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Lecture 3

O

GREEDY ALGORITHMS AND GENOME
REARRANGEMENTS




Background

O

» Genome sequencing enables us to compare genomes
of two or more different species
-> Comparative genomics

» Basic observation:

Closely related species (such as human and mouse) can be
almost identical in terms of genome contents...

...but the order of genomic segments can be very different
between species




» Synteny — means genomic segments located on the
same chromosome
Genes, markers (any sequence)

» Synteny block (or syntenic block)

A set of genes or markers that co-occur together in two species

» Synteny segment (or syntenic segment)

Syntenic block where the order of genes or markers is
preserved



Synteny blocks and segments

O

Homologs

Chromosome i, species B of the same

Chromosome |, species C




» Linear chromosomes
Eukaryotes (mostly) | @ centromere
» Circular chromosomes @) chromatid
Prokaryotes (mostly) gene 2
Mitochondria

gene 1

/ gene 3

Also double-stranded: genes can be
found on both strands (orientations)



Example: human vs mouse genome

O

» Human and mouse genomes share thousands of
homologous genes, but they are
o Arranged in different order
o Located in different chromosomes

» Examples

o Human chromosome 6 contains elements from six different
mouse chromosomes

o Analysis of X chromosome indicates that rearrangements have
happened primarily within chromosome




Fig. 5.1. Syntenic blocks conserved between human chromosome Hsa6 and mouse chromosomes. Broken lines indicate regions that
appear in inverted orders in the two organisms. Reprinted, with permission, from Gregory SG et al. (2002) Nature 418:743-750.
Copyright 2002 Nature Publishing Group.
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Fig. 5.3. Synteny blocks shared by human and mouse X chromosomes. The arrow-
head for each block indicates the direction of increasing coordinate values for the
human X chromosome. Reprinted, with permission, from Pevzner P and Tesler G

(2003) Genome Research 13:37-45. Copyright 2003 Cold Spring Harbor Laboratory
Press.




» When comparing two genomes, we can find

homologous sequences in both using sequence

comparison algorithms (next lecture).

» This gives us a map between sequences in bot!
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Fig. 5.1. Syntenic blocks conserved between human chromosome Hsa6 and mouse chromosomes. Broken lines indicate regions that
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We assign numbers 1,...,n to the Human Mouse

found homologous sequences 1 (gnat2) 12 (inppl)
By convention, we number the 2 (nras) 13 (cd28)
sequences in the first genon’le by 3 (ngfb) 14 (fnl)
their order of appearance in 4 (gba) 15  (pax3)
chromosomes ; 5  (pkKIr) -9 (il10)
If the homolog of i is in reverse g @), & e
orientation, it receives number —i ¢ lemel) oy (et
(signed data) | 8 () O EE)
9 (il10)

For example, consider human vs
mouse gene numbering on the right

~ List order corresponds to
physical order on chromosomes!



The basic data structure in the study of genome
rearrangements 1s permutation

A permutation of a sequence of n numbers is a
reordering of the sequence

For example, 4 13 2 51s a permutationof12 34 5



Given two genomes (set of markers), how many
duplications,
inversions and
translocations

do we need to do to transform the first genome to the
second?

Minimum number of operations?
What operations? Which order?



Genome rearrangement problem

O

#duplications?
#inversions?
#translocations?

612345 » 123456




Genome rearrangement problem

9,




Genome rearrangements using reversals
(=inversions) only

o Let’s consider a “simpler” problem where we just study
reversals with unsigned data

» Areversal p(i, j) reverses the order of the segment [[; [];,,
. II;.l1; (indexing starts from 1)

» For example, given permutation

6 12 3 4 5 and reversal p(3, 5) we get permutation
614325

— I — T — N

>’Qs)

— T — A .




» Find the shortest series of reversals that, given a
permutation [], transforms it to the identity permutation
(1, 2,...,n)

» This quantity is denoted by d(]])

» Reversal distance for a pair of chromosomes:
Find synteny blocks in both
Number blocks in the first chromosome to identity

Set [] to correspond matching of second chromosome’s blocks
against the first

Find reversal distance



» Our first approach to solve the reversal distance
problem:
Examine each position i of the permutation from left to right
At each position, if []; # 1, do a reversal such that []; =1

» This is a greedy approach: we try to choose the
best option at each step



612345 ->162345 ->126345 ->123645

> 123465->123465

Reversal series: p(1,2), p(2,3), p(3,4), p(4,5), p(5,6)

Isd(612345)then 5?

612345->3543216->123456

D(612345)=2



Not so good actually

It has to do at most n-1 reversals with permutation of
length n

The algorithm can return a distance that is as large
as (n — 1)/2 times the correct result d(J])

For example, if n = 1001, result can be as bad as 500 x d(]])



» Lets investigate a better way to compute reversal

distance
» First, some concepts related to permutation

H1H2,...,Hn—1Hn

Breakpoint: two elements []; and [];,, are a breakpoint, if they
are not consecutive numbers
Adjacency: if []; and [];,, are consecutive, they are called

adjacency



Breakpoints and adjacencies

9,




Each breakpoint in permutation needs to be removed to get

to the identity permutation (=our target)
Identity permutation does not contain any breakpoints

21345/876| b(l=4

First and last positions special cases
Note that each reversal can remove at most two
breakpoints

Denote the number of breakpoints by b(])




Idea: try to remove as many breakpoints as possible
(max 2) in every step

. While b(]]) >0
Choose reversal p that removes most breakpoints

1
2.
3. Perform reversal p to []
4. Output []

5. return
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b(I]) = 6
b(I]) =5
b(I]) =3
b(I]) = 2
b(I) =0



The previous algorithm needs refinement to be
correct

Consider the following permutation:

15672348

There 1s no reversal that decreases the number of
breakpoints!



Reversal can always decrease breakpoint count if
permutation contains decreasing strips

Strip: maximal segment without breakpoints

15672348 — Increasing strip

= ———| ——

15 6 7432 8 <+«———  Decreasing strip
—->— — (including segments

of length 1, except
1 and n if they are

123 4 765 8 located at their

correct locations)




While b(T]) > o
If ] has a decreasing strip
Do reversal p that removes most BPs
Else
Reverse an increasing strip
Output []
return



» The algorithm works pretty well:

It produces a result that is at most four times worse than the
optimal result

...1s this good?

» We considered only reversals
» What about translocations & duplications?



Translocations via reversals

9,




With unsigned data, the problem of finding
minimum reversal distances is NP-complete

An algorithm has been developed that achieves
1.375-approximation (Berman et al. ESA 2002)

However, reversal distance in signed data can be
computed quickly!
It takes linear time w.r.t. the length of permutation (Bader,
Moret, Yan, 2001)

We will not cover that algorithm here, but give some insight
into central concepts leading to it.



We can estimate d(J]) by cycle decomposition

Lets represent permutation [] = 1 2 4 5 3 with the
following graph

0 1 2 —4 —5—3— 06

where edges correspond to adjacencies ( :
permutation F)




Estimating reversal distance by cycle decomposition

9,




Let c(J]) the maximum number of alternating, edge-
disjoint cycles in the graph representation of []

The following formula allows estimation of d(]])
d(T]) = n + 1 — c([]), where n is the permutation length

0—1 2 — 4 5— 3 — 06

d(M=5+1-4=2
1— 2 4 —5



» Cycle decomposition is NP-complete

» However, with signed data cycle decomposition
becomes a trivial task

Lead also to efficient (but rather involved) reversal distance
algorithms on signed data.



Consider the following two permutations that
include orientation of markers

J:+1+5-2+3 +4

K:+1-3+2+4-5

We modity this representation a bit to include both

endpoints of each marker:
J:01a1bsasb2b2ag3asbg4agb6
K:o01a1b3b3a2a2bg4agbsbsab



Graph representation of J’ and K’

9,




Reversal step 1 (ad hoc greedy algorithm)

O

. Y

0—la 1b—5a 5b—2b 2a—3a 3b—4a 4b—6

+1 +5 -2 +3 +4

\Stepl
A~ N N SN

O—la 1b—3b 3a—2a 2b—5b 5a—4a 4b—6

+1 -3 +2 -5 +4




O—la 1b—3b 3a—?2a

+1 -3
Step 2

2b—5pb 5a—4a 4b—6
5

2 +4

0—la 1b—3b 3a—2a 2b—4b 4a—5a 5Sb—6
+1 -3 +2 -4 +5
Steps 3,4

O0—la 1b—3b 3a—2a 2b— 4a 4b—5b 5a—6
+1 -3 +2 +4 -5
3=d([]) <4



In unichromosomal genomes, inversion (reversal) is
the most common operation

In multichromosomal genomes, inversions,
translocations, fissions and fusions are most
comimon



Let’s represent multichromosomal genome as a set of
permutations, with $ denoting the boundary of a
chromosome:

59$ Chr 1
1328$ Chr 2
764 $ chr 3

This notation is frequently used in software
used to analyse genome rearrangements.



Fusion: merging of two chromosomes
Fission: chromosome is split into two chromosomes
Both events can be represented with a translocation






Fission

9,




Hannenhalli, Pevzner: Transforming Men into Mice
(polynomial algorithm for genomic distance problem), 36th
Annual IEEE Symposium on Foundations of Computer
Science, 1995



Human and mouse are separated by about 75-83
million years of evolutionary history

Only a few hundred rearrangements have
happened after speciation from the common
ancestory

Pevzner & Tesler identified in 2003 for 281 synteny
blocks a rearrangement from mouse to human with

149 Inversions
93 translocations
9 fissions



Genome rearrangement events are very rare
compared to, e.g., point mutations

We can study rearrangement events further back in the
evolutionary history

Rearrangements are easier to detect in comparison
to many other genomic events

We cannot detect homologs 100% correctly so the
input permutation can contain errors



Mouse
1 -76 -10 9 -8 2 -11

1 2 3 4567 8 9 10 11
Human

giving the same result.

Two different genome rearrangement scenarios

Mouse
i 76 -10 9 8 2 -11 * -3 54

1 2 3 456*7 8 9 10 11
Human




GRIMM demonstration

GRIMM - Genome rearrangement algorithms

[Multiple genome form ]

Source genome:

Destination genome:

Chromosomes: Ocircular Clinear (directed) ® multichromosomal or undirected
Signs: @ signed O unsigned
[ run ][ undo ][ clear form ] Or,| chooge zample data

Formatting options

Report Style: One line per genome One column Two column before & after
(chromosomes concatenated) (chromosomes separated) (chromosomes separated)
® Horizontal O Yes O Show all chromosomes
O Vertical O Only affected chromosomes

Show all possible initial steps of optimal scenarios O
Highlighting style:  Should operations (reversal, translocation, fission, fusion) be highlighted, and when?
Obefore Cafter @ betweenfboth O no highlighting

Chromosome end Cnumeric (10} ® subscripts (Cin) © omit
format:

Color coding: Zenes should be colored according to their chromosome inwhich genome
Csource @ destination

run undo clear form

GRIMM 1.04 by Glenn Tesler, University of California, San Diego.
Copyright @ 2001-2005, The University of California.
Zontaing code from GRAPPA @ 2000-2001, The University of Mew Mexico and The University of Texas at Austin.

Glenn Tesler, GRIMM: genome rearrangements web server.




# useful comment about first genome
# another useful comment about it
>name of first genome
1-42$%#chromosome 1

-356 $ # chromosome 2

>name of second genome

5-3 %

6%

2-419%

GRIMM supports analysis of
one, two or more genomes

http://grimm.ucsd.edu/GRIMM/grimm_instr.htm|



Study group assignments

O

MONDAY 26.9. 12-14 B222




Group 1: firstnames A - H

O

» Read pages 136 and 137 from Jones & Pevzner
o Greedy approach to motif finding

» At study group, solve Problem 5.18

o Design an input for the GreedyMotifSearch algorithm that
causes the algorithm to output an incorrect result.




Read pages 15, 16, 19-22 (sect. 2.3) from Vazirani:
Approximation algorithms, Springer 2001

Shortest superstring and its greedy approximations through
set cover

(copies shared at the lecture, ask lecturer for pdf)
At study group, present the reduction to set cover
with some example



Read 4 first pages of Heber & Stoye: Finding All

Common Intervals of k Permutations, CPM 2001
An alternative way to define and compute genomic distances
http://www.springerlink.com/content/ucc65djvoft2obmq8/

At study group, simulate Algorithm 1 with some
example.


http://www.springerlink.com/content/ucc65djy0ft2bmq8/
http://www.springerlink.com/content/ucc65djy0ft2bmq8/
http://www.springerlink.com/content/ucc65djy0ft2bmq8/

