
V E L I M Ä K I N E N

H T T P : / / W W W . C S . H E L S I N K I . F I / E N / C O U R S E S /
5 8 2 6 7 0 / 2 0 1 1 / S / K / 1

Algorithms for Bioinformatics
Autumn 2011

G R E E D Y A L G O R I T H M S A N D G E N O M E
R E A R R A N G E M E N T S

Lecture 3

2Edited from the slides by Esa Pitkänen / Introduction to Bioinformatics 2008

3

Background

 Genome sequencing enables us to compare genomes
of two or more different species
 -> Comparative genomics

 Basic observation:
 Closely related species (such as human and mouse) can be

almost identical in terms of genome contents...

 ...but the order of genomic segments can be very different
between species

4

Synteny blocks and segments

 Synteny – means genomic segments located on the
same chromosome
 Genes, markers (any sequence)

 Synteny block (or syntenic block)
 A set of genes or markers that co-occur together in two species

 Synteny segment (or syntenic segment)
 Syntenic block where the order of genes or markers is

preserved

5

Synteny blocks and segments

Chromosome i, species B

Chromosome j, species C

Synteny segment

Synteny block

Homologs

of the same

gene

6

Chromosomes

 Linear chromosomes
 Eukaryotes (mostly)

 Circular chromosomes
 Prokaryotes (mostly)

 Mitochondria

chromatid

centromere

gene 1

gene 3

gene 2

Also double-stranded: genes can be

found on both strands (orientations)

7

Example: human vs mouse genome

 Human and mouse genomes share thousands of
homologous genes, but they are
 Arranged in different order

 Located in different chromosomes

 Examples
 Human chromosome 6 contains elements from six different

mouse chromosomes

 Analysis of X chromosome indicates that rearrangements have
happened primarily within chromosome

8Jones & Pevzner, 2004

9

10

Representing genome rearrangments

 When comparing two genomes, we can find
homologous sequences in both using sequence
comparison algorithms (next lecture).

 This gives us a map between sequences in both
genomes

 We assign numbers 1,...,n to the
found homologous sequences

 By convention, we number the
sequences in the first genome by
their order of appearance in
chromosomes

 If the homolog of i is in reverse
orientation, it receives number –i
(signed data)

 For example, consider human vs
mouse gene numbering on the right

11

Representing genome rearrangments

Human Mouse

1 (gnat2) 12 (inpp1)

2 (nras) 13 (cd28)

3 (ngfb) 14 (fn1)

4 (gba) 15 (pax3)

5 (pklr) -9 (il10)

6 (at3) -8 (pdc)

7 (lamc1) -7 (lamc1)

8 (pdc) -6 (at3)

9 (il10) …

…

List order corresponds to

physical order on chromosomes!

12

Permutations

 The basic data structure in the study of genome
rearrangements is permutation

 A permutation of a sequence of n numbers is a
reordering of the sequence

 For example, 4 1 3 2 5 is a permutation of 1 2 3 4 5

13

Genome rearrangement problem

 Given two genomes (set of markers), how many
 duplications,

 inversions and

 translocations

do we need to do to transform the first genome to the
second?

Minimum number of operations?

What operations? Which order?

14

Genome rearrangement problem

6 1 2 3 4 5 1 2 3 4 5 6

#duplications?

#inversions?

#translocations?

15

Genome rearrangement problem

6 1 2 3 4 5 1 2 3 4 5 6

Keep in mind, that the two genomes

have been evolved from a common

ancestor genome!

Permutation

of 1,...,6
654321



16

Genome rearrangements using reversals
(=inversions) only

 Let’s consider a ”simpler” problem where we just study
reversals with unsigned data

 A reversal p(i, j) reverses the order of the segment ∏i ∏i+1

... ∏j-1∏j (indexing starts from 1)

 For example, given permutation

6 1 2 3 4 5 and reversal p(3, 5) we get permutation
6 1 4 3 2 5

...note that we do not care about exact positions on the genome

p(3, 5)

17

Reversal distance problem

 Find the shortest series of reversals that, given a
permutation ∏, transforms it to the identity permutation
(1, 2, ..., n)

 This quantity is denoted by d(∏)

 Reversal distance for a pair of chromosomes:

 Find synteny blocks in both

 Number blocks in the first chromosome to identity

 Set ∏ to correspond matching of second chromosome’s blocks
against the first

 Find reversal distance

18

Solving the problem by sorting

 Our first approach to solve the reversal distance
problem:
 Examine each position i of the permutation from left to right

 At each position, if ∏i ≠ i, do a reversal such that ∏i = i

 This is a greedy approach: we try to choose the
best option at each step

19

Simple reversal sort: example

6 1 2 3 4 5 -> 1 6 2 3 4 5 -> 1 2 6 3 4 5 -> 1 2 3 6 4 5

-> 1 2 3 4 6 5 -> 1 2 3 4 6 5

Reversal series: p(1,2), p(2,3), p(3,4), p(4,5), p(5,6)

Is d(6 1 2 3 4 5) then 5?

6 1 2 3 4 5 -> 5 4 3 2 1 6 -> 1 2 3 4 5 6

D(6 1 2 3 4 5) = 2

20

How good is simple reversal sort?

 Not so good actually

 It has to do at most n-1 reversals with permutation of
length n

 The algorithm can return a distance that is as large
as (n – 1)/2 times the correct result d(∏)
 For example, if n = 1001, result can be as bad as 500 x d(∏)

21

Computing reversals with breakpoints

 Lets investigate a better way to compute reversal
distance

 First, some concepts related to permutation
∏1∏2,...,∏n-1∏n

 Breakpoint: two elements ∏i and ∏i+1 are a breakpoint, if they
are not consecutive numbers

 Adjacency: if ∏i and ∏i+1 are consecutive, they are called
adjacency

22

Breakpoints and adjacencies

2 1 3 4 5 8 7 6

This permutation contains

four breakpoints begin-2, 13, 58, 6-end and

five adjacencies 21, 34, 45, 87, 76

Breakpoints

2 1 3 4 5 8 7 6

23

Breakpoints

 Each breakpoint in permutation needs to be removed to get
to the identity permutation (=our target)
 Identity permutation does not contain any breakpoints

 First and last positions special cases

 Note that each reversal can remove at most two
breakpoints

 Denote the number of breakpoints by b(∏)

b(∏) = 4

24

Breakpoint reversal sort

 Idea: try to remove as many breakpoints as possible
(max 2) in every step

1. While b(∏) > 0

2. Choose reversal p that removes most breakpoints

3. Perform reversal p to ∏

4. Output ∏

5. return

25

Breakpoint removal: example

8 2 7 6 5 1 4 3 b(∏) = 6

2 8 7 6 5 1 4 3 b(∏) = 5

2 3 4 1 5 6 7 8 b(∏) = 3

4 3 2 1 5 6 7 8 b(∏) = 2

1 2 3 4 5 6 7 8 b(∏) = 0

26

Breakpoint removal

 The previous algorithm needs refinement to be
correct

 Consider the following permutation:

1 5 6 7 2 3 4 8

 There is no reversal that decreases the number of
breakpoints!

27

Breakpoint removal

 Reversal can always decrease breakpoint count if
permutation contains decreasing strips

1 5 6 7 2 3 4 8

1 5 6 7 4 3 2 8

1 2 3 4 7 6 5 8

Increasing strip

Decreasing strip

(including segments

of length 1, except

1 and n if they are

located at their

correct locations)

Strip: maximal segment without breakpoints

28

Improved breakpoint reversal sort

1. While b(∏) > 0

2. If ∏ has a decreasing strip

3. Do reversal p that removes most BPs

4. Else

5. Reverse an increasing strip

6. Output ∏

7. return

29

Is Improved BP removal enough?

 The algorithm works pretty well:
 It produces a result that is at most four times worse than the

optimal result

 ...is this good?

 We considered only reversals

 What about translocations & duplications?

30

Translocations via reversals

1 2 3 4 5 6 7 8

1 5 6 7 8 2 3 4

1 4 3 2 8 7 6 5

1 2 3 4 8 7 6 5

1 2 3 4 5 6 7 8

Translocation of 2,3,4

p(2,8)

p(2,4)

p(5,8)

31

Genome rearrangements with reversals

 With unsigned data, the problem of finding
minimum reversal distances is NP-complete

 An algorithm has been developed that achieves
1.375-approximation (Berman et al. ESA 2002)

 However, reversal distance in signed data can be
computed quickly!
 It takes linear time w.r.t. the length of permutation (Bader,

Moret, Yan, 2001)

 We will not cover that algorithm here, but give some insight
into central concepts leading to it.

32

Estimating reversal distance by cycle decomposition

 We can estimate d(∏) by cycle decomposition

 Lets represent permutation ∏ = 1 2 4 5 3 with the
following graph

where edges correspond to adjacencies (identity,
permutation F)

1 2 4 5 30 6

33

Estimating reversal distance by cycle decomposition

 Cycle decomposition: a set of cycles that
 have edges with alternating colors

 do not share edges with other cycles (=cycles are edge
disjoint)

1 2 4 5 30 6

1 2 4 5

34

Cycle decompositions

 Let c(∏) the maximum number of alternating, edge-
disjoint cycles in the graph representation of ∏

 The following formula allows estimation of d(∏)
 d(∏) ≥ n + 1 – c(∏), where n is the permutation length

1 2 4 5 30 6

1 2 4 5

d(∏) ≥ 5 + 1 – 4 = 2

35

Cycle decompositions

 Cycle decomposition is NP-complete

 However, with signed data cycle decomposition
becomes a trivial task
 Lead also to efficient (but rather involved) reversal distance

algorithms on signed data.

36

Cycle decomposition with signed data

 Consider the following two permutations that
include orientation of markers
 J: +1 +5 -2 +3 +4

 K: +1 -3 +2 +4 -5

 We modify this representation a bit to include both
endpoints of each marker:
 J’: 0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6

 K’: 0 1a 1b 3b 3a 2a 2b 4a 4b 5b 5a 6

37

Graph representation of J’ and K’

0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6

d(∏) ≥ n + 1 – c(∏)=5+1-3=3

Reversal step 1 (ad hoc greedy algorithm)

38

0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6

Step 1

0 1a 1b 5a5b2b2a3a3b 4a 4b 6

+1 +5 -2 +3 +4

+1 -3 +2 -5 +4

Reversal steps 2,3,4

0 1a 1b 5a5b2b2a3a3b 4a 4b 6

Step 2

0 1a 1b 5a 5b2b2a3a3b 4a4b 6

Steps 3,4

0 1a 1b 5a5b2b2a3a3b 4a 4b 6

+1 -3 +2 -5 +4

+1 -3 +2 -4 +5

+1 -3 +2 +4 -5

3≤d(∏) ≤4

40

Multiple chromosomes

 In unichromosomal genomes, inversion (reversal) is
the most common operation

 In multichromosomal genomes, inversions,
translocations, fissions and fusions are most
common

41

Multiple chromosomes

 Let’s represent multichromosomal genome as a set of
permutations, with $ denoting the boundary of a
chromosome:

5 9 $

1 3 2 8 $

7 6 4 $

This notation is frequently used in software

used to analyse genome rearrangements.

Chr 1

Chr 2

Chr 3

42

Fusions & fissions

 Fusion: merging of two chromosomes

 Fission: chromosome is split into two chromosomes

 Both events can be represented with a translocation

43

Fusion

Fusion

44

Fission

Fission

45

Algorithms for general genomic distance problem

 Hannenhalli, Pevzner: Transforming Men into Mice
(polynomial algorithm for genomic distance problem), 36th
Annual IEEE Symposium on Foundations of Computer
Science, 1995

46

Human & mouse revisited

 Human and mouse are separated by about 75-83
million years of evolutionary history

 Only a few hundred rearrangements have
happened after speciation from the common
ancestory

 Pevzner & Tesler identified in 2003 for 281 synteny
blocks a rearrangement from mouse to human with
 149 inversions

 93 translocations

 9 fissions

47

Discussion

 Genome rearrangement events are very rare
compared to, e.g., point mutations
 We can study rearrangement events further back in the

evolutionary history

 Rearrangements are easier to detect in comparison
to many other genomic events

 We cannot detect homologs 100% correctly so the
input permutation can contain errors

48

Two different genome rearrangement scenarios

giving the same result.

49

GRIMM demonstration

Glenn Tesler, GRIMM: genome rearrangements web server.

Bioinformatics, 2002

50

GRIMM file format

useful comment about first genome

another useful comment about it

>name of first genome

1 -4 2 $ # chromosome 1

-3 5 6 $ # chromosome 2

>name of second genome

5 -3 $

6 $

2 -4 1 $

http://grimm.ucsd.edu/GRIMM/grimm_instr.html

GRIMM supports analysis of

one, two or more genomes

M O N D A Y 2 6 . 9 . 1 2 - 1 4 B 2 2 2

51

Study group assignments

Group 1: firstnames A - H

 Read pages 136 and 137 from Jones & Pevzner
 Greedy approach to motif finding

 At study group, solve Problem 5.18
 Design an input for the GreedyMotifSearch algorithm that

causes the algorithm to output an incorrect result.

52

Group 2: firstnames I-N

 Read pages 15, 16, 19-22 (sect. 2.3) from Vazirani:
Approximation algorithms, Springer 2001
 Shortest superstring and its greedy approximations through

set cover

 (copies shared at the lecture, ask lecturer for pdf)

 At study group, present the reduction to set cover
with some example

53

Group 3: firstnames O-Z

 Read 4 first pages of Heber & Stoye: Finding All
Common Intervals of k Permutations, CPM 2001
 An alternative way to define and compute genomic distances

 http://www.springerlink.com/content/ucc65djy0ft2bmq8/

 At study group, simulate Algorithm 1 with some
example.

54

http://www.springerlink.com/content/ucc65djy0ft2bmq8/
http://www.springerlink.com/content/ucc65djy0ft2bmq8/
http://www.springerlink.com/content/ucc65djy0ft2bmq8/

