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Sequence similarity 

 Genome rearrangement problem assumed we know 
for each gene in species A its counterpart in species B 
(if exists). 
 Orthologous genes – same ancestor in evolution. 

 Paralogous gene – gene dublication. 

 Homolog = Ortholog or Paralog 

 Often sequence similarity is the only way to predict 
whether two genes are homologs. 
 Very unlikely that same (long sequences) have evolved 

independently from different ancestors. 

 ... except horizontal gene transfer 
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Sequence similarity vs. distance 

 Let A and B be two strings from alphabet ∑, i.e., 
A,B∈ ∑*. 

 Many different ways to define the similarity or 
distance of A and B. 

 Recall Hamming distance dH(A,B). 
 Only defined when |A|=|B|. 

 What is the simplest measure to extend Hamming 
distance to different length strings? 
 For many purposes it is useful if the distance is a metric. 
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Edit distance 

 The most studied distance function extending 
Hamming distance is unit cost edit distance or 
Levenshtein distance. 
 dL(A,B) is the minimum amount of single symbol insertions, 

deletions, and substitutions required to convert A into B.  

 For example, on A=" tukholma" and B=" stockholm" we have 
dL(A,B)=4:  

 insert s, substitute u->o, insert c, delete a 

 .. or insert s, insert o, substitute u->c, delete a 

 .. or is there better sequence of edits???  
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- t u - k h o l m a 
s t o c k h o l m - 
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Dynamic programming 

 Way to compute edit distance optimally. 

 General algorithm principle: 
 Similar to Dijkstra's shortest path algorithm. 

 Abstract idea: Use induction to break the problem into smaller 
subproblems and suitable evaluation order so that subproblem 
solutions are available when needed. 

 Concrete example, Fibonacci numbers: 
 1,1,2,3,5,8,13,21,34,55,89,...   

 F(i)=F(i-2)+F(i-1) with F(1)=1, F(2)=1 

 The recursion to compute F(i) contains  
many identical subproblems. 
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Lightest path in a DAG 
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DAG=directed acyclic graph 

s 
v 

Lightest path from s to v? 

1 2 3 4 5 6 7 Topological sort 
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cost=min(1)=1 

cost=min(2)=2 

cost=min(1+2,2+2)=3 

cost=min(2)=2 

cost=min(5,3+1)=4 

cost=min(4+2,3+4)=6 
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Edit distance 

 Consider an optimal listing of edits to convert the 
prefix a1a2...ai of A into prefix b1b2...bj of B 
corresponding to    dL(a1a2...ai,b1b2...bj): 
 If ai=bj we know that dL(a1a2...ai,b1b2...bj)=dL(a1a2...ai-

1,b1b2...bj-1) 

 Otherwise either ai is substituted by bj, or ai is deleted or bj is 
inserted in the optimal list of edits.  

 Hence, we have dL(a1a2...ai,b1b2...bj)= 
min(dL(a1a2...ai-1,b1b2...bj-1)+(if ai=bj then 0 else 1), 
       dL(a1a2...ai-1,b1b2...bj)+1,  
       dL(a1a2...ai,b1b2...bj-1)+1).  
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Edit distance matrix D[i,j] 

 Let D[i,j] denote dL(a1a2...ai,b1b2...bj). 

 Obviously D[0,j]=j and D[i,0]=i.  

 The induction from previous slide gives  
D[i,j]=min(D[i-1,j-1]+if (ai=bj) then 0 else 1, 
                D[i-1,j]+1,D[i,j-1]+1). 

 Matrix D can be computed row-by-row, column-by-
column (or in many other evaluation orders) so that 
D[i-1,j-1], D[i-1,j], and D[i,j-1] are available when 
computing D[i,j].  

 Running time to compute D[m,n] is O(mn). 
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Edit distance example 

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i 

j 
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Edit distance matrix as a DAG 

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

(i-1)*n+ 
j-1 

i 

j 

i*n+ 
j-1 

(i-1)*n+ 
j 

i*n+ 
j 

1 

1 

1 

1 0 

cost=min(3+0,4+1,4+1)=3 cost=4 

cost=3 cost=4 



Finding the optimal alignment(s) 

 Two options: 
 (one alignment) Store pointer to each cell telling from which 

cell the minimum was obtained, follow the pointers from (m,n) 
to (0,0) and reverse the list; or 

 (all alignments) Backtrack from (m,n) to (0,0) by checking at 
each cell (i,j) on the path whether the value D[i,j] could have 
been obtained from cell (i,j-1), (i-1,j-1), or (i-1,j). Explore all 
directions. 

 All three directions possible. 

 Exponential number of optimal paths in the worst case. 

11 



12 

Edit distance example 

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

- t - u k h o l m a 
s t o c k h o l m - 

- t u - k h o l m a 
s t o c k h o l m - 



Searching homologs with edit distance? 

 Take DNA sequences A and B of two genes suspected 
to be homologs. 

 Edit distance of A and B can be huge even if A and B 
are true homologs. 
 One reason is silent mutations that alter DNA sequence so that 

the codons still encode the same amino acids. 

 In principle, A and B can differ in almost every third 
nucleotide. 

 Better compare protein sequences. 
 Some substitutions are more likely than the others... 

 Lot of tuning needed to use proper weights for operations.  

13 582313 Elements of Bioinformatics (4 cr), period II Better models 
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Other applications in bioinformatics 

 High-throughput next-generation sequencing (NGS) 
has raised again the issue of using edit distance. 
 Short DNA reads (50-1000 bp) a.k.a. patterns are measured 

from e.g. cells of a patient. 

 The reads are aligned against the reference genome. 

 Typically only SNPs and measurement errors need to be taken into 
account. 

 The occurrence of the read in the reference genome can be 
determined by finding the substring of the genome whose edit 
distance  (or Hamming distance) to the read is minimum. 

 Approximate string matching problem.   

 



NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing,  

de novo sequencing, metagenomics 
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gene 

DNA 

RNA 

Protein 

RNA-seq 

ChIP-seq 

gtgatgcagctatattgatgtcgctgatcgt 

gtgatgcagctatattgatgtcgctgatcgt 

gtgatgcagctatattgatgtcgctgatcgt 

gtgatgcagctatattgatgtcgctgatcgt 

enrichment 

gtgatgcagctatattgatgtcgctgatcgt 

Targeted resequencing 

? de novo 

DNA ? 

DNA ? metagenomics 

acgaccgcgtatgctgatgctacgacgcactacgacactacgacgacgcatcgatcgagctagcgctgcgtcagcgacctagcgactacgacatcagcgactacgagctacgacagcgacgagagaggccgagctacacgagcatctagctgacagtcagtgatgcagctatattgatgtcgctgatcgtgctgatcgataatgatgtagcgcgatgctgcgcgtgctagtgatgtcagctgcgacgatcgtg tcgtgatgctagctagcgcatgctgctgcagctagctagtcgatcgcg 

epigenomics 
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Approximate string matching with dH 

 k-mismatches problem: Search all occurrences O of 
pattern P[1,m] in text T[1,n] such that P differs in at 
most k positions from the occurrence substring: 
 More formally: j  O is a k-mismatch occurrence position of P 

in T if and only if dH(P,T[j,j+m-1])≤k, where dH(A,B)=|{ i : 
A[i]≠B[i]}|. 

 Compare to the TotalDistance()-computation in the exercises.  

 Naive algorithm: 

 Compare P against each T[j,j+m-1] but skip as soon as k+1 
mismatches are encountered. 

 Expected linear time! 
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Approximate string matching with dL 

 k-errors problem is the approximate string matching 
problem with edit distance: 
 More formally: j  O is a k-errors occurrence (end)position of 

P in T if and only if dL(P,T[j',j])≤k for some j'. 

 Can be solved with the "zero the first row trick": 
 D[0,j]=0 for all j. 

 Otherwise the computation is identical to edit distance 
computation using matrix D. 

 Intuition: D[i,j] then equals the minimum number of edits to 
convert P[1,i] into some suffix of T[1,j]. 

 If D[m,j]≤k, then P can be converted to some substring T[j',j] 
with at most k edit operations. 

58093 String Processing Algorithms (4 cr), period II Faster algorithms 



NGS atlas and approximate string matching 1/3 

 Aligning reads from ChIP-seq and targeted 
resequencing works using basic approximate string 
matching, but... 
 Tens of millions of reads, spead is an issue. 

 Reference genome can be preprocessed to speed up search: 

 Suffix tree alike techniques work, but... 

 Suffix tree of human genome takes 50-200 GB! 

 More space-efficient index structures have been developed (e.g. 
based on Burrows-Wheeler transform) that drop the space to 
~3 GB. 

 

 

18 582487 Data Compression Techniques (4 cr), period III 



NGS atlas and approximate string matching 2/3 

 Reads from RNA-seq need more advanced 
alignment: 
 Read can span two exons.  

 Next week exercises study this problem.  
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ACGACCGATGCTTTATCTAACTCA 

ACGATCGATGCGT ...                      ...AGTTTATCTATCTACA 

exon exon 

ACGACCGATGCTTTATCTAACT-CA 

ACGATCGATGCTTTATCTATCTACA 



NGS atlas and approximate string matching 3/3 

 de novo sequencing and metagenomics are much 
harder since there is no reference genome. 
 Shortest approximate superstring (exercise 3.4). 

 How to modify edit distance computation for overlaps? 

 Next week exercise. 
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Variations of the theme 
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1 

3 

2 

4 

6 

5 

7 

s 
v 

Heaviest path from s to v? 

1 2 3 4 5 6 7 Topological sort 

5 
2 

1 
2 

1 

2 2 

0 

4 

cost=max(1)=1 

cost=max(2)=2 

cost=max(1+2,2+2)=4 

cost=max(2)=2 

cost=max(5,4+1)=5 

cost=max(5+2,4+4)=8 



Heaviest paths in sequence aligment  

 Consider the DAG of edit distance matrix. 

 Turn minimization into maximization. 

 Give score δ(ai,bj) for diagonal edges.  

 Give score δ(ai,-) for vertical edges. 

 Give score δ(-,bj) for horizontal edges. 

 Then heaviest path in the DAG corresponds to the 
global alignment with highest score. 
 Typically δ(ai,bj)=1if  ai=bj otherwise δ(ai,bj)=-μ. 

 Typically δ(ai,-)=δ(-,bj)=-σ. 

  

 

 



Global alignment DAG and recurrence 
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(i-1)*n+ 
j-1 

i*n+ 
j-1 

(i-1)*n+ 
j 

i*n+ 
j 

-1 

-1 

-1 

-1 +1 

score=max(3+1,4-1,4-1)=4 

score=3 score=4 

score=4 

 

 

 

 

 

 S[i,j]=max(S[i-1,j-1]+δ(ai,bj), 

                S[i-1,j]+δ(ai,-),S[i,j-1]+δ(-,bj)). 



Heaviest local paths in sequence aligment  

 Consider the heaviest path DAG corresponding to 
global alignment with highest score. 

 How to find heaviest subpaths (local path)? 

 Defining that empty path has score 0, it is enough 
to search for subpaths (local paths) with weight 
greater than 0. 

 No heaviest path can have a prefix with negative score. 

Add an edge with score 0 from node 0 to all nodes i*n+j. 

 

 



 

 

 

 

 

 

 S[i,j]=max(0,S[i-1,j-1]+δ(ai,bj), 

                S[i-1,j]+δ(ai,-),S[i,j-1]+δ(-,bj)). 

Local alignment DAG and recurrence 
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(i-1)*n+ 
j-1 

i*n+ 
j-1 

(i-1)*n+ 
j 

i*n+ 
j 

-1 

-1 

-1 

-1 +1 

score=max(0+0,1+1,-1-1,0-1)=2 

score=1 score=0 

score=-1 

0 
score=0 

0 

0 

0 

0 



Longest Common Subsequence (LCS) 

 Global alignment with  
 δ(ai,bj)=1 when ai=bj and otherwise δ(ai,bj)=-∞, and  

 δ(ai,-)=δ(-,bj)=0, 

gives the length of the longest common subsequence C of A 
and B: 

 Longest sequence C that can be obtained by deleting 0 or more 
symbols from A and also by deleting 0 or more symbols from B. 

 

 

 

 Connection: dID(A,B)=m+n-2*|LCS(A,B)|, where dID(A,B) is the edit 
distance with substitution cost ∞. 
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ACGACTGATCG 

AGCTACG 

AACGCATACGG 



M O N D A Y  3 . 1 0 .  1 2 - 1 4  B 2 2 2  
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Study group assignments 



Group 1 (random assignment at lecture) 

 Small parsimony problem: 

 Dynamic programming on fixed phylogenetic tree. 

 J & P pages 368-373. 

 (copies shared at lecture) 

 At study group, simulate the algorithm with some 
example. 
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Group 2 (random assignment at lecture) 

 RNA secondary structure prediction: 
 Basic dynamic programming formulation. 

 See 
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-
1457.html 

 At study group, give an example of RNA 
secondary structure, how the recurrence is 
derived for its computation, and how the 
recurrence is evaluated. 

 

 

29 

http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html


Group 3 (random assignment at lecture) 

 Gene prediction by spliced alignment: 
 Application/extension of heaviest path on a DAG. 

 J & P pages 203-207. 

 (copies shared at lecture) 

 At study group, explain the idea visually and explain 
how the recurrences are derived. What is the running 
time of the algorithm? 
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