
Algorithms for Bioinformatics (Autumn 2011)

Study group (Wed 12.10, 10-12, B222, Veli Mäkinen)

Choose one of the problems. At study group, we’ll form groups on popular items.

1. Interval graphs.

Find out what is lexicographic breadth-first search (Lex-BFS) and how it is com-
puted. Simulate the Lex-BFS algorithm with some interval graph.

2. Analysis of shortest superstring approximation.

Study proofs of Lemmas 7.2 and 7.3 at page 63, Vazirani, Approximation al-
gorithms (the part of proof for shortest superstring 4-approximation algorithm
skipped at lecture).

3. Eulerian cycle and path.

Find out how the linear time algorithms for finding Eulerian cycle and Eulerian
path work. Note: Proving correctness of the algorithm is a constructive proof for
one direction of Euler theorem. Other direction is straightforward.

4. Preprocessing for gene rearrangement study.

Consider you have the genome sequences of two species A and B and you would
like to study their rearrangement distance. Each gene in A may have several
putative homologs with different local alignment score in B, and vice versa. How
would you find a one-to-one mapping between all genes in A to genes in B so
that the sum of the corresponding local alignment scores is maximized? Here we
may assume that A has at most as many genes as B (otherwise their role can be
switched). Hint. Reduce to a graph problem and add some dummy nodes/edges.

5. Computation around ℓ-mers.

Show that computing the frequency/count of each ℓ-mer in a string s ∈ Σ∗ can be
done in O(|Σ|ℓ + |s|) time by filling a table of size |Σ|ℓ and scanning s once from
left to right. Here |Σ| is the alphabet size (e.g. 4 for DNA).

On large ℓ, O(|Σ|ℓ) may be the dominating term. Is there any way of doing the
same computation in O(|s|) time?

6. Protein sequencing.

Let T be the theoretical mass spectrum of a peptide P = p1p2 · · · pn (short sequence
of amico acids), consisting of the masses of its prefixes and suffixes computed
from its molecular formula. Tandem mass spectrometry (MS/MS) can estimate
the same mass spectrum, but unfortunately, checking whether the measured spec-
trum M is identical to T is not enough to identify the peptide: While breaking
the peptide at each possible bond, some small parts from both fragments of the
molecule may be lost. Also the experimental spectrum may be completely missing
some masses and may be containing some masses from background chemical noise.

For simplicity, let us assume that only the masses of prefixes are included in M and
T , and that the masses can be ordered from smallest to largest corresponding to
the length of the prefix. How would you define a good distance measure between
M and T . How can it be computed? Can you extend your distance measure
definition to include simultaneously prefix and suffix masses? Can you extend the
algorithm for this case?

7. Microarrays and probe selection.

Microarrays were designed for sequencing by hybridization problem, yet, they are
now commonly used for measuring gene expression: A probe (DNA fragment of
length ℓ) is designed for each gene such that the complementary DNA of its mRNA
product hybridizes to the probe. Thousands of copies of the same probe are are
attached to the spot reserved for that gene in the microarray. Expression level of a
gene can be estimated by observing how much cDNA product is hybridized to that
spot. Probe selection problem is to design a probe for each gene such that only
the mRNA product of that gene hybridizes to the probe. Cross-hybridizations
can occur when there is similar sequence in some other gene’s DNA. How would
you solve the probe selection problem given the genome sequence and the genes
of interest?

8. Correctness of UPGMA.

Prove that UPGMA algorithm constructs an ultrametric tree if the distances are
ultrametric.

9. Correctness of Neighbor Joining.

Study the proof at pages 190-191 in Durbin, Eddy, Krogh, and Mitchison. Bi-
ological Sequence Analysis: Probabilistic models of proteins and nucleid acids.
Cambridge University Press 1998. Notice that their notation Dij equals our
dij − u(Ci)− u(Cj).

