
D Y N A M I C P R O G R A M M I N G A N D S E Q U E N C E
A L I G N M E N T

Lecture 4

1

Sequence similarity

 Genome rearrangement problem assumed we know
for each gene in species A its counterpart in species B
(if exists).
 Orthologous genes – same ancestor in evolution.

 Paralogous gene – gene dublication.

 Homolog = Ortholog or Paralog

 Often sequence similarity is the only way to predict
whether two genes are homologs.
 Very unlikely that same (long sequences) have evolved

independently from different ancestors.

 ... except horizontal gene transfer

2

Sequence similarity vs. distance

 Let A and B be two strings from alphabet ∑, i.e.,
A,B∈ ∑*.

 Many different ways to define the similarity or
distance of A and B.

 Recall Hamming distance dH(A,B).
 Only defined when |A|=|B|.

 What is the simplest measure to extend Hamming
distance to different length strings?
 For many purposes it is useful if the distance is a metric.

3

Edit distance

 The most studied distance function extending
Hamming distance is unit cost edit distance or
Levenshtein distance.
 dL(A,B) is the minimum amount of single symbol insertions,

deletions, and substitutions required to convert A into B.

 For example, on A=" tukholma" and B=" stockholm" we have
dL(A,B)=4:

 insert s, substitute u->o, insert c, delete a

 .. or insert s, insert o, substitute u->c, delete a

 .. or is there better sequence of edits???

4

- t u - k h o l m a
s t o c k h o l m -

5

Dynamic programming

 Way to compute edit distance optimally.

 General algorithm principle:
 Similar to Dijkstra's shortest path algorithm.

 Abstract idea: Use induction to break the problem into smaller
subproblems and suitable evaluation order so that subproblem
solutions are available when needed.

 Concrete example, Fibonacci numbers:
 1,1,2,3,5,8,13,21,34,55,89,...

 F(i)=F(i-2)+F(i-1) with F(1)=1, F(2)=1

 The recursion to compute F(i) contains
many identical subproblems.

89

34 55

13 21 21 34

5 8 8 13 8 13 13 21

Lightest path in a DAG

6

1

3

2

4

6

5

7

DAG=directed acyclic graph

s
v

Lightest path from s to v?

1 2 3 4 5 6 7 Topological sort

5
2

1
2

1

2 2

0

4

cost=min(1)=1

cost=min(2)=2

cost=min(1+2,2+2)=3

cost=min(2)=2

cost=min(5,3+1)=4

cost=min(4+2,3+4)=6

7

Edit distance

 Consider an optimal listing of edits to convert the
prefix a1a2...ai of A into prefix b1b2...bj of B
corresponding to dL(a1a2...ai,b1b2...bj):
 If ai=bj we know that dL(a1a2...ai,b1b2...bj)=dL(a1a2...ai-

1,b1b2...bj-1)

 Otherwise either ai is substituted by bj, or ai is deleted or bj is
inserted in the optimal list of edits.

 Hence, we have dL(a1a2...ai,b1b2...bj)=
min(dL(a1a2...ai-1,b1b2...bj-1)+(if ai=bj then 0 else 1),
 dL(a1a2...ai-1,b1b2...bj)+1,
 dL(a1a2...ai,b1b2...bj-1)+1).

8

Edit distance matrix D[i,j]

 Let D[i,j] denote dL(a1a2...ai,b1b2...bj).

 Obviously D[0,j]=j and D[i,0]=i.

 The induction from previous slide gives
D[i,j]=min(D[i-1,j-1]+if (ai=bj) then 0 else 1,
 D[i-1,j]+1,D[i,j-1]+1).

 Matrix D can be computed row-by-row, column-by-
column (or in many other evaluation orders) so that
D[i-1,j-1], D[i-1,j], and D[i,j-1] are available when
computing D[i,j].

 Running time to compute D[m,n] is O(mn).

9

Edit distance example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

10

Edit distance matrix as a DAG

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

(i-1)*n+
j-1

i

j

i*n+
j-1

(i-1)*n+
j

i*n+
j

1

1

1

1 0

cost=min(3+0,4+1,4+1)=3 cost=4

cost=3 cost=4

Finding the optimal alignment(s)

 Two options:
 (one alignment) Store pointer to each cell telling from which

cell the minimum was obtained, follow the pointers from (m,n)
to (0,0) and reverse the list; or

 (all alignments) Backtrack from (m,n) to (0,0) by checking at
each cell (i,j) on the path whether the value D[i,j] could have
been obtained from cell (i,j-1), (i-1,j-1), or (i-1,j). Explore all
directions.

 All three directions possible.

 Exponential number of optimal paths in the worst case.

11

12

Edit distance example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

- t - u k h o l m a
s t o c k h o l m -

- t u - k h o l m a
s t o c k h o l m -

Searching homologs with edit distance?

 Take DNA sequences A and B of two genes suspected
to be homologs.

 Edit distance of A and B can be huge even if A and B
are true homologs.
 One reason is silent mutations that alter DNA sequence so that

the codons still encode the same amino acids.

 In principle, A and B can differ in almost every third
nucleotide.

 Better compare protein sequences.
 Some substitutions are more likely than the others...

 Lot of tuning needed to use proper weights for operations.

13 582313 Elements of Bioinformatics (4 cr), period II Better models

14

Other applications in bioinformatics

 High-throughput next-generation sequencing (NGS)
has raised again the issue of using edit distance.
 Short DNA reads (50-1000 bp) a.k.a. patterns are measured

from e.g. cells of a patient.

 The reads are aligned against the reference genome.

 Typically only SNPs and measurement errors need to be taken into
account.

 The occurrence of the read in the reference genome can be
determined by finding the substring of the genome whose edit
distance (or Hamming distance) to the read is minimum.

 Approximate string matching problem.

NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing,

de novo sequencing, metagenomics

15

gene

DNA

RNA

Protein

RNA-seq

ChIP-seq

gtgatgcagctatattgatgtcgctgatcgt

gtgatgcagctatattgatgtcgctgatcgt

gtgatgcagctatattgatgtcgctgatcgt

gtgatgcagctatattgatgtcgctgatcgt

enrichment

gtgatgcagctatattgatgtcgctgatcgt

Targeted resequencing

? de novo

DNA ?

DNA ? metagenomics

acgaccgcgtatgctgatgctacgacgcactacgacactacgacgacgcatcgatcgagctagcgctgcgtcagcgacctagcgactacgacatcagcgactacgagctacgacagcgacgagagaggccgagctacacgagcatctagctgacagtcagtgatgcagctatattgatgtcgctgatcgtgctgatcgataatgatgtagcgcgatgctgcgcgtgctagtgatgtcagctgcgacgatcgtg tcgtgatgctagctagcgcatgctgctgcagctagctagtcgatcgcg

epigenomics

16

Approximate string matching with dH

 k-mismatches problem: Search all occurrences O of
pattern P[1,m] in text T[1,n] such that P differs in at
most k positions from the occurrence substring:
 More formally: j  O is a k-mismatch occurrence position of P

in T if and only if dH(P,T[j,j+m-1])≤k, where dH(A,B)=|{ i :
A[i]≠B[i]}|.

 Compare to the TotalDistance()-computation in the exercises.

 Naive algorithm:

 Compare P against each T[j,j+m-1] but skip as soon as k+1
mismatches are encountered.

 Expected linear time!

17

Approximate string matching with dL

 k-errors problem is the approximate string matching
problem with edit distance:
 More formally: j  O is a k-errors occurrence (end)position of

P in T if and only if dL(P,T[j',j])≤k for some j'.

 Can be solved with the "zero the first row trick":
 D[0,j]=0 for all j.

 Otherwise the computation is identical to edit distance
computation using matrix D.

 Intuition: D[i,j] then equals the minimum number of edits to
convert P[1,i] into some suffix of T[1,j].

 If D[m,j]≤k, then P can be converted to some substring T[j',j]
with at most k edit operations.

58093 String Processing Algorithms (4 cr), period II Faster algorithms

NGS atlas and approximate string matching 1/3

 Aligning reads from ChIP-seq and targeted
resequencing works using basic approximate string
matching, but...
 Tens of millions of reads, spead is an issue.

 Reference genome can be preprocessed to speed up search:

 Suffix tree alike techniques work, but...

 Suffix tree of human genome takes 50-200 GB!

 More space-efficient index structures have been developed (e.g.
based on Burrows-Wheeler transform) that drop the space to
~3 GB.

18 582487 Data Compression Techniques (4 cr), period III

NGS atlas and approximate string matching 2/3

 Reads from RNA-seq need more advanced
alignment:
 Read can span two exons.

 Next week exercises study this problem.

19

ACGACCGATGCTTTATCTAACTCA

ACGATCGATGCGTAGTTTATCTATCTACA

exon exon

ACGACCGATGCTTTATCTAACT-CA

ACGATCGATGCTTTATCTATCTACA

NGS atlas and approximate string matching 3/3

 de novo sequencing and metagenomics are much
harder since there is no reference genome.
 Shortest approximate superstring (exercise 3.4).

 How to modify edit distance computation for overlaps?

 Next week exercise.

20

Variations of the theme

21

1

3

2

4

6

5

7

s
v

Heaviest path from s to v?

1 2 3 4 5 6 7 Topological sort

5
2

1
2

1

2 2

0

4

cost=max(1)=1

cost=max(2)=2

cost=max(1+2,2+2)=4

cost=max(2)=2

cost=max(5,4+1)=5

cost=max(5+2,4+4)=8

Heaviest paths in sequence aligment

 Consider the DAG of edit distance matrix.

 Turn minimization into maximization.

 Give score δ(ai,bj) for diagonal edges.

 Give score δ(ai,-) for vertical edges.

 Give score δ(-,bj) for horizontal edges.

 Then heaviest path in the DAG corresponds to the
global alignment with highest score.
 Typically δ(ai,bj)=1if ai=bj otherwise δ(ai,bj)=-μ.

 Typically δ(ai,-)=δ(-,bj)=-σ.

Global alignment DAG and recurrence

23

(i-1)*n+
j-1

i*n+
j-1

(i-1)*n+
j

i*n+
j

-1

-1

-1

-1 +1

score=max(3+1,4-1,4-1)=4

score=3 score=4

score=4

 S[i,j]=max(S[i-1,j-1]+δ(ai,bj),

 S[i-1,j]+δ(ai,-),S[i,j-1]+δ(-,bj)).

Heaviest local paths in sequence aligment

 Consider the heaviest path DAG corresponding to
global alignment with highest score.

 How to find heaviest subpaths (local path)?

 Defining that empty path has score 0, it is enough
to search for subpaths (local paths) with weight
greater than 0.

 No heaviest path can have a prefix with negative score.

Add an edge with score 0 from node 0 to all nodes i*n+j.

 S[i,j]=max(0,S[i-1,j-1]+δ(ai,bj),

 S[i-1,j]+δ(ai,-),S[i,j-1]+δ(-,bj)).

Local alignment DAG and recurrence

25

(i-1)*n+
j-1

i*n+
j-1

(i-1)*n+
j

i*n+
j

-1

-1

-1

-1 +1

score=max(0+0,1+1,-1-1,0-1)=2

score=1 score=0

score=-1

0
score=0

0

0

0

0

Longest Common Subsequence (LCS)

 Global alignment with
 δ(ai,bj)=1 when ai=bj and otherwise δ(ai,bj)=-∞, and

 δ(ai,-)=δ(-,bj)=0,

gives the length of the longest common subsequence C of A
and B:

 Longest sequence C that can be obtained by deleting 0 or more
symbols from A and also by deleting 0 or more symbols from B.

 Connection: dID(A,B)=m+n-2*|LCS(A,B)|, where dID(A,B) is the edit
distance with substitution cost ∞.

26

ACGACTGATCG

AGCTACG

AACGCATACGG

M O N D A Y 3 . 1 0 . 1 2 - 1 4 B 2 2 2

27

Study group assignments

Group 1 (random assignment at lecture)

 Small parsimony problem:

 Dynamic programming on fixed phylogenetic tree.

 J & P pages 368-373.

 (copies shared at lecture)

 At study group, simulate the algorithm with some
example.

28

Group 2 (random assignment at lecture)

 RNA secondary structure prediction:
 Basic dynamic programming formulation.

 See
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-
1457.html

 At study group, give an example of RNA
secondary structure, how the recurrence is
derived for its computation, and how the
recurrence is evaluated.

29

http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

Group 3 (random assignment at lecture)

 Gene prediction by spliced alignment:
 Application/extension of heaviest path on a DAG.

 J & P pages 203-207.

 (copies shared at lecture)

 At study group, explain the idea visually and explain
how the recurrences are derived. What is the running
time of the algorithm?

30

