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Background

 Genome sequencing enables us to compare genomes 
of two or more different species
 -> Comparative genomics

 Basic observation:
 Closely related species (such as human and mouse) can be 

almost identical in terms of genome contents...

 ...but the order of genomic segments can be very different 
between species
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Synteny blocks and segments

 Synteny – means genomic segments located on the 
same chromosome
 Genes, markers (any sequence)

 Synteny block (or syntenic block) 
 A set of genes or markers that co-occur together in two species

 Synteny segment (or syntenic segment)
 Syntenic block where the order of genes or markers is 

preserved
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Synteny blocks and segments

Chromosome i, species B

Chromosome j, species C

Synteny segment

Synteny block

Homologs

of the same

gene
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Chromosomes

 Linear chromosomes
 Eukaryotes (mostly) 

 Circular chromosomes
 Prokaryotes (mostly)

 Mitochondria

chromatid

centromere

gene 1

gene 3

gene 2

Also double-stranded: genes can be

found on both strands (orientations)



7

Example: human vs mouse genome

 Human and mouse genomes share thousands of 
homologous genes, but they are
 Arranged in different order

 Located in different chromosomes

 Examples
 Human chromosome 6 contains elements from six different 

mouse chromosomes

 Analysis of X chromosome indicates that rearrangements have 
happened primarily within chromosome
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Representing genome rearrangments

 When comparing two genomes, we can find 
homologous sequences in both using sequence 
comparison algorithms (next lecture).

 This gives us a map between sequences in both 
genomes



 We assign numbers 1,...,n to the 
found homologous sequences

 By convention, we number the 
sequences in the first genome by 
their order of appearance in 
chromosomes

 If the homolog of i is in reverse 
orientation, it receives number –i 
(signed data)

 For example, consider human vs 
mouse gene numbering on the right
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Representing genome rearrangments

Human Mouse

1 (gnat2) 12 (inpp1)

2 (nras) 13 (cd28)

3 (ngfb) 14 (fn1)

4 (gba) 15 (pax3)

5 (pklr) -9 (il10)

6 (at3) -8 (pdc)

7 (lamc1) -7 (lamc1)

8 (pdc) -6 (at3)

9 (il10) …

…

List order corresponds to

physical order on chromosomes!
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Permutations

 The basic data structure in the study of genome 
rearrangements is permutation

 A permutation of a sequence of n numbers is a 
reordering of the sequence

 For example, 4 1 3 2 5 is a permutation of 1 2 3 4 5
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Genome rearrangement problem

 Given two genomes (set of markers), how many
 duplications,

 inversions and

 translocations

do we need to do to transform the first genome to the 
second?

Minimum number of operations?

What operations? Which order?
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Genome rearrangement problem

6 1 2 3 4 5 1 2 3 4 5 6

#duplications?

#inversions?

#translocations?



15

Genome rearrangement problem

6 1 2 3 4 5 1 2 3 4 5 6

Keep in mind, that the two genomes

have been evolved from a common

ancestor genome!

Permutation

of 1,...,6
654321


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Genome rearrangements using reversals 
(=inversions) only

 Let’s consider a ”simpler” problem where we just study 
reversals with unsigned data

 A reversal p(i, j) reverses the order of the segment ∏i ∏i+1 

... ∏j-1∏j (indexing starts from 1)

 For example, given permutation 

6 1 2 3 4 5 and reversal p(3, 5) we get permutation 
6 1 4 3 2 5

...note that we do not care about exact positions on the genome

p(3, 5)
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Reversal distance problem

 Find the shortest series of reversals that, given a 
permutation ∏, transforms it to the identity permutation 
(1, 2, ..., n)

 This quantity is denoted by d(∏)

 Reversal distance for a pair of chromosomes:

 Find synteny blocks in both

 Number blocks in the first chromosome to identity

 Set ∏ to correspond matching of second chromosome’s blocks 
against the first

 Find reversal distance
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Solving the problem by sorting

 Our first approach to solve the reversal distance 
problem:
 Examine each position i of the permutation from left to right

 At each position, if ∏i ≠ i, do a reversal such that ∏i = i

 This is a greedy approach: we try to choose the 
best option at each step
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Simple reversal sort: example

6 1 2 3 4 5  ->  1 6 2 3 4 5  ->  1 2 6 3 4 5  ->  1 2 3 6 4 5

->  1 2 3 4 6 5 ->  1 2 3 4 6 5

Reversal series: p(1,2), p(2,3), p(3,4), p(4,5), p(5,6)

Is d(6 1 2 3 4 5) then 5?

6 1 2 3 4 5 -> 5 4 3 2 1 6 -> 1 2 3 4 5 6

D(6 1 2 3 4 5) = 2
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How good is simple reversal sort?

 Not so good actually

 It has to do at most n-1 reversals with permutation of 
length n

 The algorithm can return a distance that is as large 
as (n – 1)/2 times the correct result d(∏)
 For example, if n = 1001, result can be as bad as 500 x d(∏)
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Computing reversals with breakpoints

 Lets investigate a better way to compute reversal 
distance

 First, some concepts related to permutation 
∏1∏2,...,∏n-1∏n

 Breakpoint: two elements ∏i and ∏i+1 are a breakpoint, if they 
are not consecutive numbers

 Adjacency: if ∏i and ∏i+1 are consecutive, they are called 
adjacency
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Breakpoints and adjacencies

2 1 3 4 5 8 7 6

This permutation contains 

four breakpoints begin-2, 13, 58, 6-end and 

five adjacencies 21, 34, 45, 87, 76

Breakpoints



2 1 3 4 5 8 7 6
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Breakpoints

 Each breakpoint in permutation needs to be removed to get 
to the identity permutation (=our target)
 Identity permutation does not contain any breakpoints

 First and last positions special cases

 Note that each reversal can remove at most two 
breakpoints

 Denote the number of breakpoints by b(∏)

b(∏) = 4
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Breakpoint reversal sort

 Idea: try to remove as many breakpoints as possible 
(max 2) in every step

1. While b(∏) > 0

2. Choose reversal p that removes most breakpoints

3. Perform reversal p to ∏

4. Output ∏

5. return
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Breakpoint removal: example

8 2 7 6 5 1 4 3     b(∏) = 6

2 8 7 6 5 1 4 3     b(∏) = 5

2 3 4 1 5 6 7 8     b(∏) = 3

4 3 2 1 5 6 7 8     b(∏) = 2

1 2 3 4 5 6 7 8     b(∏) = 0
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Breakpoint removal

 The previous algorithm needs refinement to be 
correct

 Consider the following permutation:

1 5 6 7 2 3 4 8

 There is no reversal that decreases the number of 
breakpoints!
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Breakpoint removal

 Reversal can always decrease breakpoint count if 
permutation contains decreasing strips

1 5 6 7 2 3 4 8

1 5 6 7 4 3 2 8

1 2 3 4 7 6 5 8

Increasing strip 

Decreasing strip

(including segments 

of length 1, except 

1 and n if they are 

located at their 

correct locations)

Strip: maximal segment without breakpoints
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Improved breakpoint reversal sort

1. While b(∏) > 0

2. If ∏ has a decreasing strip

3. Do reversal p that removes most BPs

4. Else

5. Reverse an increasing strip

6. Output ∏

7. return
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Is Improved BP removal enough?

 The algorithm works pretty well:
 It produces a result that is at most four times worse than the 

optimal result

 ...is this good?

 We considered only reversals

 What about translocations & duplications?



30

Translocations via reversals

1 2 3 4 5 6 7 8

1 5 6 7 8 2 3 4

1 4 3 2 8 7 6 5

1 2 3 4 8 7 6 5

1 2 3 4 5 6 7 8

Translocation of 2,3,4

p(2,8)

p(2,4)

p(5,8)
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Genome rearrangements with reversals

 With unsigned data, the problem of finding 
minimum reversal distances is NP-complete

 An algorithm has been developed that achieves 
1.375-approximation (Berman et al. ESA 2002)

 However, reversal distance in signed data can be 
computed quickly!
 It takes linear time w.r.t. the length of permutation (Bader, 

Moret, Yan, 2001)

 We will not cover that algorithm here, but give some insight 
into central concepts leading to it.
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Estimating reversal distance by cycle decomposition

 We can estimate d(∏) by cycle decomposition

 Lets represent permutation ∏ = 1 2 4 5 3 with the 
following graph

where edges correspond to adjacencies (identity, 
permutation F)

1 2 4 5 30 6
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Estimating reversal distance by cycle decomposition

 Cycle decomposition: a set of cycles that
 have edges with alternating colors

 do not share edges with other cycles (=cycles are edge 
disjoint)

1 2 4 5 30 6

1 2 4 5
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Cycle decompositions

 Let c(∏) the maximum number of alternating, edge-
disjoint cycles in the graph representation of ∏

 The following formula allows estimation of d(∏)
 d(∏) ≥ n + 1 – c(∏), where n is the permutation length

1 2 4 5 30 6

1 2 4 5

d(∏) ≥ 5 + 1 – 4 = 2
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Cycle decompositions

 Cycle decomposition is NP-complete

 However, with signed data cycle decomposition 
becomes a trivial task
 Lead also to efficient (but rather involved) reversal distance 

algorithms on signed data.
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Cycle decomposition with signed data

 Consider the following two permutations that 
include orientation of markers
 J: +1 +5 -2 +3 +4

 K: +1 -3 +2 +4 -5

 We modify this representation a bit to include both 
endpoints of each marker:
 J’: 0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6

 K’: 0 1a 1b 3b 3a 2a 2b 4a 4b 5b 5a 6
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Graph representation of J’ and K’

0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6

d(∏) ≥ n + 1 – c(∏)=5+1-3=3



Reversal step 1 (ad hoc greedy algorithm)
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0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6

Step 1

0 1a 1b 5a5b2b2a3a3b 4a 4b 6

+1                  +5                    -2                  +3                   +4

+1                  -3                    +2                  -5                   +4



Reversal steps 2,3,4

0 1a 1b 5a5b2b2a3a3b 4a 4b 6

Step 2

0 1a 1b 5a 5b2b2a3a3b 4a4b 6

Steps 3,4

0 1a 1b 5a5b2b2a3a3b 4a 4b 6

+1                  -3                    +2                  -5                   +4

+1                  -3                    +2                  -4                   +5

+1                  -3                    +2                  +4                   -5

3≤d(∏) ≤4
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Multiple chromosomes

 In unichromosomal genomes, inversion (reversal) is 
the most common operation

 In multichromosomal genomes, inversions, 
translocations, fissions and fusions are most 
common
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Multiple chromosomes

 Let’s represent multichromosomal genome as a set of 
permutations, with $ denoting the boundary of a 
chromosome:

5 9 $

1 3 2 8 $

7 6 4 $

This notation is frequently used in software

used to analyse genome rearrangements.

Chr 1

Chr 2

Chr 3
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Fusions & fissions

 Fusion: merging of two chromosomes

 Fission: chromosome is split into two chromosomes

 Both events can be represented with a translocation
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Fusion

Fusion
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Fission

Fission
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Algorithms for general genomic distance problem

 Hannenhalli, Pevzner: Transforming Men into Mice 
(polynomial algorithm for genomic distance problem), 36th 
Annual IEEE Symposium on Foundations of Computer 
Science, 1995
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Human & mouse revisited

 Human and mouse are separated by about 75-83 
million years of evolutionary history

 Only a few hundred rearrangements have 
happened after speciation from the common 
ancestory

 Pevzner & Tesler identified in 2003 for 281 synteny 
blocks a rearrangement from mouse to human with
 149 inversions

 93 translocations

 9 fissions



47

Discussion

 Genome rearrangement events are very rare 
compared to, e.g., point mutations
 We can study rearrangement events further back in the 

evolutionary history

 Rearrangements are easier to detect in comparison 
to many other genomic events

 We cannot detect homologs 100% correctly so the 
input permutation can contain errors
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Two different genome rearrangement scenarios

giving the same result.
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GRIMM demonstration

Glenn Tesler, GRIMM: genome rearrangements web server.

Bioinformatics, 2002
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GRIMM file format

# useful comment about first genome

# another useful comment about it

>name of first genome 

1 -4 2 $ # chromosome  1 

-3 5 6 $ # chromosome 2 

>name of second genome

5 -3  $

6 $ 

2 -4 1 $ 

http://grimm.ucsd.edu/GRIMM/grimm_instr.html

GRIMM supports analysis of

one, two or more genomes



M O N D A Y  2 6 . 9 .  1 2 - 1 4  B 2 2 2
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Study group assignments



Group 1: firstnames A - H

 Read pages 136 and 137 from Jones & Pevzner
 Greedy approach to motif finding

 At study group, solve Problem 5.18
 Design an input for the GreedyMotifSearch algorithm that 

causes the algorithm to output an incorrect result. 
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Group 2: firstnames I-N

 Read pages 15, 16, 19-22 (sect. 2.3) from Vazirani: 
Approximation algorithms, Springer 2001
 Shortest superstring and its greedy approximations through 

set cover

 (copies shared at the lecture, ask lecturer for pdf)

 At study group, present the reduction to set cover 
with some example
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Group 3: firstnames O-Z

 Read 4 first pages of Heber & Stoye: Finding All 
Common Intervals of k Permutations, CPM 2001
 An alternative way to define and compute genomic distances

 http://www.springerlink.com/content/ucc65djy0ft2bmq8/

 At study group, simulate Algorithm 1 with some 
example.
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