
Approximate String-Mathing over SuÆx Trees ?Esko UkkonenDepartment of Computer Siene, University of HelsinkiP. O. Box 26, SF{00014 University of Helsinki, Finlandemail: ukkonen�s.Helsinki.FIAbstrat. The lassial approximate string{mathing problem of �nding the lo-ations of approximate ourrenes P 0 of pattern string P in text string T suhthat the edit distane between P and P 0 is � k is onsidered. We onentrate onthe speial ase in whih T is available for preproessing before the searhes withvarying P and k. It is shown how the searhes an be done fast using the suÆxtree of T augmented with the suÆx links as the preproessed form of T and apply-ing dynami programming over the tree. Three variations of the searh algorithmare developed with running times O(mq + n), O(mq log q + size of the output), andO(m2q + size of the output). Here n = jT j, m = jP j, and q varies depending on theproblem instane between 0 and n. In the ase of the unit ost edit distane it isshown that q = O(min(n;mk+1j�jk)) where � is the alphabet.1 IntrodutionThe approximate string{mathing problem is to �nd the approximate ourrenes ofa pattern in a text. We will onsider the problem in the following form: Given textT = t1t2 � � � tn and pattern P = p1p2 � � � pm in alphabet �, and a number k � 0, �ndthe end loations j of all substrings P 0 of T suh that the edit distane between Pand P 0 is � k.The edit distane between P and P 0 is the minimum possible total ost of asequene of editing steps that onvert P to P 0. Eah editing step applies a rewritingrule of the forms a ! � (deletion), � ! b (insertion), or a ! b (hange) wherea; b 2 �, a 6= b.The problem has the following four subases:1. k = 0, no preproessing of T (exat on{line string{mathing).2. k = 0, with preproessing of T (exat o�-line string{mathing).3. k > 0, no preproessing of T (approximate on{line string-mathing).4. k > 0, with preproessing of T (approximate o�{line string{mathing).Case 1 leads to the well{known Boyer{Moore and Knuth{Morris{Pratt algo-rithms. Case 2 has optimal solutions based on suÆx trees [16, 25℄ or on suÆx au-tomata ('DAWG`) [3, 6, 7℄. Case 3 has reently reeived lot of attention [8, 9, 26℄. Thesimplest solution is by dynami programming in time O(mn) where m = jP j andn = jT j. For the k{di�erenes problem (eah edit operation has ost 1) fast speialmethods are possible, inluding O(kn) time algorithms, see e.g. [14, 10, 23, 19, 5, 21℄.? This work was supported by the Aademy of Finland and by the Alexander von HumboldtFoundation (Germany).



This paper deals with Case 4, whih also ould be alled the problem of approxi-mate string searhes over indexed �les. The problem is to �nd a suitable preproess-ing for T and an assoiated searh algorithm that �nds the approximate ourrenesof P using the preproessed T for varying P and k. We show how this an be solvedfast using the suÆx tree (for simpliity, the algorithms will be formulated for thesuÆx{trie) of T augmented with the suÆx links, and applying dynami program-ming over the tree. Reall that a suÆx tree for T is, basially, a trie representing allthe suÆxes of T . It an be onstruted in time O(n). Therefore the preproessingphase of our algorithms will be linear.Perhaps the most natural way of applying dynami programming over a suÆxtree is to make a depth{�rst traversal that �nds all substrings P 0 of T at a distane� k from P . (Note that this is not exatly our problem; we want only the end pointsof suh strings P 0.) The searh is easy to organize beause all possible substrings ofT an be found along some path starting from the root of the tree. Eah path isfollowed until the edit distane between the orresponding substring and all pre�xesof P beomes > k. The baktraking point an be found using the olumn of editdistanes that is evaluated at eah node visited during the traversal. This type ofmethod is desribed and analyzed by Baeza{Yates & Gonnet [2℄ (see also Remark2 of [13℄). The method is further applied in [2, 11℄ for �nding signi�ant alignmentsbetween all pairs of substrings of T .In the worst ase, the above method evaluates �(mn) olumns of edit distaneswhih is more than the n olumns evaluated by the simple on{line algorithm withno preproessing of T . In this paper we show how to apply dynami programmingover the suÆx tree suh that in the worst ase the number of evaluated olumnsstays � n and an in a good ase be muh smaller.To explain the idea, let T = aaaaaaaabbbbbbbb, P = abbb, and k = 1. In thisase there is lot of repetition in the on{line dynami programming algorithm. Itevaluates a table whih has a olumn of m + 1 entries for eah symbol tj of T . Weall an entry essential if its value is � k. The ourrenes of P an be found usingonly the essential entries: if the last entry of a olumn is essential then there is anapproximate ourrene whose edit distane from P is � k ending at that olumn.A olumn and its essential part in partiular an depend only on a substring of T oflength O(m). We all this substring a viable k{approximate pre�x of P in T . If twoolumns have same viable pre�x then their essential part must be idential. In ourexample, the eight olumns orresponding to the eight a's at the beginning of T willhave the same viable pre�x and hene the same essential part of the olumn.To avoid evaluating a olumn whose viable pre�x has ourred earlier we storeolumns into the suÆx tree. A olumn with viable pre�x Q is stored with the statethat an be reahed along the Q{path from the root. The searh algorithm performsa traversal over the tree that spells out string T . The traversal an follow both thenormal trie transitions and the suÆx transitions. During the traversal, new olumnsare evaluated for eah tj exept if we an onlude that the viable pre�x at tj will bethe same as some older pre�x. In this ase the evaluation an be skipped; we havealready stored a olumn with the same essential part.The number of olumns evaluated by the method is � n and proportional to qwhere q is the total number of di�erent viable pre�xes in T . For small k, q an beonsiderably smaller than n.



We elaborate the above idea into three algorithms of di�erent degree of sophis-tiation. The introdutory Algorithm A (Setion 4) runs in time O(mq + n) andalways needs time 
(n). This undesirable dependeny on n is eliminated by us-ing more ompliated data strutures in Algorithm B (Setion 5) whih has run-ning time O(mq log q) + size of the output). Algorithm C (Setion 6) is �nally aneasy{to{implement simpli�ation of Algorithms A and B. It an evaluate more thann olumns and has running time O(m2q + size of the output). We also show thatq � min(n; 125 (m+ 1)k+1(j�j+ 1)k) = O(min(n;mk+1j�jk)).The exponential growth of q as a funtion of k suggests that while our methodsan be very fast for small k, their running time rapidly approahes the time of theon{line algorithm when k grows. In an interesting paper [17℄ (see also [1℄), Myerspoints out that this inherent diÆulty in our problem an be relieved by dividingP into smaller subpatterns and performing the searh with a redued error level foreah subpattern. This �lters out the interesting regions of T where one then attemptsto expand the approximate ourrenes of the subpatterns into k{approximate o-urrenes of the whole P . A simpler 'q{gram' method along similar lines is desribedin [13℄.2 The approximate string mathing problemAn edit operation is given by any rewriting rule of the form a! � (a deletion), �! a(an insertion), or a! b (a hange), where a, b are any symbols in alphabet �, a 6= b,and � is the empty string. Eah operation x! y has a ost (x! y) > 0.Operation a ! a is alled the identity operation for all a 2 �. It has ost(a! a) = 0.Let A = a1a2 � � �am and B = b1b2 � � � bn be strings over �. A trae from A toB is any sequene � = (x1 ! y1; x2 ! y2; : : : ; xh ! yh) of edit operations andidentity operations suh that A = x1x2 � � �xh and B = y1y2 � � � yh. The ost of atrae � is (�) = Phi=1 (xi ! yi). The edit distane E(A;B) between A and B isthe minimum possible ost of a trae from A to B [24℄. The unit ost edit distanewhih means that eah edit operation has ost = 1 is denoted as E1(A;B).The intuition behind this de�nition is that E(A;B) will be the minimum possibletotal ost of a sequene of editing steps that onvertA intoB suh that eah symbol isrewritten at most one. Distane E(A;B) an be evaluated in time O(mn) by a verysimple form of dynami programming [24℄. The method evaluates an (m+1)�(n+1)table e suh that e(i; j) = E(a1 � � � ai; b1 � � � bj). Hene E(A;B) = e(m;n).If E(A;B) � k we say that B is a k{approximation of A.De�nition. Let P = p1p2 � � � pm be a pattern string and T = t1t2 � � � tn a text stringover �, and let k be a number � 0. The approximate string mathing problem withthreshold k is to �nd all j suh that the edit distane E(P; P 0) between P and somesubstring P 0 = tj0 � � � tj of T ending at tj is � k. Then P has a k{approximateourrene P 0 at position j of T .The approximate string mathing problem an be solved on{line, without pre-proessing of T , with a very slightly modi�ed form of the dynami programming forthe the edit distane [18℄: Let D(i; j) be the minimum edit distane between the



pre�x Pi = p1 � � � pi of P and the substrings of T ending at tj . The (m+1)� (n+1)table D(i; j), 0 � i � m, 0 � j � n, of suh values an be evaluated fromD(0; j) = 0; 0 � j � n; (1)D(i; j) = min8<:D(i� 1; j) + (pi ! �)D(i� 1; j � 1) + (if pi = tj then 0 else (pi ! tj))D(i; j � 1) + (�! tj) (2)for 1 � i � m, 0 � j � n. It should be emphasized that all entries D(0; j) on row0 of this table have value 0 while in the orresponding table for the edit distanebetween P and T only the (0; 0){entry gets value 0.The solution to the problem an be read from the last row of table D: there is ak{approximate ourrene of P in T at position j if and only if D(m; j) � k.In the sequel, an important tehnial tool will be the length L(i; j) of the shortestsubstring of T ending at tj whose edit distane from Pi equals D(i; j). Value L(i; j)obviously satis�esL(0; j) = 0; 0 � j � n; (3)L(i; j) = if D(i; j) = D(i� 1; j) + (pi ! �) then L(i� 1; j) (4)elsif D(i; j) = D(i� 1; j � 1) + (if pi = tj then 0 else (pi ! tj))then L(i� 1; j � 1) + 1else L(i; j � 1) + 1for 1 � i � m, 0 � j � n.TablesD and L an be onveniently evaluated, olumn{by{olumn, in an on{line,left{to{right san over T . ColumnsD(�; j) and L(�; j) an be produed fromD(�; j�1), L(�; j � 1), and symbol tj of T . The evaluation an be organized as funtion dp,given below, whih will return (D(�; j); L(�; j)) as dp(D(�; j � 1); L(�; j � 1); tj):funtion dp(d0(0 : : :m); l0(0 : : :m); t):d(0) l(0) 0;for j  1 to m dod(i) d(i� 1) + (pi ! �)l(i) l(i� 1)if d0(i� 1) + (if pi = tj then 0 else (pi ! tj)) < d(i) thend(i) d0(i� 1) + (if pi = tj then 0 else (pi  tj))l(i) l0(i� 1) + 1;if d0(i) + (�! tj) < d(i) thend(i) d0(i) + (�! tj)l(i) l0(i) + 1return(d; l).This takes time O(m) and the evaluation of D and L therefore takes total timeof O(mn). Other on{line algorithms running in O(kn) expeted time [20, 4℄ (thesemethods an easily be inorporated into proedure dp) or in O(kn) worst{ase time(for the unit ost edit distane) [10, 23℄ are also known.In the next setions we develop algorithms that are o�-line with respet to T . Weassume that T has been preproessed into a suÆx tree and study how the evaluationof D an be organized in a more eÆient way.



3 k{approximate pre�xes of PThe on{line solution to our problem in Setion 2 has the drawbak that dynamiprogramming is expliitly repeated over idential repeated substrings of T . This mayreate unneessary work beause the ontent of eah olumn D(�; j) of D dependsonly on a relatively short substring of T . If suh a substring ours again in T , thedynami programming would give a olumn that is equal to an old olumn. Our newalgorithms avoid the repetition of suh idential alulations.To make this preise we �rst de�ne the essential entries of D. The approximatestring mathing problem an be solved using only entries D(i; j) � k of D. Thereforewe all eah entry D(i; j) � k an essential entry. By (1), (2), an essential entrydepends only on other essential entries in the sense that the inessential entries of Dould be replaed by default value 1 without a�eting the ontent of the essentialpart.Let D(�; i) and D(�; j) be any two olumns of D and let L(�; i) and L(�; j) be theorresponding olumns of L. Then pairs (D(�; i); L(�; i)) and (D(�; j); L(�; j)) arealled equivalent, denoted (D(�; i); L(�; i)) � (D(�; j); L(�; j)), if the essential entriesof D(�; i) and D(�; j) have idential ontents and the orresponding entries of L(�; i)and L(�; j) have idential ontents. In other words, if D(h; i) � k or D(h; j) � k forsome 0 � h � m, then D(h; i) = D(h; j) and L(h; i) = L(h; j).Next we de�ne the substringQj of T that determines the essential part ofD(�; j).Reall here that the Knuth{Morris{Pratt algorithm of exat string mathing has theproperty that it �nds at eah text loation j the longest pre�x p1 � � � pi of patternP that ours at j, i.e., p1 � � � pi = tj�i+1 � � � tj is a 0{approximation of p1 � � � pi thatours at j. The use of Qj an be seen as a generalization of this to the approximatease: Qj will be a k{approximation of p1 � � � pi that ours at j in T .Let Tj = t1 � � � tj be the pre�x of T ending at j, and let �(Tj) = L(i; j) where i isthe largest index suh that D(i; j) is essential. Obviously, Pi = p1 � � � pi is the longestpre�x of P that has a k{approximation at the end of Tj . String tj��(Tj )+1 � � � tj issuh an approximation, in fat, the shortest one.De�nition. String Qj = tj��(Tj )+1 � � � tj is alled the viable k{approximate pre�x ofP at j (viable pre�x at j, for short). If �(Tj) = 0 then Qj = �.String Qj is `viable' in the sense that it an be a pre�x of a k{approximateourrene of the whole P .Viable pre�x Qi determines the essential part of olumn D(�; i):Theorem1. If Qi = Qj then (D(�; i); L(�; i)) � (D(�; j); L(�; j)).Proof. It is helpful to onsider table D as a solution to a shortest path problem inthe edit graph assoiated with our pattern mathing problem.Suh a graph onsists of nodes G(i; j), 0 � i � m, 0 � j � n, and of weighteddireted ars that form a regular grid as follows: There is an ar (G(i� l; j); G(i; j))with weight (pi ! �) for all 1 � i � m, 0 � j � n; an ar G(i � 1; j � 1); G(i; j))with weight 0 if pi = tj and with weight (pi ! tj) otherwise for all 1 � i � m,1 � j � n; and an ar (G(i; j � 1); G(i; j)) with weight (� ! tj) for all 1 � i � m,1 � j � n. Then D(i; j) gives the length of a shortest path in this graph among allpaths that lead from any node G(0; j0) on the row 0 to node G(i; j). Value L(i; j)



indiates the start node of a steepest path: L(i; j) is the smallest value suh that ashortest path to G(i; j) starts from G(0; j � L(i; j)).Let now i and j be as in the theorem and let h be the largest index suh thatD(h; i) � k. Hene jQij = L(h; i). Then for eah r � h, there is a shortest pathto G(r; i) that starts from some node G(0; i � jQij); G(0; i � jQij + 1); : : : ; G(0; i).To evaluate the essential entries of olumn D(�; i) orretly it therefore suÆesto onsider only subgraph Gi of the edit graph spanned by nodes G(r; s), 0 �r � m, i � jQij � s � i. Similarly, to evaluate the essential entries of olumnD(�; j) orretly it suÆes to onsider only subgraph Gj spanned by nodes G(r; s),0 � r � m, j�jQj j � s � j. Graphs Gi and Gj have idential topology and weightsbeause Qi = Qj . Hene their shortest path problems have idential solutions, inpartiular, the essential entries of D(�; i) and D(�; j) have to be idential as well asthe orresponding entries of L(�; i) and L(�; j). 2Example. Let T = aaaaaaaabbbbbbbb, P = abbb, and k = 1. Assume the unit ostmodel of the edit distane (eah edit operation has ost = 1). Then table D isa a a a a a a a b b b b b b b b0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0a 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1b 2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1b 3 2 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1b 4 3 3 3 3 3 3 3 3 2 1 0 1 1 1 1 1and table L is 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 00 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 2 3 2 2 2 2 2 20 1 1 1 1 1 1 1 1 2 3 4 3 3 3 3 3The viable pre�xes are Q1 = a (beause D(2; 1) is the last essential entry of D(�; 1),and L(2; 1) = 1), Q2 = Q3 = : : : = Q8 = a, Q9 = ab, Q10 = abb, Q11 = abbb,Q12 = : : : = Q16 = bbb. There are �ve di�erent viable pre�xes. 2For eah j we let Q0j = Qj�1tj . The following theorem says that viable pre�x Qjan not start properly before Qj�1.Theorem2. Qj is a suÆx of Q0j .Proof. Using the interpretation of D as a solution to the shortest path problem (seethe proof of Theorem 1), one �rst noties that values L(h; j) are non{dereasingwhen h grows: If h < h0 then L(h; j) � L(h0; j). The rest of the proof is a simplease analysis of how L(h; j) where h is the largest index suh that D(h; j) � k andepend on the entries of L(�; j � 1). 24 Dynami programming over suÆx treesWe will evaluate table D using T represented as a suÆx tree. First we reall thealternative forms of suh trees.



SuÆx tree of T . The suÆx tree of T is a data struture representing all the suÆxesT i = ti � � � tn, 1 � i � n+1, of T . We distinguish three versions of suh a struture.The unompated version of a suÆx tree is alled a suÆx trie of T , denotedSTrie(T ). It is the unique deterministi �nite{state automaton that reognizes thesuÆxes T i of T and nothing else, and has tree{shaped transition graph. The transi-tion graph is the trie representing strings T i.Let root denote the initial state and g the transition funtion of STrie(T ). We saythat there is a goto{transition from state r to state s on input a 2 � if s = g(r; a).If there is a goto{transition path from r to s on input symbols whose atenation isstring x we write s = g(r; x).We augment STrie(T ) with the suÆx funtion f , de�ned for eah state s, s 6=root, as follows: As s 6= root, there is a symbol a and a string x in �� suh thatg(root; ax) = s. We set f(s) = r where r is the state suh that g(root; x) = r. Wesay that there is a suÆx transition from s to r. A suÆx transition does not onsumeany input.The size of STrie(T ) is O(jT j2). STrie(T ) is easy to onstrut (see e.g. [23, 22℄)but its quadrati size makes it impratial. Fortunately, STrie(T ) has linear sizerepresentations that an be onstruted in linear time, namely the (ompat) suÆxtree [25, 16, 22℄ and the suÆx automaton (DAWG) [3, 6, 7℄.For simpliity, the suÆx trie STrie(T ) onsisting of funtions g and f will beused in the desription of our algorithms. However, the atual implementation willbe done using the standard linear{size suÆx tree or suÆx automaton for T . Thisdoes not hange the omplexity bounds derived here for STrie(T ).Algorithm A. The algorithm will traverse in STrie(T ) a path of goto and suÆxtransitions that starts from root and spells out in its goto{transitions string T .Combined with this the olumns of D that orrespond to di�erent viable pre�xesQi will be evaluated. Eah suh olumn D(�; i) together with olumn L(�; i) will bestored with state ri = g(root;Qi) as d(ri) D(�; i); l(ri) L(�; i).The traversal goes through states r0; s1; : : : ; r1; s2; : : : ; rn�1; sn; : : : ; rn where r0 =root, ri = g(root;Qi), and si = g(root;Q0i). The transition from ri�1 to si is agoto{transition for ti beause si = g(root;Q0i) = g(root;Qi�1ti) = g(ri�1; ti). Thetransition path from si to ri onsists of zero or more suÆx transitions; suh a pathexists by Theorem 2.Consider the subpath from rj�1 to rj . The goto{transition g(rj�1; tj) = sj istaken �rst. After that there are two ases:Case 1. If sj has already been visited during the traversal, then follow the suÆxtransition path until the �rst state r is enountered suh that d(r) and l(r) havenon{empty values. Then r = rj .Case 2. If sj has not been visited yet, then evaluate a pair (d; l) of olumns as(d; l) dp(d(rj�1); l(rj�1); tj). Then (see Lemma 4 below) (d; l) � (D(�; j); L(�; j)).This equivalene implies that d(h) = D(h; j) and l(h) = L(h; j) = jQj j, where h issuh that d(h) is the last essential entry of d. The algorithm then follows the suÆxlink path from sj to the state r whose depth (distane from root) is jQj j. Then r = rjand the algorithm saves olumns (d; l) as d(r)  d, l(r) l.To make the whole traversal the above is repeated for j = 1; : : : ; n. As an initial-ization we set d(root)  D(�; 0), l(root) L(�; 0). By (2), entry D(h; 0) of D(�; 0)



is given as D(h; 0) =Phi=1 (pi ! �), and by (4), entry L(h; 0) of L(�; 0) is given asL(h; 0) = 0.The algorithm has to output j whenever D(m; j) � k. This is implemented suhthat Algorithm A outputs j whenever d(rj)(m) � k during the traversal.Consider then the orretness of Algorithm A. We need a notation: If x is a suÆxof y, we write yjx, and if, moreover, y is a suÆx of z, we write zjyjx.The ruial point where Algorithm A saves ompared to the on{line algorithmis Case 1. Assume that sj = g(root;Q0j) has been visited earlier. This means thatsj has to belong to the suÆx link path between si and ri for some i < j, that is,Q0ijQ0j jQi. On the other hand we have:Lemma3. If Q0ijQ0j jQi for some i < j, then Qj = Qi.Proof. This is immediate whenD is viewed as a solution to the shortest path problem(see the proof of Theorem 1). 2This implies, noting Theorem 1, that a pair of olumns equivalent to (D(�; j); L(�; j))has already been stored as (d(ri); l(ri)). The dynami programming an be skipped;the algorithm just follows the suÆx transition path from sj to ri = rj . Hene Case1 is orret.It is orret to use in Algorithm A olumns that are only equivalent to the atualolumns of D and L. The essential entries of a new olumn of D are determined bythe essential entries of the previous olumn. Therefore we have the following lemma.Lemma4. If (d0; l0) � (D(�; j�1); L(�; j�1)) and (d; l) = dp(d0; l0; tj), then (d; l) �(D(�; j); L(�; j)).Hene Algorithm A orretly outputs all j suh that D(m; j) � k.Analysis. Let Q = fQi j 1 � i � ng, and let q = jQj be the size of Q, i.e.the number of di�erent viable pre�xes. Moreover, let Q0 = fQ0i j 1 � i � ng andq0 = jQ0j.Algorithm A evaluates � q0 pairs of olumns of D and L, and stores q of them.As the evaluation of eah pair of olumns takes time and spae O(m), and thetime onsumption for the rest is proportional to n (note that the traversal takes ngoto{transitions and at most n suÆx transitions), we obtain:Theorem5. Algorithm A runs in time O(mq0+n) and needs working spae O(mq)for storing the olumns of the tables.Next we analyze the growth of q in more detail in the speial ase of the unitost edit distane. Let Uk(P ) = fx 2 ��jE1(P; x) � kg be the set of strings whoseunit ost edit distane from P is � k. The size of Uk(P ) has the following bound;.f. Lemma 3 of [17℄.Theorem6. jUk(P )j � 125 (m+ 1)k(j�j+ 1)k.Proof. The size of Uk(P ) is � the number of di�erent traes (edit sripts) of length� k that an be applied on P . Eah trae onsists of � k atual editing steps andof zero or more identity steps a ! a. The number of traes equals the number of



di�erent possibilities to selet the atual steps. This an be estimated by boundingthe number of di�erent ways of applying exatly k steps that an inlude both atualsteps and identity steps.The k steps are divided into two groups: The steps of the form a ! x wherea 2 �, x 2 � [f�g ( = group A; this ontains the possible identity operations), andthe steps of the form �! a where a 2 � (= group B).In group A, eah step a! x has a unique pi suh that a = pi. Moreover, x anbe seleted in j�j+ 1 di�erent ways. Hene a group A onsisting of t steps an beseleted in � (mt )(j�j+ 1)t di�erent ways.In group B, eah step �! a an be seleted in (m+1)j�j di�erent ways beause� refers to any of the m+1 intervals between the m letters of P , and beause a anbe seleted independently of � in j�j di�erent ways. Eah interval an be seletedarbitrarily many times. Hene a group B onsisting of t steps an be seleted in� (m+ 1)tj�jt di�erent ways.This givesjUk(P )j � kXt=0[(mt )(j�j+ 1)t + (m+ 1)k�tj�jk�t℄= kXt=0[(mt )(j�j+ 1)t + (m+ 1)tj�jtj℄� 2 kXt=0(m+ 1)t(j�j+ 1)t � 125 (m+ 1)k(j�j+ 1)kwhere we have assumed that m � 1 and j�j � 2. 2As q �Pmi=k Uk(p1 � � � pi) � m � jUk(P )j, we have by Theorem 6q � 125 (m+ 1)k+1(j�j+ 1)k = O(mk+1j�jk): (5)As q0 � j�jq, we further obtainq0 � 125 (m+ 1)k+1(j�j+ 1)k+1 = O(mk+1j�jk+1): (6)Noting that q � q0 � n, Theorem 5 with (5) and (6) gives:Theorem7. Algorithm A runs for the k{di�erenes problem in timeO(m �min(n;mk+1j�jk+1)+n) and needs working spae of O(m �min(n;mk+1j�jk)).5 Finding the next viable pre�x fastThe method of this setion an be understood as an advaned implementation ofAlgorithm A. Algorithm A always needs time 
(n) beause it sans symbol bysymbol over the whole text T . In Algorithm B to be developed next this dependenyon n will be eliminated. Columns of D for di�erent viable pre�xes will be foundusing ditionary operations implemented with balaned searh trees. The method is



based on Lemma 3 and its implementation heavily depends on the speial propertiesof STrie(T ).Assume that Algorithm A has performed the dynami programming at ti, hasobtained (d; l) equivalent to (D(�; i); L(�; i)), and has stored them as d(ri)  d,l(ri)  l where ri = g(root;Qi). Algorithm A will next examine the state si+1 =g(ri; ti+1). If si+1 has already been visited, Algorithm A knowns by Lemma 3 thatdynami programming an be skipped beause Qi+1 has to be equal to Qh for someh � i. State ri+1 = g(root;Qh) = g(root;Qi+1) is found by following the suÆx linkpath from si+1. Then Algorithm A will examine si+2 = g(ri+1; ti+2), and so on.Finally an unvisited state sj will be found, and dynami programming is resumed.To �nd sj diretly after si, we �rst observe:� the set of di�erent viable pre�xes an grow at si and again at sj , but it remainsunhanged between them;� the set of the visited states remains unhanged between si and sj ;� the string on the path from root to any state si+1; : : : ; sj is of the form Qhafor some a 2 �, h � i.Hene states si+1; : : : ; sj belong to the setSi = fs j s = g(root;Qha) for some h � i; a 2 �gof states that are at the distane of one goto{transition from some state that an bereahed from root along some viable pre�x Qh.Algorithm B. For any state s of STrie(T ), let Key(s) denote the string suh thatg(root;Key(s)) = s, and for a set S of states, let Keys(S) be the set of stringsKey(s), where s 2 S. We will assoiate with eah state s in Si value lo(s) (to bede�ned preisely below) that gives the smallest index h > i suh that Key(s) `ouldbe' equal to Q0h. During Algorithm B the uneliminated states s in Si will be kept inditionary H . The reords in the ditionary are of the form (s; lo(s)) where lo(s)is used as the searh{key for s. The ditionary has to support insertions, deletions,and minimum extrations. By extrating the minimum element from H we get thestate s with the smallest lo(s). This state s will be sj and j = lo(sj). Then newolumns have to be evaluated by dynami programming from d(r) and l(r), wherer = father(sj), and from symbol a suh that g(r; a) = sj .For a preise de�nition of lo(s) we need the onepts of elimination and overing.To introdue the latter, onsider strings Q0v, i+1 � v � j, in more detail. As alreadymentioned, eah Q0v = Qv�1tv has to be equal to Qha for some Qh, h � i. Henewe have Qv�1 = Qh. Moreover, viable pre�x Qv�1 is the longest among all viablepre�xes of T that are suÆxes of Tv�1 = t1t2 � � � tv�1:Lemma8. If Tv�1jQe then Qv�1jQe.Proof. Use the interpretation of D as a solution to the shortest path problem aspresented in the proof of Theorem 1. 2This implies that eah Q0v, i+1 � v � j, has to be the longest string in Keys(Si)that is a suÆx of Tv. If more than one string in Keys(Si) is a suÆx of Tv, thenthese strings have to be suÆxes of the longest one. With this in mind we make thefollowing de�nition.De�nition. String X overs an ourrene of string Y at v if TvjX jY .



String Key(s) is the longest element of Keys(Si) at v if and only if TvjKey(s)and no other string in Keys(Si) overs Key(s) at v.We still need the onept of elimination. Its purpose is to inorporate Lemma 3into our algorithm.De�nition. StringsQ0h andQh eliminate a state s and stringKey(s) ifQ0hjKey(s)jQh.Note that the states visited by Algorithm A and the eliminated states de�nedhere are same. By Lemma 3, dynami programming need not be performed whenentering an eliminated state.We now de�nelo(s) = �1; if Key(s) is eliminated by some Q0h, Qh where h � i;v; otherwise,where v > i is the �rst ourrene of Key(s) after loation i in T that is not overedby some other string in Keys(Si). Note that lo(s) is de�ned for all states s, notonly for members of Si. The algorithm also maintains these values for all s.The algorithm selets j  mins2Si lo(s) using ditionary H that ontains(s; lo(s)) for states s in Si. The dynami programming is performed next at sjsuh that lo(sj) = j.After this some lo{values have to be hanged and H must be updated suh thatit represents Sj instead of Si. The algorithm follows the suÆx link path from sj torj = g(root;Qj). All states s on this path beome now eliminated if they are noteliminated earlier (this an be the ase for all s 6= sj). Hene lo(s)  1; this isimplemented simply by removing s from H .We have still to add into H new elements orresponding to Sj �Si and to makethe updates on lo{values due to overing. This happens only if rj is a new state notvisited earlier. Then (s; lo(s)) is inserted into H for all uneliminated s suh thats = g(rj ; a) for some symbol a. Moreover, the appropriate hanges to lo(w) haveto be done for all w suh that Key(w) is overed by some Key(s).Here, again, the suÆx transitions an be used. We all a state w primary ifKey(w) = t1 � � � th for some h. (Note that the suÆx transitions onstitute a tree,with primary states as the leaves and root as the root.) The next lemma followsfrom the de�nition of lo and gives a method for updating; reall that f denotes thesuÆx funtion.Lemma9. If w is an eliminated state then lo(w) = 1; if w is primary but noteliminated then lo(w) = depth(w); otherwiselo(w) = min lo(w0) (7)where the minimum is over all w0 suh that f(w0) = w and w0 is not in Si.This means, eah lo(w) that needs updating an be found by traversing thesuÆx link path from eah new state s 2 Sj � Si. At eah uneliminates state w,w 6= s, on suh path the updated lo(w) is evaluated from (7). As there are at mostj�j di�erent w0 suh that f(w0) = w, the minimization in (7) an be done in timeO(log j�j). If (w; lo(w)) is in H , the update is performed in H , too.



In summary, Algorithm B starts by inserting (root; lo(root) = 0) into an initiallyempty ditionary H . Then (sj ; j)  extrat-min(H) is performed, H and the lo{values are updated, and this is repeated until H beomes empty. Whenever a olumnd(r) is stored suh that d(r)(m) � k, state r is marked for output. The �nal outputphase lists all ourrenes of Key(r) in T , for all states r marked for output. Theseourrenes an be found from STrie(T ) by standard methods.The preproessing phase reates STrie(T ) and initializes values lo(s) using themethod of Lemma 9 with Si = ;.Theorem10. Algorithm B runs in time O(mq log q+ size of the output) and needsworking spae of O(mq) for ditionary H and the olumns of dynami programmingtables.Proof. Algorithm B evaluates q0 olumns of D and L. Ditionary H is implementedas a balaned searh tree whih takes O(log jH j) time per ditionary operation.The algorithm performs the following q0 times: seletion of next sj from H in timeO(log jH j); evaluation of new olumns in time O(m); traversal from sj to rj , removalof the eliminated states from H in time O(m log jH j); insertion of states s = g(rj ; a)into H in time O(j�j log jH j). Moreover, for eah new state s inserted into H duringthe algorithm, lo(w) has to be updated for states w on the suÆx link path froms to root and the orresponding hanges have to be done in H . The length of eahsuh path is O(m), hene the updates take total time of O(jH jm(log j�j+ log jH j)).This gives total time bound O(q0(log jH j+m+m log jH j)+jH jm(log j�j+log jH j))whih is O(mq log q) beause q0 � j�jq, jH j � j�jq, and j�j is assumed onstant.The output time an be made linear in the size of the output if some are isdevoted to the elimination of dupliated output.The spae requirement is O(mq) for the olumns and O(j�jq) for H , heneO(mq). 2Theorem 10 together with upper bound (6) of q shows that for small k and largen Algorithm B an be faster than Algorithm A.6 Simple algorithmDitionaryH and the other mehanisms of Algorithm B for maintaining values lo(s)reate relatively large overhead. We desribe next Algorithm C, a simpli�ed versionof Algorithm B that uses only elimination of states but does not use lo{values.Algorithm C is easy to implement and has low overhead.Algorithm C makes a depth{�rst{searh over the uneliminated states. All stateswith a saved pair (d; l) of olumns are now kept in a stak. When there is a transitiong(r; a) = s from the top state r of the stak to an uneliminated state s, new olumnsare evaluated as (d; l)  dp(d(r); l(r); a). Columns (d; l) and state r0 are saved inthe stak; state r0 is the state on the suÆx link path from s suh that its distanefrom root, depth(r0), equals the length of the viable pre�x assoiated with (d; l).The resulting algorithm is given below. Funtion viable{pre�x{length(d; l) givesthe length of the viable pre�x represented by olumns (d; l), i.e., the value of l(h)where h is the largest index suh that d(h) � k. Funtion output{mark(r) adds state



r to the list of states that represent the loations of the k{approximate ourrenesof P in T .Algorithm C.1. eliminated(root)  true2. searh(root;D(�; 0); L(�; 0)).3. proedure searh(r; d0(0 : : :m); l0(0 : : :m)):4. for eah state s = g(r; a) for some a 2 � do5. if not(eliminated(s)) then6. (d; l) dp(d0; l0; a)7. length  viable{pre�x{length(d; l)8. if depth(s) > length do9. eliminated(s)  true; s f(s)10. until depth(s) = length or eliminated(s)11. if depth(s) = length and not(eliminated(s)) then12. if d(m) � k then output{mark(s)13. eliminated(s) true14. w  s15. while f(w) 6= root andeliminated(f(w0)) = true for all w0 suh that f(w0) = f(w) do16. w  f(w); eliminated(w)  true17. searh(s; d; l).In Algorithm C the seletion order of the next state s is not based on lo(s).Therefore Algorithm C an selet a state s that would have never been seleted byAlgorithm B; the optimal seletion order implemented in Algorithm B an resultinto total overing of s and therefore into an elimination of s before it would omeseleted.Fortunately, it is not a fatal error to selet suh an s. It only means that thealgorithm �rst �nds a too short viable pre�x for some loations of T but will �ndthe orret, long{enough pre�x later. All di�erent essential parts of olumns of Dwill ultimately be evaluated.Eah viable pre�x is of length O(m). Before �nding the orret pre�x AlgorithmC may �nd one or more of its proper suÆxes. Therefore the total number of ex-tra olumns evaluated is O(mq). In any ase, the algorithm evaluates the same q0olumns as Algorithm B. Thus the total number of olumns is O(mq+ q0) = O(mq)and we have the following theorem.Theorem11. Algorithm C runs in time O(m2q + size of the output) and needsworking spae of O(m2q).7 Conluding remarksSeveral relevant questions onerning the new algorithms remained unanswered.Most notably, these inlude theoretial analysis of the expeted running times andexperimental omparison of these and related algorithms from [2, 13, 17℄.For modestly long T it is feasible to implement our algorithms using the (om-pat) suÆx tree of T . Adapting the methods for suÆx automata seems simple, too.



However, for very long texts it is better to use the more spae eonomial suÆx array[15, 12℄ instead. The details and a pratial �ne{tuning of suh an implementationare a subjet for further study.Referenes1. Altshul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. (1990): A basi loalalignment searh tool. J. of Moleular Biology 215, 403{410.2. Baeza{Yates, R. A. & Gonnet, G. H.: All{against{all sequene mathing (ExtendedAbstrat).3. Blumer,A., Blumer,J., Haussler, D., Ehrenfeuht, A., Chen, M.T. and Seiferas, J.(1985): The smallest automaton reognizing the subwords of a text. Theor. Comp.Si. 40, 31-55.4. Chang, W. & Lampe, J. (1992): Theoretial and empirial omparisons of approxi-mate string mathing algorithms. Pro. Combinatorial Pattern Mathing 1992, (Tu-son, April 1992), Let. Notes in Computer Siene 644 (Springer{Verlag 1992), pp.175{184.5. Chang, W. & Lawler, E (1990): Approximate string mathing in sublinear expetedtime. Pro. IEEE 1990 Ann. Symp. on Foundations of Computer Siene, pp. 116-124.6. Crohemore, M. (1986): Transduers and repetitions. Theor. Comp. Si. 45, 63-86.7. Crohemore, M. (1988): String mathing with onstraints. Pro. MFCS'88 Symposium.Let. Notes in Computer Siene 324 (Springer{Verlag 1988), pp. 44{58.8. Dowling, G. R. & Hall, P. (1980): Approximate string mathing. ACM Comput. Surv.12, 381{402.9. Galil, Z. & Gianarlo, R. (1988): Data strutures and algorithms for approximate stringmathing. J. Complexity 4, 33{72.10. Galil, Z. & Park, K. (1989): An improved algorithm for approximate string mathing.SIAM J. on Computing 19, 989{999.11. Gonnet, G. H. (1992): A tutorial introdution to Computational Biohemistry usingDarwin. Informatik E. T. H. Zuerih, Switzerland.12. Gonnet,G.H., Baeza-Yates,R.A. & Snider,T. (1991): Lexiographial indies for text:Inverted �les vs. PAT trees. Report OED-91-01, UWCentre for the New Oxford EnglishDitionary and Text Researh, 1991.13. Jokinen, P. & Ukkonen, E. (1991): Two algorithms for approximate string mathingin stati texts. Pro. MFCS'91, Let. Notes in Computer Siene 520 (Springer{Verlag1991), pp. 240-248.14. Landau, G. & Vishkin, U. (1988): Fast string mathing with k di�erenes. J. Comp.Syst. Si. 37, 63-78.15. Manber, U. & Myers, G. (1990): SuÆx arrays: A new method for on{line string searhes.In: SODA-90, pp. 319{327.16. MCreight, E. M. (1976): A spae eonomial suÆx tree onstrution algorithm. J.ACM 23, 262-272.17. Myers, E. W.: A sublinear algorithm for approximate keyword searhing. TR 90{25,Department of Computer Siene, The Univ. of Arizona, Tuson (to appear in Algo-rithmia).18. Sellers, P. H. (1980): The theory and omputation of evolutionary distanes: Patternreognition. J. Algorithms 1, 359{373.19. Tarhio, J. & Ukkonen, E. (1990): Boyer-Moore approah to approximate string math-ing. 2nd Sand. Workshop on Algorithm Theory, Let. Notes in Computer Siene 447(Springer{Verlag 1990), pp. 348-359. Full version is to appear in SIAM J. Comput. 22.



20. Ukkonen, E. (1985): Finding approximate patterns in strings. J. Algorithms 6, 132{137.21. Ukkonen, E. (1992): Approximate string{mathing with q{grams and maximalmathes. Theoretial Computer Siene 92, 191{211.22. Ukkonen, E. (1992): Construting suÆx trees on{line in linear time. In: J. van Leeuwen(ed.), Algorithms, Software, Arhiteture. Information Proessing 92, vol. I, pp. 484{492. Elsevier.23. Ukkonen, E. & Wood, D.: Approximate string mathing with suÆx automata. Algo-rithmia (to appear in 1993).24. Wagner, R. A. & Fisher, M. J. (1974): The string-to-string orretion problem. J.ACM 21, 168-173.25. Weiner, P. (1973): Linear pattern mathing algorithms. Pro. 14th IEEE Symp. Swith-ing and Automata Theory, pp. 1-11.26. Wu, S. & Manber, U. (1992): Fast text searhing allowing errors. Comm. ACM 35,83{91.

This artile was proessed using the LaTEX maro pakage with LLNCS style


