Algorithms for Bioinformatics (Autumn 2011)

Exercise 3 (Thu 29.9, 10-12, BK107, Niko Viliméki)

1. Correctness of improved breakpoint reversal sort.

Prove that the improved breakpoint reversal sort algorithm (page 28 at lecture
slides) works correctly. That is, define concepts increasing strip and decreasing
strip formally and then prove that if permutation 7 contains one or more decreas-
ing strips, then there is always a reversal that decreases the number of breakpoints
b(m) at least by one.

2. Translocations via reversals.

Page 30 at lecture slides gives an example of a translocation simulated by three
reversals. Define formally what translocation operation does for a permutation
mmy - - - T, and prove that any translocation can be replaced by three reversal
operations.

3. Implementing improved breakpoint reversal sort.

Write a Python program that implements improved breakpoint reversal sort and
analyse the running time of your implementation.

4. Shortest approximate superstring.

Let S = 51,53,...,5, C ¥* be a set of strings from alphabet . Given a threshold
parameter k, an approzimate superstring of S is defined as a string 71" such that
for each S; € S it holds dg (S;, T[ji - - ji + |Si| — 1]) < k for some j;, where dg()
denotes the Hamming distance.

A greedy approximation algorithm for finding the shortest approximate superstring
can be derived as follows. Let an approzimate overlap of A = ay,B = '3 € S
be pair of strings (v,7') such that dy(y,7") < k and the length of the overlap
|7] = |7/| is maximum among all ways to to write A and B in parts A = a~y and
B = +/3. Tterate the following until there is only one string in set S: (1) Choose
a7, B =+'8 € S with maximum approximate overlap; (2) remove A and B from
S and insert ayf into S.

Simulate the above greedy algorithm with & = 1 on the set
{ACACGATC , ATGACAAA,TAATAAGA, CAGGATCA}.

Is the solution of your simulation a valid approximate superstring? Does the
algorithm always find a valid approximate superstring? If not, give a modification
so that it does.

5. Dynamic programming.

Dynamic programming or tabulation is a powerful algorithm design paradigm,
providing a way to organize computation so that exponential time exhaustive
search can, in some cases, be replaced by polynomial time computation. Simplest
example was given at the first lecture; recursive fibonacci was replaced by array
(tabulation) version of fibonacci computation. Recall the Change problem from

the same lecture. Show how dynamic programming can be used to solve it much
faster than the exhaustive enumeration approach. Hint. Fill an array of size M
from left to right.

