Algorithms for Bioinformatics (Autumn 2011)

Exercise 5 (Thu 13.10, 10-12, BK107, Veli Mäkinen)

1. Shortest common superstring and ATSP.

Solve the shortest common superstring problem on set $S = \{\text{CTTA}, \text{TGAT}, \text{TACT}, \text{GATG}\}$ by reducing the problem to asymmetric traveling salesman problem through the prefix graph and dummy vertex as described at the lecture.

2. Shortest common superstring and minimum weight cycle cover.

Simulate the 4-approximation algorithm for shortest common superstring problem on the same set S as above. Visualize also the minimum weight perfect matching corresponding to the minimum weight cycle cover. What is the real approximation factor achieved on this instance?

3. Graph editing.

Eulerian path in a graph is a path that visits all edges exactly ones. Insert and delete minimum number of edges to/from the graph below so that it has an Eulerian path.

4. Sequencing by hybridization.

A measurement from a hybridization experiment estimates that the 3-mer spectrum of s would be $Spectrum(s,3) = \{GAG,GAT,TAG,ATA,ATA,AGA,TAC\}$. Construct s by the Eulerian path approach described at the course, taking into account that there might be one k-mer missing from the measured spectrum.

5. Ultrametric condition.

Consider the three-point condition: A symmetric distance matrix $D = \{d_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq n\}$ corresponds to an ultrametric tree if and only if $d_{ij} \leq \max(d_{ik}, d_{kj})$ for all i, j, k. An ultrametric tree for D is an edge-weighted tree (positive weight associated to each edge) such that the sum of weights in the path from leaf i to node v and from leaf j to v are both $\frac{1}{2}d_{ij}$, where v is the lowest common ancestor of i and j. (Notice this is an alternative but semantically identical definition to what was used in the lectures).

- a) Prove that the three-point condition can identically be stated as follows: two of the three values d_{ij} , d_{ik} , and d_{kj} are equal and one is smaller than the others.
- b) Prove that the condition holds.

Research problem: Approximation algorithm for the shortest approximate superstring problem.

Recall the shortest approximate superstring problem: Find the shortest string that contains an occurrence of each given string in **S** within Hamming distance k (see more formal definition in exercise 3). Modify the 4-approximation algorithm to give an approximate solution for the shortest approximate superstring problem. Does the 4-approximation guarantee stay valid? Is the algorithm still polynomial time?

Hint. One way to proceed is to add vertices to the prefix graph that correspond to the Hamming-neighborhood of each $s \in S$ (all string that are within Hamming distance k from s). The challenge is to build a gadget of dummy nodes/edges and adjust edge weights so that minimum weight cycle cover works as you wish and can still be reduced to a polynomially solvable graph problem (like minimum weight perfect matching).