non-empfy+ f) NT it suffices to count
the multiplicities of the translation vectofg = tj — p;. This can be done fast by first
sorting them and then counting. However, we can avoid full sorting by observing that
translationsfy;, foi, ..., fni are in the lexicographic order for any fixedThis sorted
sequence of translations can be generated in a traversalTo\By m simultaneous
traversals we get these sorted sequences foril £ m. Merging them on-the-fly into
the sorted order, and counting the multiplicities solves our problem.

The detailed implementation is very standard. As in Algorithm 1, weilg, . . .,
Om refer to the entries dF . Initially each ofq; refers tat;, and it is also convenient to set
th+1 < . The translations; = g — p; are kept in a priority queue. Operatiormin(F)
gives the lexicographically smallest of translatidnsl < i < m. Operatiorupdate(F)
deletes the minimum element frdm let it be f, = g, — pn, updatesy, < next(qn), and
finally inserts the newi, = g, — pn into F.

Then the body of the pattern matching algorithm is as given below.

(1) f« —o0;c—0;
do
2 f’ < min(F); update(F)
3) if f/=fthenc—c+1
(4) else{output(f,c); f — f’; c— 1}
(5) until f =

The algorithm reports allf, c) such thai (P+ f) N T| = c wherec > 0.

The running time of the algorithm ®(mnlogm). The m-fold traversal ofT takes
mn steps, and the operations on theslement priority queu€ take timeO(logm) at
each step of the traversal.

The above method finds all partial occurrencesdhdependently of their size.
Concentrating on large partial occurrences gives possibilities for faster practical algo-
rithms based ofiltration. We now sketch such a method. L{e§t5+ f) OT| =cand
k=m-c. ThenP+ f is called an occurrence withmismatches.

We want to find allP+ f that have at most mismatches for some fixed valle
Then we partitiorP into k+ 1 disjoint subset®,, ...,Py,1 of (about) equal size. The
following simple fact which has been observed earlier in different variants in string
matching literature will give our filter.



338 Esko Ukkonen, Kjell Lemstrém, and Veli Mékinen

Lemma 3 If P+ f isan occurrence of P with at most k mismatches then Py, + f must
be an occurrence of Py, with no mismatches at least for oneh, 1 <h < k+1,

Proof. By contradiction: If everyP, + f has at least 1 mismatch thBa- f must have at
leastk+ 1 mismatches aB+ f is a union of disjoint line segment pattefg+ f. O

This gives the following filtration procedure: First (the filtration phase) find by Al-
gorithm 1 of Sectiofi]3 all (exact) occurrendgs+ f of eachP,. Then (the checking
phase) find for each produced by the first phase, in the ascending order of the transla-
tions f, how many mismatches eaht- f has.

The filtration phase takes tin@&mn), sorting the translations tak€gr logk) where
r < (k+ 1)nis the number of translations the filter finds, and checking using an algo-
rithm similar to the algorithm given previously in this section (but now priority queue
is not needed) takes tim@(m(n+r)). It should again be obvious, that the expected
performance can be much better whendwisrrelatively small as comparediba Then
the filtration would take expected tin@(kn). This would dominate the total running
time for smallr if the checking is implemented carefully.

5 Longest Common Time

Let us denote the line segmentsoéist = [pi, pi] for 1 <i <m, and the line segments
of T astj = [tj,tj] for L <i<n.

Our problem in this section is to find a translatibisuch that the line segments of
P+ f intersectsT as much as possible. For any horizontal line segmieratsd M, let
c(L,M) denote the length of their intersection line segnientM. Then let

C(f) = ZC(TH— f,75).
]

Our problem is to maximize this function. The valueGiff ) is nonzero only if the
vertical componenty of f = (fy, fy) brings somer to the same vertical position as
sometj, that is, only iffy = (tj)y — (pi)y for somei, j.

LetH be the set of different valugs; )y — (pi)y for 1 <i <m, 1< j <n. Note that
H here is a standard set, not a multiset; the sizd &f O(mn).

As C(f) gets maximum whetiy, € H we obtain that

mfaxC(f) = maxmaxC((fx, fy)). 1)

fyeH fx

We will now explicitly construct the functio€((fx, fy)) = Cs,(fx) for all fixed
fy € H. To this end, assume th&f = (tj)y — (pi)y and consider the value ofj(fx) =
(1 + (fx, fy),Tj). This is the contribution of the intersection of + (fy, fy) andt;
to the value o€y, (fx). The following elementargnalysis characterizes (fx). When
fyx is small enoughgi;(fx) equals 0. Wherf, grows, at some point the end point of
T, + (fy, fy) meets the starting point af and thencij(fyx) starts to grow linearly with
slope 1 until the starting points and the end points;ef ( fy, fy) andt; meet, whichever
comes first. After that;j(fx) has a constant value (minimum of the lengths of the two



Sweepline the Music! 339

line segments) until the starting points or the end points (i.e., the remaining pair of the
two alternatives) meet, from which point og; (fx) decreases linearly with slopel

until it becomes zero at the point where the starting point;diits the end point of

Tj. An easy exercise shows that the only turning points;gffy) are the four points
described above and their values are

fx = (tj)x — (P)x slope 1 starts
fx =min <(t1)X — (pi)x, (t] slope O starts

fx= max((tj) = (Pi)x (t))x— (pi’)x) slope—1 starts
fx = (t))x — (Pi)x slope O starts.

—~
=
X
~—~
0,
=
X
N——

Hence the slope changes by at the first and the last turning point, while it changes
by —1 at the second and the third turning point.

Now, Cs, (fx) = ¥ j Gij(fx), henceCy, is a sum of piecewise linear continuous func-
tions and therefore it gets its maximum value at some turning point ofijise Let
01 < g2 <--- < gk be the turning points in increasing order, each point listed according
to its multiplicity; note that different functions; may have the same turning point. So,
for eachi, j, the four values

(t)x— (P)x (type 1)
(tj)x— (Pi)x (type 2)
(tj)x — (PDx (type 3)
(t)x — (pi)x (type 4)

are in the lists of th@:s, and each knows its “type” shown above.

To evaluateCs, (fx) at its all turning points we scan the turning poigisand keep
track of the changes of the slope of the funct@p Then it is easy to evalua@, ( fx)
at the next turning point from its value at the previous one &t the previous value
and lets represent the slope. The evaluation is given below.

(1) v—0;s<0
(2) fork<1,...,Kdo

(©) if Ok # k-1 then v v+ s(gk — Ok-1)
(4) if gk is of type 1 or type 4hen s—s+1
(5) eses«—s—1.

This should be repeated for all differefijt € H. We next describe a method that
generates the turning points in increasing order simultaneously for all diffgrehite
method will traverseél' using four pointers (the four “types”) per an elementrofA
priority queue is again used for sorting the translations given by theainters; the
x-coordinates of the translations then gilie turning points inscending order. At each
turning point we update the countessands, whereh is given by they-coordinate of
the translation.

We need two traversal orders ®f The first is the one we have used so far, the
lexicographic order of the starting poirtjs This order is given a$. The second order



340 Esko Ukkonen, Kjell Lemstrém, and Veli Mékinen

is the lexicographic order of the end poim}s LetT be the end points in the sorted
order.

Let g, ¢?, o, andg’ be the pointers of the four types, associated with elerment
of P. Pointersy! andg? traverseT, and pointers® andg* traverseT . The translation
associated with the current value of each pointer is given as

tr(gy) = — P
tr(qf) = of — p
tr(of) = o’ — pf
tr(q) = o — pi.

So, when the pointers refer tp or tj, the x-coordinate of these translations give the
turning points, of types 1, 2, 3, and 4, associated with the intersection arid ;.
They-coordinate gives the vertical translati@g)y — (p;)y that is needed to classify the
turning points correctly.

During the traversal, alld translationgr given by the 4n pointers are kept in a
priority queue. By repeatedly extracting the minimum from the queue (and updating the
pointer that gives this minimuitr) we get the translations in ascending lexicographic
order, and hence thecoordinate of the translations gives all turning points in ascending
order.

Let f = (fy, fy) be the next translation obtained in this way. Then we retrieve the
slope countesy, and the value countef,. Assuming that we have also stored the last
turning pointzs, at whichvy, was updated, we can now perform the following updates.
If fx # zs,, then letvy, « vy, +Sfy(fx — ny) andzs, < fx. Moreover, iff is of types 1
or 4, then lesy, < st, + 1 otherwisesy, < sf, — 1.

In this way we obtain the valuesg, for each functiorCy and each € H, at each
turning point. By [1), the maximum value 6fmust be among them.

The described procedure nee@nlogn) time for sortingT into T and T,
O(mnlogm) time for generating th®(mn) turning points in increasing order. At each
turning point we have to retrieve the corresponding slope and value counters using the
vertical translatiom € H as the search key. Hence we need in general@(heg |H|) =
O(log(mn)). This gives a total time requireme@tmnlog(mn)) and space requirement
O(mn).

WhenP andT represent music, the size Hfis limited independently ofn andn.
Certainly|H| is less than 300 and often much dkea We can use bucketing to manage
the slope and value counters. The resource bounds be@dmegn + mnlogm) for
time and, more importantlfp(m+ n) for space.

6 Conclusion

We presented efficient algorithms for three pattern matching problems. Their motiva-
tion comes from music but as computational problems they have a clear geometric
nature. Also our algorithms are geometric, based on simple sweepline techniques. The
algorithms adapt themselves easily to difier variations of the problems such as to
weighted matching or to patterns that consist of rectangles instead of line segments.



Sweepline the Music! 341

Experimentation with the algorithms on real music data would be interesting, to
see whether these techniques can compete in accuracy, flexibility and speed with the
dynamic programming based methods.

References

1. H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and approxima-
tion. In J.-R. Sack and J. Urrutia, editoksandbook of Computational Geometry, pages 121
— 153. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.

2. H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity and symmetries of
geometric objectsDiscrete Comput. Geom., 3:237—-256, 1988.

3. M.D. Atkinson. An optimal algorithm for geometric congruengeAlgorithms, 8:159—- 172,
1997.

4. J.L.Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersec-
tions. |EEE Transactions on Computers, C-28:643-647, September 1979.

5. L.P. Chew and K. Kedem. Improvements on geometric pattern matching problef- In
ceedings of the Scandinavian Workshop Algomthm Theory (SWAT), pages 318—-325, 1992.

6. M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz. Proms: A web-based tool for search-
ing in polyphonic music. IfProceedings of the International Symposium on Music Informa-
tion Retrieval (ISVIIR’ 2000), 2000.

7. R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard matching. In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages 592-601. ACM
Press, 2002.

8. M.J. Dovey. A technique for “regular expression” style searching in polyphonic muske In
2nd Annual International Symposium on Music Information Retrieval (ISMIR 2001), pages
179-185, 2001.

9. A. Efrat and A. Itai. Improvements on bottleneck matching and related problems using
geometry. InProceedings of the twelfth annual symposium on Computational geometry,
pages 301-310. ACM Press, 1996.

10. A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith. Query by humming - musical infor-
mation retrieval in an audio database. AGM Multimedia 95 Proceedings, pages 231—
236, 1995. Electronic Proceieds: http://www.cs.cornellau/Info/Faculty/lsmith/query-
by-humming.

11. J. Holub, C.S. lliopoulos, and L. Mouchard. Distributed string matching using finite au-
tomata.Journal of Automata, Languages and Combinatorics, 6(2):191-204, 2001.

12. D. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an image.
Intern. J. Computer Vision, 5:195-212, 1990.

13. K. Lemstrom. Sring Matching Techniques for Music Retrieval. PhD thesis, University of
Helsinki, Department of Computer Science, 2000. Report A-2000-4.

14. K. Lemstrém and S. Perttu. SEMEX - an efficient music retrieval prototyperdeeedings
of the International Symposium on Music Information Retrieval (ISMIR 2000), 2000.

15. K. Lemstrom and J. Tarhio. Detecting monophonic patterns within polyphonic sources. In
Content-Based Multimedia | nfor mation Access Conference Proceedings (RIAO’ 2000), pages
1261-1279, 2000.

16. K. Lemstréom and E. Ukkonen. Including interval encoding into edit distance based mu-
sic comparison and retrieval. FProceedings of the AISB’2000 Symposium on Creative &
Cultural Aspects and Applications of Al & Cognitive Science, pages 53-60, 2000.

17. V. Mé&kinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant string
matching. Technical Report TR/DCC-2002-5, Department of Computer Science, University
of Chile, 2002.



342 Esko Ukkonen, Kjell Lemstrém, and Veli Mékinen

18. R.J. McNab, L.A. Smith, D. Bainbridge, and I.H. Witten. The New Zealand digital library
MELody inDEX. D-Lib Magazine, 1997. http://www.nzdl.org/musiclib.

19. D. Meredith, G.A. Wiggins, and K. Lemstrém. Pattern induction and matching in polyphonic
music and other multi-dimensional data. the 5th World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI’ 2001), volume X, pages 61-66, 2001.

20. M. Mongeau and D. Sankoff. Comparison of musical sequenCesiputers and the Hu-
manities, 24:161-175, 1990.

21. G.A. Wiggins, K. Lemstrém, and D. Meredith. SIA(M) — a family of efficient algorithms
for translation invariant pattern matching in multidimensional datasets. Manuscript (submit-

ted), September 2002.



	Introduction
	Line Segment Patterns
	Exact Matching
	Largest Common Subset
	Longest Common Time
	Conclusion

