
Model Solutions for Study Group 5 (Algorithms for Bioinformatics)

12.10.2011

1. Lex-BFS order: Like you saw in the study group, except without already given labels. During the
breadth-first search, youdefine the labelof a nodev by its already visited neighborhood; details
follow. Usually the algorithm is described backwards. Set all label(v) = ε for all nodesv, where
ε is an empty string. Then pick any nodev numbering iti = n. For all egdes(v,w) do label(w) =
label(w)i (string concatenation in alphabetΣ = {1,2, . . . ,n}). Continue decreasingi from n−1 to 1
so that at each step you pick the nodev with lexicographically largest label, number iti, and apply
label(w) = label(w)i for all edges(v,w) such thatw is not assigned a number in earlier steps.

For an example, consider graph with edges(v,w),(v,e),(w,e),(w, f),(e, f). Pickvnumbering it 4. Set
label(w) = label(e) = 4. Pickw (solving tie arbitrarily) numbering it 3. Setlabel(e) = label(e)3=
43 andlabel(f) = 3. Picke numbering it 2. Setlabel(f) = label(f)2= 32. Pick f numbering it 1.

Notice that with a tree as the input, this algorithm is identical to BFS (breaking ties arbitrarily).

To implement the algorithm to work in linear time, one can forexample, use a trie data structure
to record the growing labels. A node with path labelα in the trie corresponds to a subset of nodes
in the graph whose label is prefixedα. One needs to maintain a pointer from graph nodev to the
corresponding leafv′ of the trie. Then concatenation of the label is constant timeoperation: unless
there already is an edge(v′,v′′) with labeli in the trie, add a new leafv′′ and edge(v′,v′′) with labeli,
and assignv to point tov′′. Notice that if there is such an edge, it was just added, so keeping a linked
list of children is enough to do this step in constant time. Left-most leaf of the trie corresponds to the
lexicographically largest label. Removing the left-most leaf from the trie (when the last graph node
that was pointing to it is assigned a number) takesamortizedconstant time since each edge of the
trie is visited at most three times: once when it is on the left-most path and you are looking for the
new left-most leaf after removal of the previous, once when you insert the edge, and once when you
delete the edge.

In the trie above, let us callactivethose nodes that have pointers from graph nodes. Reading them in
preorderforms apartitioning for the unnumbered nodes in the graph: each active node corresponds
to a distinct subset of unnumbered graph nodes that point to that leaf. It follows that maintaining these
distinct subsets as a (doubly-)linked listL is actually enough. Then at each step of the algorithm a
nodev is picked from the left-most subset (removing it fromL when empty). For all(v,w) leading
to an unnumbered nodew, one can locate the corresponding subsetS using a pointer, as in the trie.
Let W = {w | w∈ S,(v,w) is an edge}. SubsetS is partitioned intoW andS\W, placed in this order
in the place ofS in L. This is done for allS containingw such that there is an edge(v,w). Notice
the connection to the trie; a preorder traversal after concatenation of labels will produce the same
partitioning as this one.

This latter algorithm is calledpartitioning refinement(for good reason).

For our example, the partitioning refinement would look likethis: [{v,w,e, f}] → [{w,e},{ f}] →
[{e},{ f}]→ [{ f}].

2. Skipped.

3. Well-covered in the study group. To make this linear time,you need to maintain a doubly-linked list
L of activenodes, i.e., nodes that have still unvisited edges left. Then you can pick the tail of the
list to start the next cycle. When a node becomes in-active, i.e. all its edges are visited, you simply
follow a pointer to its place inL and remove it.

4. Create a bipartite graph with genes ofA and genes ofB as nodes, and homolog-relationships as edges.
Let score(a,b) denote the alignment score betweena andb. Let MAX be the maximum score. For
each edge(a,b) of the graph, assign weightw(a,b) = MAX − score(a,b). Let there bem genes in
A andn genes inB, m≤ n. Add n−m dummy nodes each pointing to all genes ofB with weight
0, Now, solvingminimum weight perfect matching(the same as was used in the shortest superstring
approximation) on the graph results into a matching (if one exists) withn−mdummy nodes matched
with cost 0, and allm nodes ofA matched with minimum total weightw, which equals maximum
scorem∗max−w. Notice that if there exists a one-to-one matching in the original graph (without

the dummy nodes) matching all nodes ofA then there exists an equal cost matching with the dummy
nodes added, and vice versa. Hence, this reduction solves the problem. With the matching given, you
can number genes inA from left to right to the identity permutation of lengthm, and following the
edges constituting the matching to create the corresponding permutation forB. This permutation is
the input for the gene rearrangement problem.

5. Skipped, but here are the solutions.

The first solution has time complexityO(|Σ|ℓ+ |s|):

(a) Initialize an array of size|Σ|ℓ to zero-values. This takesO(|Σ|ℓ) time.

(b) We use a sliding-window of lengthℓ and show that each step can be computed in constant time
if we know the value of the previous window: LetΣ = {0,1,2, . . . , |Σ|−1} denote our alphabet
(i.e. map each symbol to an integer). We use the following function to map each window of
symbolsx1x2 · · ·xℓ to unique position in our array:

h(x1x2 · · ·xℓ) = x1+ x2|Σ|+ x3|Σ|2+ · · ·+ xℓ|Σ|ℓ−1 =
ℓ

∑
i=1

xi |Σ|i−1

Now if we know the value of thei-th window, that ish(sisi+1 · · ·si+ℓ−1), the value of the next
window i +1 can be computed in constant time:

h(si+1si+2 · · ·si+ℓ) =

⌊

h(sisi+1 · · ·si+ℓ−1)

|Σ|

⌋

+ xi+ℓ|Σ|ℓ−1

=

⌊

xi

|Σ|

⌋

+ xi+1+ xi+2|Σ|1+ · · ·+ xi+ℓ−1|Σ|ℓ−2+ xi+ℓ|Σ|ℓ−1

The first term
⌊

xi
|Σ|

⌋

is zero becausexi < |Σ| for all xi ∈ Σ. The rest of the terms sum up to

h(si+1si+2 · · ·si+ℓ). These arithmetic operations (one division and one addition) take constant
time if we assume the RAM model of computation and large enough computer-word size. This
is repeated for all windows oversand takes in totalO(|s|) time.

(c) For each window, the array position given by theh() function is incremented by one (requires
constant time in random access model).

The second solution has time complexityO(|s|):

(a) Build a suffix tree fors. This requiresO(|s|) time.

(b) Traverse the tree in bottom-up manner to store frequencies for each internal node: all leaf nodes
have frequency 1, and the frequency of an internal node is thesum of its children’s frequencies.
Since there are at mostO(|s|) nodes in the suffix tree, this traversal requiresO(|s|) time in total.

(c) Now traverse the whole suffix tree top-down. For each internal node at string-depth≥ ℓ and
whose parent is at depth< ℓ, output the substring corresponding to the node and its frequency.
Again, there is at mostO(|s|) nodes to traverse, thus, the total time isO(|s|).

6. Skipped, but here is one possible solution.

Let M = m1 · · ·mk be the measured spectrum andT = t1 · · · tn the theoretical spectrum, withmi and
t j being the masses. A good distance measured(M,T) could be the minimum cost of insertions,
deletions and substitution of peaks (masses) to convertM to T, but the costs of the operations need
to be adjusted. A natural substitution cost is|t j −mi |, or alternatively 0 ifmi + δ = t j otherwise∞,
whereδ ∈ ∆ is the mass of a lost molecular fragment from the measured fragment corresponding
to mi and∆ is the set of possible losses. Let us derive suitable insertion and deletion costs for the
former case. A missing masst j aftermi may be due to being too close tomi after the loss of mass,
and thus being detected simultaneously. Insertion cost could then bet j −mi . An extra massmj

in M has no counterpart inT, and its deletion should cost 0 to filter out chemical noise without
any cost. The dynamic programming recurrence for the computation of d(M,T) = dk,n becomes
di, j = min{di−1, j−1+ |t j −mi |,di, j−1+ |t j −mi |,di−1, j}. However, there are many alternatives with
similar arguments.

7. Skipped.

8. This can be seen by induction. Assume first, for contradiction, that two leavesi and j under the
same parent with minimumdi j over such leaf pairs in the correct ultrametric tree arenotassigned this
way by the UPGMA algorithm. That is,di j is not the minimum picked by the algorithm at any step.
Thendil < di j or d jl < di j for somel must be picked and forcesi and j to go under different parent.
However, this a contradiction sincedi j should be the minimum in the beginning. Consider now the
ultrametric tree withi and j removed making their parentk a leaf. The same thinking as above can
be repeated for this tree, considering the new pairi and j with minimumdi j , and so on.

9. Skipped.

