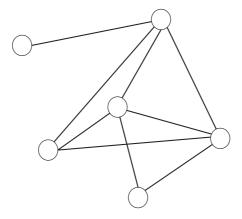
Algorithms for Bioinformatics (autumn 2010)

Exercise 5 (Mon 11.10, 10-12, C222)

1. Interval graphs.

Is the following an interval graph.



2. Shortest common superstring and ATSP.

Solve the shortest common superstring problem on set $S = \{\text{CTTA}, \text{TGAT}, \text{TACT}, \text{GATG}\}$ by reducing the problem to asymmetric traveling salesman problem through the prefix graph and dummy vertex as described at the lecture.

3. Shortest common superstring and minimum weight cycle cover.

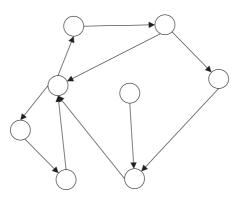
Simulate the 4-approximation algorithm for shortest common superstring problem on the same set S as above. Visualize also the minimum weight perfect matching corresponding to the minimum weight cycle cover. What is the real approximation factor achieved on this instance?

4. Preprocessing for gene rearrangement study.

Consider you have the genome sequences of two species A and B and you would like to study their rearrangement distance. Each gene in A may have several putative homologs with different local alignment score in B, and vice versa. How would you find a one-to-one mapping between all genes in A to genes in B so that the sum of the corresponding local alignment scores is maximized? Here we may assume that A has at most as many genes as B (otherwise their role can be switched). *Hint. Reduce to a graph problem and add some dummy nodes/edges.*

5. Graph editing.

Eulerian path in a graph is a path that visits all edges exactly ones. Insert and delete minimum number of edges to/from the graph below so that it has an Eulerian path.



Research problem: Approximation algorithm for the shortest approximate superstring problem.

Recall the shortest approximate superstring problem: Find the shortest string that contains an occurrence of each given string in **S** within Hamming distance k (see more formal definition in exercise 3). Modify the 4-approximation algorithm to give an approximate solution for the shortest approximate superstring problem. Does the 4-approximation guarantee stay valid? Is the algorithm still polynomial time?

Hint. One way to proceed is to add vertices to the prefix graph that correspond to the Hamming-neighborhood of each $s \in S$ (all string that are within Hamming distance k from s). The challenge is to build a gadget of dummy nodes/edges and adjust edge weights so that minimum weight cycle cover works as you wish and can still be reduced to a polynomially solvable graph problem (like minimum weight perfect matching).